Large Scale Natural Vision Simulations

T. Lourens, N. Petkov and P. Kruizinga

Department of Mathematics and Computer Science, Rijksuniversiteit Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands
E-mail: {tino, petkov, peterkr}@cs.rug.nl

Abstract

A computationally intensive approach to pattern recog-
nition in images is developed and applied to face recogni-
tion. Similarly to previous work, we compute functional
inner products of a two-dimensional input signal (image)
with a set of two-dimensional Gabor functions which fit
the receptive fields of simple cells in the primary visual
cortex of mammals. The proposed model includes non-
linearities, such as thresholding, orientation competition
and lateral inhibition. The output of the model is a set of
cortical images each of which contains only edge lines of a
particular orientation in a particular light-to-dark transi-
tion direction. In this way the information of the original
image is split into different channels. The cortical images
are used to compute a lower-dimension space representa-
tion for object recognition. The method was implement-
ed on the Connection Machine CM-5' and achieved a
recognition rate of 97% when applied to a large database
of face images.

1 Introduction

The progress in parallel computing has pushed high-
performance computing forward in the dozens of
Gflops/s domain and the first Tflops/s parallel su-
percomputers have already been announced. The
awareness of the new possibilities offered by high-
performance computers has led to ambitious new
projects based on the computational approach to
solving problems in natural and engineering sciences
such as physics, chemistry, astronomy, fluid dynam-
ics, electrical engineering, etc. At the same time,
the newly available computing power is hardly used
outside the mentioned traditional areas of supercom-
puting. For instance, while neurobiological research
and progress in artificial neural networks have mean-
while led to the insight that mimicing the abilities of
the human brain would require tremendous comput-
ing power (1017-10'® flops/s), little has been done to
develop computationally intensive models that would

IMost of the computation were carried out on the Con-
nection Machine CM-5 of the University of Groningen, the
investments in which were partly supported by the Nether-
lands Computer Science Research Foundation (SION) and the
Netherlands Organization for Scientific Research (NWO).

make use of even a fraction of such power and be real-
1zable with contemporary or future supercomputers.
Large scale computer simulations are still far from
becoming an instrument of neuroscience, a task that
they successfully fulfill for a number of years in the
other branches of science mentioned above.

The insights in the microstructure of the brain pro-
vided by neurophysiological and neurobiological re-
search and progress in parallel computing may open
new opportunities for pattern recognition in images.
Neurophysiological research has delivered interesting
results which can inspire new image analysis models.
It is well known that a large amount of neurons, the
so called simple cells, in the primary visual cortex of
mammals react strongly to short oriented lines [1].
A more precise study has shown that the receptive
field functions of such neurons can be fitted well by
Gabor functions [2, 3], differences of offset Gaussian-
s or other similar functions [4]. Using these results,
researchers mimic the function of the primary visual
cortex by computing quantities which correspond to
the activations of simple cells when an input image is
projected on the retina. This approach is sometimes
popularly referred to as ‘applying cortical filters’.

The research carried out until now has given rise
to a number of open questions. Among these we con-
sider as most interesting the questions of how the in-
formation delivered by cortical filters can be used to
analyse images and whether and how cortical filters
have to interact with each other to facilitate struc-
turing of information in such a way that it can be
used for image analysis and object recognition.

We propose the following model: The values com-
puted by Gabor convolvers are not considered as the
actual activations of cortical cells but rather as net
inputs to the cortical cells. The actual cell activi-
ties are computed by thresholding of the net input-
s. These activities become the subject of two types
of mutual inhibition. We use orientation competi-
tion between cells whose receptive fields are centered
at the same visual field point and have the same
size but differ in their orientations and lateral in-
hibition between cells which have receptive fields of
the same size and orientation but are centered on
different points of the visual field. The represen-
tations obtained in this way exhibit a high degree



of information structuring, in that only edge lines
of a particular orientation and light-to-dark tran-
sition direction are present in each cortical image.
The computed cortical images are used to extract a
lower-dimension space representation which is used
to search for a nearest neighbour in a database. By
applying the above sketched model to the problem
of face recognition, we achieve a recognition rate of
97% on a large database of face images.

The paper is organized as follows: In Section 2 we
introduce the reader to two-dimensional Gabor func-
tions and their relation to natural vision. Section 3
describes the different steps (thresholding, orienta-
tion competition and lateral inhibition) used in the
model. Section 4 outlines the transition from cor-
tical images to a lower dimension-space representa-
tion which is used for image recognition. Section 5
presents our face recognition experiments and result-
S.

