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1
Introduction

And God said, “Let there be light,” and there was light. God saw that the light was
good, and he separated the light from the darkness.

Genesis 1:3-4 (NIV)

THE RECOGNITION OF OBJECTSis a task carried out with such ease by a human that
we hardly consider it as a difficult. A closer view reveals the problems behind this act
of perception. A distribution of light intensities on the retinas in our eyes is processed

by our brain. This distribution of light intensities can change considerably, for example if the
lighting changes. Even when the object is translated, scaled, rotated, partly occluded, placed
in a different environment, or a combination of them, the object is still recognized as being
the same. Since all these actions cause a change in the distribution of light intensities in the
eye, the changes must be compensated for in a later stadium, i.e. in our brain. Thus there is a
huge number of distributions which are all perceived as the same object.

Another aspect is that concrete unknown objects (like my friend’s new car) are recognized
to belong to a known abstract class of objects (here cars). It is likely that specific areas in
the brain are responsible for an equivalence class. The representation of such a class must be
compact, for otherwise it is impossible to store enough classes in the brain. Not all possible
views have to be stored, because the brain probably has an active process that compares the
actual scene with a stored scene, a process which is calledmatching.

Another complication is the representation of classes. Depending on the environment, the
result of recognition can be quite different dependent on the task, goal, or interest of a per-
son. For instance, when a person is interested in details of one or a few objects it is likely
that a class containing details of this object is accessed or activated. In completely different
environments where one can expect the same object but also any arbitrary other object, it is
not likely that the class containing details of this single object is accessed but more likely
that other classes will be accessed. Cognition is capable of rapidly moving through various
different classes and choosing the class which is most appropriate for the current task. Cog-
nition is complex because contents of classes change with time and the content of a class is
unique for every individual since it is dependent on the environment and the interest of the
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individual.
The goal of this thesis is to develop an artificial vision model which is able to recognize

a limited class of objects and is inspired by biological models. The interest in developing
such a model is twofold. Firstly, we want to find robust algorithms for technical systems, and
secondly, we want to provide a computational model for human vision. We do not strive for
a completely faithful simulation of biological perception but for a model which is robust to
translation, rotation, scaling, and small distortions. The model has a compact representation
of objects and uses a matching process to recognize objects.

Let us give the similarities and differences between artificial and natural visual systems.
Since inputs of both systems are similar, and the outputs of the artificial system should be
similar to the outputs of the natural system, both must deal with comparable (but not nec-
essarily identical) image processing problems. The natural systems of mammals have been
developed under the needs for survival. Therefore they can adequately deal with a broad
range of problems. Artificial visual systems on the other hand are often specialized in one or
a few aspects of vision.

In this thesis, we will create an object recognition model which uses principles discovered
in natural visual systems. Although characteristics of many cells in the eyes and brains of
different species are known, it is often not clear what role these cells play. Physical limits
of organic material differ from those of the hardware of a machine. It follows that exact
modeling of a natural visual system is not always desirable and also impossible when we are
aiming at a working recognition system. The organic material in a natural system has a lim-
ited lifetime. If cells die their function is replaced by other cells. Therefore a natural system
is dynamic, in contrast with most artificial systems which are static. Our goal is to model
the response of different cells and not their exact physical and chemical behavior. The brain
works highly parallel and is currently faster than any parallel machine. Implementations of
models based on natural vision will be partly carried out on a serial machine and partly on a
parallel machine with very few processors (32 in our case) and can be relatively slow due to
limitations of these machines.

A human obtains knowledge by learning. During this process general representations of
different classes are created and adjusted somewhere in the brain. As we mentioned before,
the brain probably stores objects in a compact way. Since edges, corners, colors, and move-
ments play an important role in biological vision systems, it seems likely that they form the
cornerstones of these compact representations. In the model developed here we assume that
compact representations contain edges and corners only. We do not model the learning as-
pects of recognition but assume that the system has been taught a limited set of objects. The
model can be extended so that it learns to recognize objects by presenting the model images
which contain a single object.

An object is represented as a set of connected corners and edges. We choose this repre-
sentation because it is compact and invariant under translation, scale, and rotation. The dis-
advantage of such a representation: we cannot describe a unique model for certain objects,
e.g. round objects, like a ball. Although a round object contains an edge, it is not connected
by one or more corners, which are the key for rotation and scale invariance. Object detection
therefore will be limited to objects in which all edges are spanned by corners.
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Basically the model receives as input a two-dimensional image which represents a two-
dimensional pattern of light intensities projected at the retina. Image processing techniques,
which mimic (up to a certain extent) parts of a natural visual system, are applied to enhance
corners and edges in the input image. An additional step is taken to extract these corners and
edges to create an abstract representation. We choose a graph representation where corners
and edges are represented as vertices and edges, respectively. Finally, learned objects are
located (matched) in the graph.

In this thesis we create a model that is able to find and recognize certain known objects in a
color image. Since we (man) can very accurately complete the task of perception followed by
recognition, the model will be partly based on existing neurophysiological knowledge of the
behavior of cells in the retina, the lateral geniculate nucleus, and the primary visual cortex.
The functionality of one or more cell types of the visual system has been used before in
models of image processing. Most of these models contain operators that model the response
behavior of one cell type, and in the present context we are doing the same.

It is known that in the biological visual pathway so-called complex cells have strong re-
sponses at edges and end-stopped cells have strong responses at corners. Responses of these
cells are modeled by operators that are a composition of linear operators (filtering) with sim-
ple nonlinear ones (e.g. thresholding). Models for end-stopped cells are rare and we use one
of the few good models for these cells. We discuss the properties and shortcomings of this
model and extend it by using multiple scales.

Vision does not end with edge and corner enhancement. By looking at a scene we are
able to recognize objects in the scene. This suggests that there is a kind of matching process
acting in the brain. In neurophysiology, very little is known about the temporal and pari-
etal areas (see Figure 2.5) and beyond. This means that when detection and recognition are
involved one must speculate how the brain might work. Since we use edges and corners,
graph matching would be a logical step. Before graph matching can take place, corners need
to be extracted from the “enhanced corner image”. These corners can then be used for the
extraction of edges from the “enhanced edge image”, where the extracted corners and edges
represent the vertices and edges of the graph. Finally, a graph matching algorithm will be
applied to find potentially inexact copies of different objects (also represented as a graph)
in the image graph. It must be emphasized that these extraction and matching methods are
purely hypothetical and not based on any biological evidence.

1.1 Outline of this thesis

The flow of visual information via the M or magno-cellular (from magnus = large) pathway
is basically used to order the chapters in the thesis, with one exception: Chapter 7 is about
color which belongs to the P or parvo-cellular (from parvus = small) pathway.

We know that our visual system detects and locates corners and edges accurately. In Chap-
ter 2 we take a closer view of the main flow of visual information from eye to primary visual
cortex. This information flow is known asearly vision.