2 Gabor filters

The receptive field function of a neuron i1s the mathe-
matical function which describes the response of that
neuron to a small spot of light as a function of po-
sition. In general, some background stimulus, such
as constant illumination or random noise, is used to
get a certain excitation level and the response to the
bright spot stimulus is measured relative to this lev-
el. This gives the possibility to measure inhibitory
effects. Note that, due to the use of a background
stimulus, the receptive field function cannot be con-
sidered as the impulse response.

The basic two-dimensional Gabor function we use
is defined as follows:
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By means of translations parameterized by a pair
(&, 1), which has the same domain as the coordinate
pair (#,y), dilations parameterized by an integer
number j and rotations parameterized by an angle
@, one gets the following family of two-dimensional
Gabor functions (in the following L denotes the size

of the visual field):
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where o/ is a dilation factor (see below). Fig.1shows

the real and imaginary parts of one such function.
The oscillations of g; ,(x — &,y — 1) are due to the
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harmonic wave factor €™ ¢ with a wavelength

Aj = — (3)

and a wavevector of orientation ¢ and magnitude
(spatial frequency)

kj = ol (4)

The Gaussian factor e‘“Qj(xIQ‘l'yIQ) causes the func-
tion g; ,(x —&, y—n) to be negligible for |z —¢| > A;.
The choice of taking the dilation factor in the for-
m o’ (j € Z) corresponds to equidistant sampling
of a logarithmic wavelength/spatial-frequency scale
that corresponds to the logarithmic dispersion of spa-
tial frequencies found by neurophysiological research

[2, 3]. We take the basic dilation factor to be a = /2.
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Figure 1: Real (@) and imaginary (4) part of a Gabor
function.

The functional inner product of a two-dimensional
signal (image) s(x, y) with a Gabor function g; ,(z—
ga y— 77)

o6 = [ ste.0)g) o — €y = idedy G

may, roughly speaking, be considered as the amount
of a harmonic wave with wavelength A; and wavevec-
tor orientation ¢ in a surrounding area of linear size
A; centered on a point with coordinates (£, 7). In this
interpretation equation (5) represents local spectral
analysis which is embedded in global spatial coordi-
nates (&, 7).

In the following we assume that the quantities
5; (&, m) computed in (5) for the various values of the
parameters j, ¢, & and 7 correspond to the net input-
s to individual cortical cells when the visual system
is presented an image s(#,y). Note that each such
quantity is complex, so more precisely it represents
the net inputs to a pair of cells, with the one cell
having a symmetric (real part of the Gabor func-
tion) and the other antisymmetric (imaginary part
of the Gabor function) receptive field profile. Neuro-
physiological research has shown that such pairs of
cells actually exists [5].

3 The cortical image model

3.1 Antisymmetric functions

At present we are primarily interested in form infor-
mation as contained in the edges of the objects. A
simple cortical cell which is characterized either by



the real or the imaginary part of a 2-D Gabor func-
tion will react strongly to an edge in its receptive
field. While both symmetric and antisymmetric re-
ceptive field functions can be used to detect edges,
only the antisymmetric functions can give informa-
tion about the direction of the light to dark transi-
tion. Therefore, we only use antisymmetric receptive
field functions (imaginary parts of Complex 2-D Ga-
bor functions) in the following. (For more details on
this topic see [9].)

3.2 Thresholding

The imaginary parts of the quantities §; (¢, ) con-
tain redundant information, since it holds:

3(%,@(6,77)) = _%(gj,—w(f,ﬁ)) (6)

This redundancy can be rectified by simply skipping
all negative quantities. No information is lost, since,
if a negative quantity 3(3; (&, 7)) is skipped (i.e. set
to zero) this quantity can be restored from the quan-
tity S(8;,— (&, 1)) which is positive and therefore not
skipped.

We use the imaginary parts of the quantities (5)
as net inputs to the cortical cells with antisymmet-
ric receptive field functions and the output activity
aj o(€,n) of a cell with receptive field centered on
a point with coordinates (£, n) and characterized by
main wavelength A; and wavevector orientation ¢
is determined as the imaginary part of the complex
quantity $; ,(&,n) if this part is positive and is set
to zero if this part i1s negative:

aj o(§,m) = S(55,(6m) i S(55,0(&m) >0 (7)

ajo(E,n) =0 if 3(85,(6,m) <0 (8)

In this way, we apply thresholding to the quanti-
ties computed in (5). As mentioned at the beginning,
skipping the negative values is used to reduce redun-
dant information. On the other hand, there is a cer-
tain biological motivation for thresholding, since it
is known that negative (i.e. inhibitive) input to neu-
rons will not cause them to fire but rather prevents
them from firing.

3.3 Orientation competition

Redundancy cannot be removed completely by
thresholding: identical edge lines, for instance, are
enhanced in several thresholded representations and
this can be considered as an expression of redundan-
cy [9]. Next we try to reduce this redundancy by a
winner-takes-all competition between all quantities
aj o(€,n) with the same values of £, n and j but
with different values of ¢. Elsewhere [7, 8] we used
this method to improve the orientational selectivity
of cortical filters. This winner-takes-all orientation
competition is realized as follows:

bj,w(faﬂ) = aj,w(f,ﬁ) 9)
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whereby the quantities b; ,(&,n) should be consid-
ered as the new cortical representations. (As to the
question whether these quantities should be inter-
preted as activities of simple or higher cortical cells,
see the discussion in [9].) The effect of orientation
competition is that if an edge line is enhanced in a
representation corresponding to a given orientation
©, the same line is suppressed in the representations
which correspond to neighbouring orientations.

3.4 Lateral inhibition

An interesting effect is that if an edge line is en-
hanced in a representation b; ,(&,n) which corre-
sponds to a given orientation ¢, the same line is
enhanced in a representation b; ,4.(§ + A€, n+ An)
corresponding to orientation ¢+7 and displaced from
(&,n) at a certain distance (A&, An) which is within
a wavelength A;; |A&| |An| < A;. To remove this
redundancy, we next introduce a lateral inhtbition
mechanism in which a strongly activated cell with
receptive field parameters j and ¢ suppresses all less
activated cells having the same receptive field size j
and opposite orientation ¢+ but centered on neigh-
bouring positions within a distance A; along a line
with orientation ¢. More precisely, we compute new
representations ¢; (&, 1) as follows:

¢je(&,m) = bje (&) (11)
it bj,0 (&, ) = maz{bj oix(E+vAjcosp, nt+vA;sing)
| Vve(-1,1)}

¢p(€m) =10 (12)
it bj,0 (&) < mae{bj oir(E+vAjcosp, nt+vA;sing)
| Vve(-1,1)}

3.5 Cortical Images

For fixed j, ¢ and variable (&,7), ¢; »,(£,n) are two-
dimensional functions to which we refer as cortical
tmages. Fig.2 shows three input images which are
used to illustrate the proposed method.

Fig.3, 4 and 5 show the cortical images computed
for the input images of Fig.2. The first row of im-
ages correspond, left to right, to orientations ¢; =
27i/16, i = 0...3. The second, third and fourth
row correspond to orientations ¢; = 27i/16, i =
4...7, 1 = 8...11 and ¢ = 12...15, respectively.



Figure 2: Three different input images.

Figure 3: Cortical representations of the face image.

Figure 4: Cortical representations of the triangle.

The same basic wavelength A is used for all com-
puted images. Note that the cortical images com-
puted with the involvement of thresholding, orienta-
tion competition and lateral inhibition deliver more
structured information than a traditional edge detec-
tor such as a Laplacian operator, in that each cortical
image contains only transitions of particular size and
orientation.

Figure 5: Cortical representations of the building im-
age.

Fig.4 illustrates best what the effect of the used
model is. The input image, a triangle in this case,
is split in edges which appear in different channels.
The edges of the “building image”, are also clear-
ly detected and appear in different cortical images
(Fig.5). A face has smooth transitions in every di-
rection, therefore there is activity in all cortical chan-
nels and the splitting of visual information is rather
uniform across all channels.

4 Lower-dimension space rep-
resentation

Next we use the cortical images for extracting a
lower-dimension space representation to be used for
object recognition. Since we have no hints from
neurophysiological research about how such images
could be used in the process of recognition, we have
to make hypotheses about the further representation
and processing of visual information. Let us consider
the following quantities:

oy = / ¢ o m)dedn, e, o€ l0,2m). (13)
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Figure 6: Lower-dimension space representations
C};., plotted for a fixed j and different ¢: represen-
tations of the face (a), triangle () and building (¢).

Fig.6 shows plots of the quantities C; , for one
fixed value of j and different values of ¢ computed for
the three example input images. Each of the plotted
values of Cj o, ¢; = 2mi/16, ¢ = 0...15, is simply
the energy of the respective images in Fig.3, 4 and
5.

Note that a considerable activity in a given cortical
image is directly translated in a peak in the respec-
tive lower-dimension space representation. This 1s
best illustrated by Fig.4 and Fig.6b where the edges
in three of the cortical images of Fig.4 are translat-
ed into peaks of the plot shown in Fig.6b. Similarly
the increased activity in four of the cortical images

shown in Fig.5 leads to four peaks in the correspond-
ing plot of the lower-dimension space representation
shown in Fig.6c.

One has to note that after the summation (13) all
local information is lost so that even a partial recon-
struction of the original image is not possible. There-
fore, a certain interpretation of the lower-dimension
space representation is possible only if there is some
a priory knowledge: if for instance it is known that
an input image is allowed to contain only one convex
polygon, one may interpret three peaks in the plot
of Fig.6b as a triangle. In the same context, the plot
in Fig.6c can be misinterpreted as due to a square in
the input image.