Chapter 3 gives a general overview of the most widely used models for different cells in
early vision. The modeled properties of most of these cells form the basis for our approach of
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artificial vision. We model the so-called center-surround, simple, and complex cell types. In
the visual system these cell types can differ in their spatial (and temporal) resolution. Some
cells only respond to very small parts of the visual field and are involved with highly detailed
vision, while other cells respond to large parts of the visual field. These cells interact at
different levels of accuracy (scales). Interaction at different scales raises the questions which
scales are useful and how these scales can be ordered. In natural vision systems the spatial
accuracy drops with eccentricity, but in most static artificial systems accuracy is uniform. We
do pay attention to this phenomenon, however, for the sake of completeness. The decrease in
spatial accuracy with eccentricity highly reduces the amount of information. A reduction of
information is important since it makes the system relatively fast when motion is involved.
Motion is not included in this thesis but it will be added to the model in future research.

In Chapter 4 a corner operator based on responses of cortical end-stopped cells proposed
by Heitger et al. [71] will be modeled (with some minor but important changes) and com-
pared to six standard corner enhancing operators. We are aiming at a robust operator with
respect to the position under different conditions (e.g. rotation of the image), since it forms
the basis for the graph. Rotation and position at different scales are analyzed to determine
the robustness of the operator.

Chapter 5 improves the end-stopped operator by using multiple scales. This is necessary
since the operator is noise sensitive at small scales and does not respond to all different
corners at a single scale. The response of the operator will be examined for different scales
at convex corners, rounded corners, and several junctions. We discuss the choice for a proper
operator to combine multiple scales and motivate the choice for the number of scales. Finally
the multiple scale corner operator will be compared with standard operators at both single
and multiple scales.

Chapter 6 describes a line-segment extraction algorithm where the corners obtained with
the end-stopped operator at multiple scales are used together with the “edge enhanced im-
age”. Edges between a pair of corner points will be extracted only, hence edges without two
corner points are not detected. The content of this chapter is meant as an intermediate step
towards a graph representation and should be regarded as preprocessing for graph matching
(see Chapter 8).

Chapter 7 extends the model with color. We use two “color-opponent” channels which
are found in natural color vision. In previous chapters we gave a model which is based on
achromatic vision. In this chapter we use this model but apply it to two different opponent
channels. Hence models for biologically plausible color-opponent cells are proposed: one
opponent cell type which responds to edges of a preferred orientation and a type which re-
sponds to corners. In natural vision two opponent color channels are found; in combination
with the achromatic channel, every color can be reconstructed. The three channels are com-
bined to yield the final edge and corner detection model.

Chapter 8 gives a graph matching algorithm which searches copies of different known ob-
jects in the input graph. The representation of these objects accomplishes scale, rotation, and
translation invariance. The matching algorithm is based on a standard back-tracking algo-
rithm which is a time consuming (NP-hard) problem. Hence angle and length ratio attributes
which are found in every two-dimensional graph are added to speed up the search.
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Appendix A describes some functions used in linear filtering, such as the Gaussian, Lapla-
cian of a Gaussian, and the difference of Gaussians. This appendix aims at the reader who is
interested in the differences and properties of these functions.

Parts of Chapter 3 and Appendix A have been published in [120, 121], parts of Chap-
ters 4, 5, and 7 in [198], and parts of Chapters 6 and 8 in [122].

1.2 Contributions

In this section we give the contributions of this thesis.

1. An overview of early vision from a computational point of view is given. With
this overview an artificial vision system based on line and corner enhancement
can be constructed (Chapter 3).

2. The corner detecting qualities of the model of end-stopped cells, proposed by
Heitger et al. [71], are assessed (Chapter 4).

3. We propose a new corner detector by a multi-scale combination of the modeled
end-stopped cells (Chapter 5), which yields:

� a physiological model for the percept of a corner and

� a useful corner operator for computer vision.

4. Edge, and corner enhancement algorithms are generalized to color channels. We
use the properties of the complex and end-stopped cells and assume that these
cells respond excitatory to one color and inhibitory to another color (Chapter 6).

5. We develop a line detection algorithm, based on the assumption that corners are
more stable than lines, and use it to extract line-segments by following enhanced
edges from one corner to another (Chapter 7).

6. We develop an attributed graph format for views of objects, which is suited for
objects in which all edges are spanned by corners.

7. A graph matching algorithm will be used for object recognition (Chapter 8),
where the choice of attributes leads to:

� invariance under translation, rotation and scaling,

� robustness under small perspective changes and undetected lines, and

� reduction of evaluations fromN! to less thanN3.

Points 4-6 apply also to physiologically motivated color channels and complete color images.
This is still done rarely in computer vision.
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1.3 List of symbols

Function or operatorXσ;θ denotes thatX is used at a single scaleσ and single orientationθ.
Function or operatorXσ denotes the use of a single scaleσ (and multiple orientations).
The most important variables:

σ scale.
θ orientation.
T threshold.
ω 2 Ω=fσ, avg, all,: : :g.

Functions used to model receptive field profiles:1

Mσ Difference of Gaussians or a Mexican-hat function representing center-
surround cell receptive field profile.

ℜGσ;θ Real part of a Gabor function.
ℑGσ;θ Imaginary part of a Gabor function.
ℜĜσ;θ Real part of a normalized Gabor function representing the symmetrical sim-

ple cell receptive field profile.
ℑĜσ;θ Imaginary part of a normalized Gabor function representing the anti-

symmetrical simple cell receptive field profile.
Gσ Gaussian function representing center-only cell receptive field profile.

Operators to model the response of cells:

Mσ M or center-surround operator representing the response of a center-
surround cell.

Nσ N or magno-operator representing the response of a ganglion cell (M type).
Pσ P or parvo-operator representing the response of a ganglion cell (P type).
Ss

σ;θ Ss or symmetrical simple cell operator representing the response of the sym-
metrical simple cell.

Sa
σ;θ Sa or anti-symmetrical simple cell operator representing the response of the

anti-symmetrical simple cell.
Cσ;θ C or complex cell operator representing the response of the complex cell.
Cσ C operator (at multiple orientations).
Oσ O or principal orientation operator.
O O or principal orientation operator (for multiple scales).
LR

θ L or eccentricity dependent operator.
Es

σ;θ Es or single end-stopped operator representing the response of a single end-
stopped cell.

Ed
σ;θ Ed or double end-stopped operator representing the response of a double

end-stopped cell.
I t

σ It or tangential inhibition operator.

1The term receptive field will be introduced in Chapter 2.
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I r
σ Ir or radial inhibition operator.

Es
σ Single end-stopped operator.

Ed
σ Double end-stopped operator.

Eσ End-stopped operator.
Gσ G or center-only operator.
PCFT;ω Potential corner feature operator.
MCT;ω Marked corner operator.
Eavg E operator for multiple scales by averaging.
Cavg C operator for multiple scales by averaging.

Operators to model the response of color opponent cell types, wheree and i denote the
excitatory and inhibitory color, respectively:

C Se;i
σ CS or center-surround opponent operator.

SC e;i
σ SC or surround-center opponent operator.

C Oe;i
σ CO or center-only opponent operator.

DOe;i
σ DO or double opponent center-surround operator.

DOe;iSs
σ;θ DOSs or double opponent symmetrical simple operator.

DOe;iSa
σ;θ DOSa or double opponent anti-symmetrical simple operator.

DOe;iCσ;θ DOC double opponent complex operator.
DOe;iEσ DOE or double opponent end-stopped operator.
DOe;iEavg DOE or double opponent end-stopped operator for multiple scales by

averaging.
DOe;iEall DOE or double opponent end-stopped operator for multiple scales, orienta-

tions, and color channels.

Notations:

[x]�0 =

�
x if x� 0
0 elsewhere

[x]�0 =

�
0 if x� 0

�x elsewhere
b~xc is the truncation to the nearest integer for every element of~x.





2
Visual Pathway

And God said, “Let the land produce living creatures according to their kinds: live-
stock, creatures that move along the ground, and wild animals, each according to
its kind.” And it was so. God made the wild animals according to their kinds, the
livestock according to their kinds, and all the creatures that move along the ground
according to their kinds. And God saw that it was good. Then God said, “Let us make
man in our image, in our likeness, and let them rule over the fish of the sea and the
birds of the air, over the livestock, over all the earth, and over all the creatures that
move along the ground.” So God created man in his own image, in the image of God
he created him; male and female he created them.

Genesis 1:24-27 (NIV)

THE MAIN OBJECTIVE OF THIS CHAPTERis to present some basic knowledge about
the elements and pathways in natural visual systems. The visual system of mammals
processes different attributes of a visual scene, such as color, form, and motion, in

parallel by parallel but interacting channels (DeYoe and van Essen [31], Zeki and Shipp
[201], Livingstone and Hubel [119], and Fukushima and Kikuchi [52]). Each channel has a
specialized functionality, but physically it is not clearly segregated from the other channels.

The image of the outside world that is projected on the retina provides the eye with in-
formation that initiates signals that lead to perception. The sequence of steps by which the
neuronal signals are evoked, transmitted, and combined to produce a scene, can be followed
step by step through the retina via the optic nerve, chiasm, and optic tract to the first relay
station, (the lateral geniculate nucleus, LGN), on the way to the primary visual cortex. This
is illustrated in Figure 2.1. In all three structures (retina, LGN, and cortex) the cells are ar-
ranged in layers, and individual types of neurons can be identified by their anatomical and
physiological characteristics.

A single cell has one or more input channels (dendrites) and one output channel (axon).
The response of such channels can be measured as impulses per second. The response of the
cell is either excitatory or inhibitory. The output channel of a single cell is active when it has
an impulse rate between 100-200 per second (Hubel [89]).



10 Visual Pathway

Figure 2.1: Outline of the visual pathways (Scien. Am.). The right side of each retina (found at the
backside of the eye) projects to the right lateral geniculate nucleus, and the right visual cortex receives
information exclusively from the left half of the visual field. The inputs from each eye end in separate
layers of the lateral geniculate nucleus. From the lateral geniculate nucleus the information proceeds
to the primary visual cortex at the back of the head.

2.1 Retina and lateral geniculate nucleus

The neuronal responses start at receptors known asrodsandcones. Rods are responsible for
night vision and contain molecules of the visual pigment rhodopsin that absorb light most
effectively in the short and intermediate wavelength range of the spectrum. Absorption of
light results in a generation of electrical signals.

Color and daylight vision depends on the cones. Three cone types, known as short wave-
length (blue), intermediate wavelength (green), and long wavelength (red) sensitive, contain
pigments that differ in molecular composition of the protein. In rods and cones light breaks
down the visual pigment molecules. This releases energy leading to electrical signals at the
synapses. It would lead too far to go to all details. For the reader who is interested in the
underlying chemistry we refer to works of e.g. Baylor [11, 12], Dowling [34], Hubel [89], or
Nicholls et al. [141].

The receptors are the first stage in the visual sensory pathway. Axons from the receptors
make contacts with a second array of cells, called thebipolar cells. These cells contact a
third array of cells called theganglioncells. Two more cell types are found in the retina,
thehorizontalcells, which link the receptors and bipolar cells by relatively long connections
which are parallel to the retinal layers, and theamacrinecells, which link bipolar and retinal
ganglion cells in a similar way (Figure 2.2). The information flow in the retina can be subdi-
vided into two paths: a direct path, from the receptors to bipolar cells to ganglion cells, and
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Figure 2.2:The eye (Hubel [89]). The enlarged retina shows the relative positions of the retinal layers.
Note that light has to pass all cells before it reaches the rods and cones.

an indirect path, in which horizontal and amacrine cells are involved too.
The retina is a two-dimensional layer of about a quarter millimeter thick. The number of

rods and cones varies across the retina. In the center we only have cones (fovea) and see fine
detail. With increasing eccentricity the retina becomes thinner and visual accuracy becomes
less (van Buren [18] and Fischer [45]). A simple experiment reveals that our visual system
looses spatial accuracy quickly: if we keep our eyes fixed at a certain character from the
current line it is apparent that we see a few characters sharp on the left and right side of this
character. Hence we have to move our eyes from left to right to read this text (Lettvin [109]).

In 1953, Kuffler [101] and Barlow [9] were the first to record the activity from the out-
put channels (axons) of retinal ganglion cells of cats. These cells are grouped in two main
categories, which are denoted as M and P type1 (Kaplan et al. [96], Shapley et al. [171],
and Livingstone and Hubel [118]). The criteria for these groups are both anatomical and
physiological. The P ganglion cells project to the four dorsal layers (parvo-cellular layers) of
smaller cells in the lateral geniculate nucleus and the M cells project to the larger cells in the
two ventral layers (magno-cellular layers) in the lateral geniculate nucleus. In the cat, which
mainly lacks color vision, the classification is different. The ganglion cells are divided in X,
Y, and W groups (Enroth-Cugell and Robson [38]).

The optic nerve is a bundle of axons from the ganglion cells, which carries the entire
output of the retina. The outputs of each eye terminate on cells in the left and right LGN. In
the monkey the LGN contains six layers (Figure 2.3), but the LGN of the cat has only three.
Most of the cells in the LGN send axons to the cerebral cortex. They do not only receive input
from the optic nerve fibers but also back from the cerebral cortex and from the brain-stem. To

1In the terminology of Perry et al. [148], M or magno (large) cells are called Pα for primate alpha, while P
or parvo (small) cells are called Pβ for primate beta.
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Figure 2.3: The left lateral geniculate (“bent like a knee”) nucleus of the monkey (Hubel [89]). In
the four parvo-cellular layers the cells are smaller than in the two magno-cellular layers. Cells in the
LGN receive input either from the left eye or from the right eye. The cells are segregated in alternating
layers, denoted by L or R for input from left or right eye, respectively. Movement along a layer implies
movement in the visual scene. A perpendicular movement to the layers (dotted line) implies a switch
between eyes but no movement in the visual scene.

keep our model simple we will only consider the feed-forward stream of visual information:
from retina to LGN to cortex.