In spite of these evident limitations, the proposed
lower-dimension space representations are quite d-
ifferent for different input images as illustrated by
Fig.6 and one can try to use them for object recogni-
tion. Similar input images give rise to similar lower-
dimension space representations as illustrated by the
plots of Fig.6a and 7 which correspond to two differ-
ent face images. On the other hand, it is important
that the representations computed contain sufficient
information to enable discrimination of images of the
same class. Our face recognition experiments report-
ed below show that this i1s the case.

Of course, a representation which is to be used for
object recognition should be robust for translations,
rotations and scaling. This is the case with the pro-
posed representation. If; for instance, the face image
is shifted, it would produce virtually the same plot
as the one shown in Fig.6a. A rotation of the im-
age would lead to a circular shift of the plot and can
easily be compensated. Scaling of an image would
lead to the same plot but obtained for a different
basic wavelength (value of j), this can also be easily
compensated.

5 Experimental results
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Figure 7: The lower-dimension space representation
of another face.

We applied the developed method to the problem
of face recognition. A database of 300 different face



images of 40 persons has been constructed. Technical
details on the database can be found in [6]. For each
of the face images in the database, a lower-dimension
representation has been computed according to (13).
Based on this representation a nearest-neighbour was
searched in the rest of the database. The search was
considered to be successful if the nearest neighbour
turned out to be another image of the same person
(Fig.8) and not successful if it was an image of a
different person (Fig.9). With the above described
method we achieved a recognition rate of 97%.

Figure 9: Examples of failures of the model.

We are rather confident that interaction of corti-
cal filters, as exemplified above by orientation com-
petition and lateral inhibition, is needed to facil-
itate the process of image analysis. In spite of
the excellent results achieved in our experiments we
have to note that a lots of work has still to be
In particular, better ways for the extraction
of lower-dimension (preferably syntactic) representa-
tions have to be found.

done.

References

(1]

[10]

D. Hubel and T. Wiesel: “Receptive field-
s, binocular interaction, and functional archi-
tecture in the cat’s visual cortex”, J. Physi-

ol.(London), 1962, vol. 160, pp. 106-154.

J.P. Jones and L.A. Palmer:
the two-dimensional Gabor filter model of sim-
ple receptive fields in cat striate cortex”, Jour-
nal of Neurophysiology, Vol.58 (1987) pp. 1233-
1258.

“An evaluation of

J.G. Daugman: “Complete discrete 2-D Gabor
transforms by neural networks for image analy-
sis and compression”, IEEFE Trans. on Acoustic-
s, Speech and Signal Processing, Vol.36 (1988)
No. 7, pp. 1169-1179.

D.G. Stork and H.R. Wilson: “Do Gabor func-
tions provide appropriate descriptions of visual
cortical receptive fields”, J. Opt. Soc. Am. A,
Vol. 7 (1990) No.8, pp.1362-1373.

D. Pollen and S. Ronner: “Phase relationships
between adjacent simple cells in the visual cor-

ex”, Science, Vol. 212 (1981) pp. 1409-1411.

N. Petkov, P. Kruizinga and T. Lourens: “Bi-
ologically Motivated Approach to Face Recog-
nition”, Proc. International Workshop on Ar-
tificial Neural Networks, June 9-11, 1993, Sit-
ges (Barcelona), Spain (Berlin: Springer Verlag,
1993) pp.68-77.

N. Petkov, T. Lourens and P. Kruizinga: “Lat-
eral inhibition in cortical filters”, Proc. of In-
t. Conf. on Digital Signal Processing and Int.
Conf. on Computer Applications to Engineer-
wng Systems, July 14-16, 1993, Nicosia, Cyprus,
pp- 122-129.

N. Petkov and T. Lourens: “Human Visual
System Simulations - An Application to Face
Recognition”, in H. Dedieu (ed.) Proc. 1993
European Conf. on Circuit Theory and Design,
Aug. 30 - Sept. 3, 1993, Davos, Switzerland
(Amsterdam: Elsevier Sci. Publ.; 1993) pp. 821-
826.

N. Petkov, P. Kruizinga and T. Lourens: “Ori-
entation Competition in Cortical Filters - An
Application to Face Recognition”, in H.A. Wi-
jshoff (ed.) Proc. of Computing Science in the
Netherlands, Nov. 9-10, 1993, Utrecht, The
Netherlands, pp. 285-296.

M. Connoly and D. van Essen: “The represen-
tation of the visual field in parvocellular and
magnocellular layers in the lateral geniculate
nucleus in the macaque monkey”, J. Comput.

Neurol., Vol.226 (1984) pp. 544-564.