2.2 Visual cortex

From the LGN the visual information proceeds to the primary visual cortex (also called
striate cortex, area 17, or visual area V1), which is part of the cerebral cortex. The striate
cortex is divided into six layers. Most of the axons of the LGN terminate in layer 4C (Hubel
and Wiesel [87]). These cells are of the center-surround type and are strictly monocular.
At subsequent stages most of the cells show orientation specificity and about half of them
is binocular. In visual area V1 (primary visual cortex), four different cell types are distin-
guished: the center-surround, the simple, complex, and hyper-complex (end-stopped) cells.
The simple cells are found mainly in layers 3, 4A, 4B, and 4Cα (Hubel and Wiesel [82]).
Complex and hyper-complex cells are found in layers 2, 3, 5, and 6 (Hubel and Wiesel [86]).
A sketch of the main primary visual pathway is given in Figure 2.4.

From the retina via the LGN to V1 of monkeys there are two mean streams called, theM
pathwayandP pathway. The M layers of the LGN are connected to layer 4B of V1 via layer
4Cα (Blasdel et al. [15]). The outputs of the P layers of the LGN are relayed to the so-called
blobandinter-blobcolumns which are found in layers 2 and 3, where the blobs are separated
from each other by the inter-blob regions (Hubel [89]). Within the blobs, cells show color
selectivity but lack orientation selectivity (Hubel and Livingstone [89, 117]). Inter-blob cells
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Figure 2.4: A schematic overview of the main visual pathway in the primary visual cortex (Hubel
[89]). The primary visual cortex is subdivided in six layers. The main connections are made by axons
from the LGN to the primary visual cortex and from the primary visual cortex to other brain regions.

are both color and orientation selective (Gouras and Kr¨uger [58] and Thorell et al. [183]).
In Visual area V2 (also called area 18) alternating thick and thin stripes are found, sep-

arated from each other by inter-stripes (Livingstone and Hubel [119] and Zeki and Shipp
[201]). The P pathway splits the two upper layers of V1 into one pathway concerned primar-
ily with color and another primarily with form (Livingstone and Hubel [117]). Both pathways
lead to V4, which is specialized for color and form (Zeki [204]). The M pathway terminates
in layer 4B of V1, where at least two new categories of orientation and direction selectivity
are generated which project to the thick stripes of V2. The thick stripes are characterized by a
concentration of directionally selective cells and an absence of wavelength selectivity (Hubel
and Livingstone [80]). The main feature of V3, which gets inputs from V1 and V2, is orien-
tation selectivity whereas most cells in V5 (MT or middle temporal area) are directionally
selective (Zeki [204]).

Orientation selectivity is generated in both major pathways, so it seems that both are in-
volved with form perception: the P pathway through its inputs to V4 and the M pathway
through V3. Most cells in V4 are (unlike cells in V3) also color selective, so there is a rela-
tionship between color and form processing in V4.

The M cells are more concerned with the form of moving objects and generating structure
from motion, whereas the P pathway is more concerned with a detailed static (or slowly
moving) image that contains both color and luminance information.

Figure 2.5 yields a view on visual areas V1 to V5. A subdivision of V1 is made into layers
2, 3, 4B, and 4C. Area V2 is subdivided into thin stripes and inter stripes (which outputs
form the input for area V4) and thick stripes (which connects areas V3 and V5). There is
evidence for direct connections between V3, V4, and V5 (Zeki and Shipp [201]). For more
detailed information about areas V1 to V5 we refer to Zeki [204].



14 Visual Pathway

Inter stripes

Temporal Parietal

Areas Areas

Magno

4C

4B

V3

V5V4

4C

Parvo
LGN LGN

V1 V1

V1

V2

C

Blob
V1

V2

C

C

Inter blob
V1

V2

C

C

B

B

O

O

O B

M

M

M

M

B

B

B

B

O

O

O

O

Thin stripes Thick stripes

Figure 2.5: A diagram of the visual system (DeYoe and van Essen [31] and Fukushima and Kikuchi
[52]). The symbols C, O, B, M are used for Color, Orientation, Binocular disparity, and Motion
sensitivity, respectively.

2.3 Building block structure

In the past forty years much work on visual sensory areas of mammals (mostly cats and mon-
keys) has been done by neuro-physiologists. The functionality of groups of cells in different
sensory areas are now reasonably well understood.

The technique of illuminating selected areas of the retina introduced the concept of the
receptive field, a concept that provided a key for understanding the significance of the signals
in the brain. The term receptive field was coined by Sherrington in relation to reflex actions
and was reintroduced by Hartline [65]. Thereceptive fieldof a cell can be defined as the
area of the visual field (or the area on the retina) which is able to influence the activity of
cell by light. Thereceptive field profileof a cell, which Hubel [89] calls “mapping out a
cell’s receptive field”, is the sensitivity profile of the cell which is modeled by a spatial filter
function.

Kuffler [101] and Barlow [9] were the first to record the activity from the axons of the
retinal ganglion cells. Their experiments revealed the type of receptive field profiles the
retinal ganglion cells possess. They discovered that a retinal ganglion cell or a geniculate
cell responds well to a circular spot of light2 and found two basic cell types: thecenter-on

2This implies that the ganglion cells have circular shaped receptive fields, we use the termsreceptive field
size or radiusto give the boundary of the receptive field.
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Figure 2.6: The building block structure. At the left the center-surround cells (with center on and
surround off) is given. A number of these cells are making excitatory synaptic connections with a cell
of higher order. If we assume that instead of three center-surround cells many more cells are along
a line, then we get the receptive field profile of a simple cell, which will consist of a long narrow
excitatory region with inhibitory flanks. A number of simple cells (only three are illustrated) make
excitatory synapses with a single complex cell (which is represented as a white ellipse). Complex
cells make excitatory and inhibitory synapses with a single end-stopped cell (represented as a rectan-
gle). The top-right rectangle has one excitatory and one inhibitory part and therefore represents the
receptive field of a single end-stopped cell. Similarly the bottom-right rectangle represents a double
end-stopped cell which has two inhibitory parts.

surround-offcells and thecenter-off surround-oncells. Thereceptive field centerof a center-
surround cell is that part of the receptive field that is excitatory in a center-on surround-off
cell and inhibitory in a center-off surround-on cell.

Kaplan et al. [96] and Shapley et al. [171] point out that there are two ganglion cell types.
The first type are the monkeyM cells. These cells are retinal ganglion cells which project to
the magno-cellular layers (ventral layers) in the LGN. The second type are monkeyP cells
which project to the parvo-cellular layers (dorsal layers) in the LGN. The two ventral layers
in the LGN are more sensitive to luminance contrast than the cells in the four dorsal layers of
the LGN. The differences between these layers are due to the fact that there are differences
in the retinal ganglion cells which provide excitatory synaptic input to the LGN-neurons,
and not because of the organization (pattern of connectivity) in the LGN. The P cells in the
monkey are color sensitive (wavelength selective), have small concentric center-surround
receptive fields, and are not very contrast sensitive. The M cells are not wavelength selective,
and have concentric center-surround receptive fields. Their receptive fields are larger than
the receptive fields of the P cells and are highly sensitive to contrast (Shapley et al. [171],
Livingstone et al. [119], and Nicholls et al. [141]).

Hubel and Wiesel [79, 83, 84] did pioneering work on the cat’s striate cortex. They ex-
plored various visual cortical regions with micro-electrodes and divided the recorded cells
into four distinct classes based on a so-calledbuilding block structureof these classes. An
illustration of the building block architecture is given in Figure 2.6.

The first class are thecenter-surround cells. The ganglion cells belong to this class. These
cells are found in the retina, the lateral geniculate body, and in layer 4Cα of the striate cortex.
Kuffler [101] discovered that when the receptive field center of a center-on surround-off cell
gets a stimulus the cell starts firing immediately. When the inhibitory part is stimulated it
does not fire until the inhibitory part is not stimulated anymore. Then the cell starts firing.

The second class are thesimple cells, which were found coincidently in the late 1950s by
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Hubel and Wiesel (taken from Hubel [88]):

We were inserting the glass slide with its black spot into the slot of the ophthal-
moscope when suddenly over the audio monitor the cell went off like a machine
gun. After some fussing and fiddling we found out what was happening. The
response had nothing to do with the black dot. As the glass slide was inserted its
edge was casting onto the retina a faint but sharp shadow, a straight dark line on
a light background. That was what the cell wanted, and it wanted it, moreover,
in just one narrow range of orientations.

This was unheard of. It is hard, now, to think back and realize just how free we
were from any idea of what cortical cells might be doing in an animal’s daily
life.

The simple cells receive their inputs from the center-surround cells (Hubel and Wiesel
[87]). It is well known that a large amount of these cells react strongly to oriented lines and
are found in layer 4B and 4Cβ of the striate cortex (Hubel and Wiesel [79]).

Probably two types of simple cells exist, a symmetric and an anti-symmetric type. Pollen
and Ronner [152] recorded simultaneously the response from pairs of adjacent cells which
had identical frequency and orientation tuning properties. Such paired cells differed in spatial
phase by approximately 90 degrees. This suggests that the simple cells always come in pairs:
a symmetric and an anti-symmetric cell with overlapping receptive fields (Atick and Redlich
[6]).

The third class is that of thecomplex cells. The difference between the simple cells and
the complex cells is that the latter have larger receptive fields and, instead of having discrete
regions from which one can obtain excitatory and inhibitory responses (to a bar stimulus
in the preferred orientation), responses can be obtained from every part of the receptive
field (Hubel [89] and Zeki [204]). The characteristics of these cells can be accounted for
by supposing that several simple cells excite one complex cell (Hubel and Wiesel [79]).
Complex cells are the most common cells in the striate cortex, they make up about 75 percent
of the population (Hubel [89]). The first cell Hubel and Wiesel recorded from (the one that
responded to the edge created by the glass slide) was most probably a complex cell.

Simple and complex cells show length summation; the longer the line segment in the input
stimulus the stronger the response. Of course, when the length of the line segment is longer
than the diameter of the receptive field of the cell it does not change its response anymore,
because nothing can influence the cell outside its receptive field.

Even more complicated cells were first referred to ashyper-complex cells, the fourth class
of cells. They behave as if they receive input from two or more complex cells. When there
are two input channels, there is one excitatory and one inhibitory input to the hyper-complex
cell (Hubel and Wiesel [85]). Like simple and complex cells, these cells respond to lines
of a specific orientation but unlike the former the length of the line is critical. Presenting
a longer line segment increases the response up to a certain limit. If this limit is exceeded
the response decreases. The hyper-complex cells respond strongly to line-ends, corners, and
highly curved segments. The cells are found in layer 2 and 3 of monkey area V1, where they
make up about 20 percent of the cells. Later these cells became known asend-stopped cells,
because of their properties (Hubel [89]).



3
Mathematical Models of Different

Cells in Early Vision

THE AIM OF THIS CHAPTER is to give a general overview of the most widely used
models for different cells in early vision. The mathematical models used here can
have modifications, partly simplifications, partly extensions, of models known in lit-

erature. We shall discuss the reasons for specific choices and modifications.
In Section 3.1 we describe a relation between the receptive field size and the dendritic

tree of a ganglion cell. Discussion of this relation is necessary, since in some papers (e.g.
Shapley and Perry [171]) a dendritic tree is used, while most of the papers use a receptive
field. In the same section the average receptive field size of both P and M cells is discussed.
In Section 3.2 operators are defined to model the responses of these ganglion cells. Center-
surround cells respond well to differences in contrast but are not orientation selective. The
outputs of these cells form the inputs for the simple cells, which are orientation selective
and form the basis of our object recognition model. Atick and Redlich [6], e.g., made a
mathematical model of simple cells in the P pathway. In their model the simple cell sums
its input from a set of ganglion cells. Hence it is good to get some insights to what kind of
stimuli these cells respond well. In Sections 3.3 and 3.4 we model the response of simple and
complex cells, respectively. First we model the receptive field profiles of the simple cells. For
these profiles we use two-dimensional Gabor functions. To obtain a better approximation of
the simple cell responses, these functions are normalized so that the simple cell operator has
zero output if the image is uniform. This property is called admissibility (W¨urtz [197]). The
modeled simple cell operator does not always have a strong response at the exact position of
the edge. The operator used for the complex cells responds strongly to the exact location of
edges and is therefore suitable as edge and line detector. In Section 3.4 we also introduce a
principal orientation operator which gives the preferred orientation of the complex operator.

In Section 3.5 we introduce two scale spaces, one with a linear increasing and one with
a non-linear increasing scale space parameter. A scale space is used in Chapter 5 for corner
detection. In Section 3.6, a model is given for the mapping between visual field and cortex.
The first “neuronal” image is created in the retina, which is a two-dimensional grid of rods
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Figure 3.1: The dendritic tree of the ganglion cell plus the dendritic trees of the bipolar cells which
are directly connected with this ganglion cell is defined as the dendritic tree of the ganglion cell to the
receptors.

and cones. This grid is not uniform (we loose visual acuity with eccentricity), but it is not
deformed, unlike the striate cortex. Hubel and Wiesel [91] described a topographic mapping
of the visual field onto the cortex and the relation between average receptive field size and
magnification factor. The magnification factor is the relation between a movement in the
cortex and the displacement in the visual field (Daniel and Whitteridge [22] and Hubel and
Freeman [90]). The receptive field size of a cell in the primary visual cortex can be derived
from the magnification factor and the fact that a two millimeter movement in the cortex is
needed to displace from one receptive field region to an entirely new region, i.e. such that
the receptive fields do not overlap. This deformed map is of importance when motion is
involved. In this thesis we limit ourselves to static images but we plan to investigate motion
in the future. The chapter ends with a summary and discussion.

3.1 Relation between receptive field center size and den-
dritic tree of a ganglion cell

All direct connections from the bipolar cells to a ganglion cell together form thedendritic
treeof a ganglion cell. The maximum size or radius of such a tree is called thedendritic tree
sizeor radius. The dendritic tree from the receptors to a ganglion cell is defined as the tree
of connections that can be reached by the direct pathway, from receptors via bipolar cells to
ganglion cells (Hubel [89]). This is illustrated in Figure 3.1.

The direct pathway from receptors to a ganglion cell is responsible for the receptive field
center of that ganglion cell. The indirect pathway, which is the path via horizontal cells and
amacrine cells, is responsible for the surround of the receptive field. We conclude that the
dendritic tree radius from the receptors to a ganglion cell is equal to the receptive field center
radius of the same ganglion cell. This implies that the average variation in the dendritic tree
size with retinal eccentricity of the cells is equal to the average variation in receptive field
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Figure 3.2:The average receptive field center radius grows linearly with eccentricity for both monkey
M and P cells. Note that receptive fields of M cells are about a factor four larger than that of the P
cells.

center size of the cells.
According to Shapley and Perry [171], the dendritic tree sizes of the ganglion cells grow

linearly with retinal eccentricity. We also assume that the average dendritic tree size of the
bipolar cells grows in a linear way with increasing retinal eccentricity. Assume that the av-
erage dendritic tree radius between ganglion and bipolar cells is

gb(α) = aα+c (3.1)

and that the average dendritic tree between bipolar cells and the receptors is

br(α) = bα+d; (3.2)

whereα is the eccentricity in degrees anda, b, c, andd are constants. The total dendritic tree
radius from ganglion cells to receptors, which is equal to the receptive field center radius of
the ganglion cell, will be:

gr(α) = gb(α)+br(α+gb(α))
= aα+c+b(α+aα+c)+d

= (a+b+ab)α+bc+c+d: (3.3)

This implies that the dendritic tree between ganglion cell and receptors also grows in a linear
way with increasing retinal eccentricity.

3.1.1 Receptive field sizes of monkey M and P cells

Six categories of cells exist in the different layers of the retina (rods and cones included).
One of these layers is the ganglion cell layer, which can be subdivided by type of cell.
One of the earliest subdivisions of ganglion cells in the cat retina was made by Enroth-
Cugell and Robson [38]. The presence of color vision in the monkey aided the classification
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considerably, since one type projects to the P pathway, which is responsible for color, and
the other type projects to the M pathway (Leventhal [110] and Perry et al. [148]).

Let us make the assumption that given the eccentricity, both ganglion and bipolar cells
have exactly the same average dendritic tree radius. Shapley and Perry [171] elaborated the
dendritic tree size for ganglion cells to bipolar cells with retinal eccentricity. If we assume
that both ganglion and bipolar cells have the same average dendritic tree radius, then the
average dendritic tree radius from ganglion cells to the receptors is twice the size of the
average dendritic tree radius of the ganglion cells. The receptive field center radius for a
given eccentricityα for the M cells (Figure 3.2) is

rMc(α) = 2:5�10�2α+3:0�10�2; (3.4)

and the smaller receptive field center radius of the P cells (Figure 3.2) is

rPc(α) = 6:0�10�3α+5:0�10�3; (3.5)

whereα is the eccentricity in degrees.
In the cat, the ganglion cell classes are labeled W, X, and Y. They are distinguished

by the different retinal subnetworks that provide their input. X-cells are driven by a single
linear receptive field center mechanism. Y-cells receive center and surround signals from
nonlinear subunits in their receptive fields. The monkey M cells and the cat X-cells have
several similarities, but their receptive field radii differ in the center of the visual field (α= 0).
The M cells have a center radius of 0:03�, whereas the X-cells have radii of 0:05�. Both
increase approximately in the same way with retinal eccentricity. The receptive field centers
of the Y-cells are three times larger than those of the X-cells (Shapley et al. [171]).

3.2 Center-surround cells

Most primate retinal ganglion cells exhibit a center-surround organization of their receptive
fields, where the center and surround responses are antagonistic. Most commonly, the central
region is flanked by an antagonistic surrounding region that is spatially more extended than
the central region.

3.2.1 Receptive field profiles of center-surround cells

The best known, physiologically based receptive field profile of the center-surround cells is
the difference of two Gaussians (DOGs), which was introduced by Rodieck [161] to describe
the spatial sensitivity to a dot of light of retinal ganglion cells. The combination of these two
functions is also called, because of its shape, aMexican-hatfunction. Enroth-Cugell and
Robson [38] were the first who used the function for the receptive field profiles of these cells
in the spatial frequency domain.

Instead of using the difference of two Gaussians (for its definition and properties we refer
to Section A.3) also the Laplacian of a two-dimensional Gaussian function, obtained by
multiplying two one-dimensional Gaussian functions (A.3), can be used to get a Mexican-
hat function (A.7). The Laplacian of a Gaussian is zero-normalized (A.11), and the center
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Figure 3.3: Receptive field profiles of modeled center-surround cells.a) The center-on, surround-off
cell. b) The center-off surround-on cell. We used a normalized Laplacian of a Gaussian (A.7) with
σ = 5.

(or the absolute function) can be normalized (A.13). Normalization is used if the function
is used as a filter for different scalesσ (which determine the sizes or spatial frequency of
the receptive fields) and the outputs for differentσ have to be combined or compared. An
illustration of such a normalized function is given in Figure 3.3. The choice for a Laplacian
or a difference of Gaussians depends on the choice for the ratio between center and surround.
If a constant ratio is desired, the choice for a Laplacian of a Gaussian (Section A.2) would be
a proper choice. The ratio can be varied for the difference of Gaussians, but the ratio between
center and surround is at least three for the two-dimensional function (Figure A.4a).

3.2.2 Responses of center-surround cells

The receptive fields of both M and P cells have center-surround properties and their responses
depend on the difference in contrast between that part of the visual field which influences the
excitatory part of the cell and the part of the visual field which influences the inhibitory part
of the cell.

The spatial impulse response of a two-dimensional layer of center-surround cells is mod-
eled by convolving the input stimulus (a two-dimensional image)I with functionMσ (A.7).
Hence one can say that the response of a cell can be approximated by a function from
R

2 ! R. In formula:

Mσ(x;y) =
Z

x1

Z
y1

I(x1;y1)Mσ(x�x1;y�y1)dx1dy1; (3.6)

where we assume that the receptive field sizes remain constant for all(x;y) 2 I . The average
receptive field size (σ) for every(x;y) is approximately the same, sinceI is usually a small
part of the visual field.

We do not use spatio-temporal properties, since we are interested in pattern recognition in
static images. For the spatio-temporal properties in the cat’s retinal ganglion cells we refer
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to e.g. Enroth-Cugell et al. [39] or, more recently, Somers et al. [176]. Cell responses (firing
rates) are by definition positive, whereas idealized linear cells1 can have positive or negative
responses. An interpretation of the linear model (like (3.6)) is that the positive values are
interpreted as direct firing and negative output as firing with a delay. We interpret the posi-
tive and negative values in the linear model as a tuple of two cells with opposite properties.
One cell responsible for the positive (center-on surround off) and one cell responsible for the
negative part (center-off surround-on). This makes the model computationally attractive, be-
cause both center-on surround-off and center-off surround-on cell responses can be obtained
by a single convolution. Atick and Redlich [6] built in such a non-linearity by thresholding
the output at zero and use a tuple of center-on surround-off and center-off surround-on cells.

The M cell and P cell respond differently to contrast, so an additional step has to be taken
to model this difference. The response of the M cell, which is highly contrast sensitive, is as
follows:

Nσ(x;y) =
aσMσ(x;y)

0:13+Mσ(x;y)
; (3.7)

whereN is the response for an M cell andaσ is the highest possible response of the cell
achieved at a maximum contrast difference. The P cell is a low-contrast sensitive filter. Its
response is modeled as follows:

Pσ(x;y) =
aσMσ(x;y)

1:74+Mσ(x;y)
: (3.8)

Both (3.7) and (3.8) are taken from Kaplan and Shapley [96].

3.3 Simple cells

Hubel and Wiesel [87] discovered that most cells in the primary visual cortex, layer 4 of cats,
are orientation selective. These cells, called simple cells, do not respond to diffuse light and
respond only weakly to spots of light. To obtain a strong response from them, the activating
stimulus must be an edge of the proper orientation and must fall within the excitatory part of
the receptive field (Hubel and Wiesel [79]). Because of their properties in image processing,
the simple cells can be seen as line and edge enhancers.

3.3.1 Receptive field profiles of simple cells

The spatial receptive field profiles of simple cells can be fitted well by Gabor (Gabor [53])
functions2 (Marčelja [130], Daugman [23, 24], Jones and Palmer [95], and Lee [108]), the
first derivatives of Gaussians, or other similar functions (Stork and Wilson [178, 179, 194]

1A cell is linear when its response depends linearly on a single quantity: the weighted linear sum of the
local luminosity over its receptive field (Atick and Redlich [6]).

2A Gabor function is defined by a sine (or cosine) wave modulated by a Gaussian envelope.
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Figure 3.4: For both P and M cells, the contrast-response functionsN andP are given. The magno-
cellular cells (M cells) are highly sensitive to contrast, whereas the parvo-cellular cells (P cells) are
less sensitive to contrast. The response is measured in impulses per second.

and Hawken and Parker [66]). Stork and Wilson propose a model with difference of Gaus-
sians

S(x;y) = A

 
e
� x2

σ2
1 �Be

� x2

σ2
2 +Ce

� x2

σ2
3

!
e
� y2

σ2
4 : (3.9)

Like in previous work, Lourens [120], we have chosen to model the receptive field profiles
of the symmetrical and anti-symmetrical simple cells by the real and imaginary part of a two-
dimensional Gabor functionGσ;θ:

ℜGσ;θ(x;y) = cos

�
π

σ
p

2
(xcosθ+ysinθ)

�
e�

x2+y2

2σ2 (3.10)

and

ℑGσ;θ(x;y) = sin

�
π

σ
p

2
(xcosθ+ysinθ)

�
e�

x2+y2

2σ2 ; (3.11)

whereθ denotes the preferred orientation, andσ the receptive field size.
The symmetrical two-dimensional Gabor functionℜG does not have a zero integral. If

such a function is used as a filter, it will also respond to homogeneous fields of constant
intensity and is sensitive to changes of absolute intensity. The function needs to be zero-
normalized. Since simple cells do not respond to uniform stimuli but only to edges of a
preferred orientation. We normalize this function by multiplying the negative part of the
function with a factorγ� and the positive part with a factorγ+ = 1. The normalization factor
γ� is as follows:

γ� =

R
x
R

y

�
ℜGσ;θ(x;y)

��0
dxdy

R
x
R

y

�
ℜGσ;θ(x;y)

��0
dxdy

: (3.12)
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Figure 3.5: a), d) The real and imaginary part of a Gabor function forσ = 5 andθ = 0. b), e)Real
and imaginary part of the Fourier transform of the normalized Gabor function (ℜG+ iℑG). c), f) A
cross section through the zero axis ofb) ande), respectively.

The function[x]�0 is defined to be 0 where its argument is negative andx elsewhere. The
function [x]�0 is 0 where its argument is positive and�x elsewhere. Orientationθ can be
chosen arbitrarily since the normalization factorγ� is orientation independent. Due to the
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factor 1p
2σ2 , the sizeσ does not affect the normalization factor. The factorγ� is approxi-

mately 1.3 for all orientations and sizes.3 This normalization of the two-dimensional Gabor
functions does not mean that the integral over the positive or absolute values of the function
is equal for differentσ. The amplitude of the function for different receptive field sizes is
different. This fact forces us also to normalize the positive part of the function, otherwise
one cannot compare the results of an image convolved with two functions which have a dif-
ferent amplitude. The normalization factors for the amplitude of the Gabor functions are as
follows:

ηℜ =
Z

x

Z
y

�
ℜGσ;θ(x;y)

��0dxdy (3.13)

and

ηℑ =

Z
x

Z
y

�
ℑGσ;θ(x;y)

��0
dxdy; (3.14)

for the symmetrical (ηℜ) and anti-symmetrical (ηℑ) two-dimensional Gabor function, re-
spectively. The symmetrical two-dimensional Gabor function (3.10) is multiplied withγ

ηℜ
and the anti-symmetrical two-dimensional Gabor function (3.11) is divided byηℑ. Note that
instead of integrating the positive part of the Gabor function for amplitude normalization we
also could have taken the integral over the absolute values of the function. Figure 3.5 illus-
trates the normalized Gabor function in both spatial and (spatial) frequency domain. In this
figure we also illustrate the function in frequency domain since for computational reasons it
is often calculated in Fourier domain. For normalization in Fourier domain we refer to W¨urtz
[197]. The normalized function̂Gσ;θ is as follows:

ℜĜσ;θ(x;y) =
γ+

ηℜ

�
ℜGσ;θ(x;y)

��0� γ�

ηℜ

�
ℜGσ;θ(x;y)

��0
(3.15)

and

ℑĜσ;θ(x;y) =
1

ηℑ
ℑGσ;θ(x;y): (3.16)

The integral
R

x

R
yℜĜσ;θ(x;y)dxdy= 0 because

γ+

ηℜ

Z
x

Z
y

�
ℜGσ;θ(x;y)

��0
dxdy� γ�

ηℜ

Z
x

Z
y

�
ℜGσ;θ(x;y)

��0
dxdy

=
1

ηℜ
ηℜ�

ηℜ

ηℜ
R

x
R

y

�
ℜGσ;θ(x;y)

��0dxdy

Z
x

Z
y

�
ℜGσ;θ(x;y)

��0
dxdy

= 0

3In the discrete caseγ� is approximately the same for every orientation ifσ is large. If a smallσ is used the
discretization effects will be strong. For smallσ it is useful to calculateγ� for every orientation independently.
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and
R

x
R

y jℜĜσ;θ(x;y)jdxdy= 2 is independent ofσ since
Z

x

Z
y

���� γ+

ηℜ

�
ℜGσ;θ(x;y)

��0� γ�

ηℜ

�
ℜGσ;θ(x;y)

��0
����dxdy

=

�
[x]�0 =

�
0 x� 0
x x� 0

and [x]�0 =

� �x x� 0
0 x� 0

�
Z

x

Z
y

1
ηℜ

�
ℜGσ;θ(x;y)

��0
dxdy+

Z
x

Z
y

γ�

ηℜ

�
ℜGσ;θ(x;y)

��0
dxdy

= 2:

Since the main objective of Stork and Wilson [179] “the fact that the real parts of Gabor
functions do respond to constant illumination” is solved, there seems to be no serious differ-
ence between their model and normalized Gabor functions and the choice is more a matter
of taste.

3.3.2 Responses of simple cells

The response of a simple cell can be modeled by convolving the input stimulus (image)I with
receptive field functionℜĜ or ℑĜ. The response of the symmetrical simple cell is modeled
as follows:

Ss
σ;θ(x;y) =

Z
x1

Z
y1

I(x1;y1)ℜĜσ;θ(x�x1;y�y1)dx1dy1: (3.17)

Equation (3.17) is known as the convolution ofI and ℜĜσ;θ, also denoted asSs
σ;θ = I �

ℜĜσ;θ. We use a periodic convolution since it is in a standard software library. Using a
periodic convolution means that we get wrap around effects. This implies that artifacts can
appear at the boundaries of the images. The boundary artifacts can be eliminated by removing
the information at the boundaries of the resulting image or by zero padding. The latter has
the disadvantage that the data that actually have to be convolved are becoming larger. The
response of the anti-symmetrical simple cell is modeled as follows:

Sa
σ;θ = I �ℑĜσ;θ: (3.18)

The difference between (3.17) and (3.18) is that in the former, imageI is convolved with
ℜĜσ;θ while in the latterI is convolved withℑĜσ;θ. We call themSs

σ;θ- andSa
σ;θ-operator,

respectively, sinceSs
σ;θ andSa

σ;θ are operators on input signalI , and yield a function of(x;y).
To write equation (3.17) correctly we should useSa

σ;θI , but for abbreviation we will skipI
for every operator used in this thesis.

In analogy with the ganglion (center-surround) structure, Atick and Redlich [6] assume
that the simple cell’s input comprises two components, one excitatory and the other in-
hibitory, summated separately. In the mathematical model of simple cells in its general form,
Atick and Redlich again use a non-linearity by thresholding at zero. Experiments however
indicate that a very large class of simple cells is linear with respect to spatial summation
(Maffei and Fiorentini [123], Movshon et al. [137], Andrews and Pollen [4], Kulikowski and
Bishop [102], and Pollen and Ronner [153]). Therefore Atick and Redlich extended their
model to restore linearity.
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3.4 Complex cells

Complex cells share with simple cells the property of responding only to specifically ori-
ented lines and edges. Like the simple cells, they respond over a limited region of the visual
field but unlike simple cells their behavior cannot be explained by a subdivision of the re-
ceptive field into excitatory and inhibitory regions. The receptive fields of complex cells are
somewhat larger than simple cells. There are complex cells that only respond properly if an
oriented line, edge, or slit of light is moved across the receptive field. Complex cells that do
react to a stationary line show a response wherever the line is placed within the receptive
field, provided that the orientation is correct (Hubel [89]). In the building block architecture
this means that a number of simple cells make excitatory synapses with a single complex
cell.

3.4.1 Responses of complex cells

A possible operator to model the response of the complex cells is:

Cσ;θ(x;y) = max
(x1;y1)2Ξ

�
Ss

σ;θ(x1;y1);Sa
σ;θ(x1;y1)

�
; (3.19)

whereΞ is a small area with center(x;y). A logical choice forΞ would be an elliptic area
with the long axis perpendicular to the orientation of the line.

Movshon et al. [137] and Heggelund [69] describe complex cells as a non-linear pooling
of responses from a spatially distributed group of subunits within the cell’s receptive field.
Wilson [195] sums the different inputs of the complex cell instead of using the max-operator
(3.19), to describe its response.

Adelson and Bergen [1] and Morrone and Burr [136] combined theSa
σ;θ- and Ss

σ;θ-
operators to a “local energy” representation, which is defined by

Cσ;θ(x;y) =
q

Ss
σ;θ(x;y)

2+Sa
σ;θ(x;y)

2; (3.20)

where orientationθ 2 [0;π) sinceCσ;θ = Cσ;θ+π. Heitger et al. [71] used this representation
and called it theCσ;θ-operator in analogy to complex receptive fields.

Although the modeled response of a complex cell (3.20) is not exactly according to the
model suggested by Hubel, it gives a reasonable approximation. If we modify this equation
using excitatory input, we get

Cσ;θ(x;y) = max
�

Ss
σ;θ(x;y);�Ss

σ;θ(x;y);S
a
σ;θ(x;y);S

a
σ;θ+π(x;y)

�
: (3.21)

This equation is not exactly the same as (3.20) but gives a good approximation. In Figure 3.6
an example for the output of theSa

σ;θ- andSs
σ;θ-operator is given. The strongest response of

the former operator is at the proper position at an edge but the strongest response of the latter
is shifted. In the two-dimensional case this shift is perpendicular to preferred orientationθ.
When a line is used theSs

σ;θ-operator gets the strongest responses at the proper position and
theSa

σ;θ-operators strongest responses are shifted. Using aCσ;θ-operator from (3.19), (3.20),
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Cm

Ca

Ss

Sa

I

Figure 3.6: Response of different operators at a slice from an image (I) with an up- and down-going
edge and two lines. In the second and third row the outputs of theSa- andSs-operator are given. The
fourth row gives the output of theC -operator from (3.20) and in the last row the output of the operator
from (3.21) is given.

or (3.21) avoids shifting of the strongest response. Although the difference in output between
theCσ;θ-operators (3.20) and (3.21) is small, we will use the operator from (3.20) because of
its smoothness. This property is illustrated in Figure 3.6 where Ca (for complex amplitude)
shows a smooth response profile, in contrast to Cm (complex maximum) which shows a
ragged response profile.

3.4.2 Additional complex cell based operators

TheCσ;θ-operator responds to edges and lines of a specific orientation. For example, if we
consider an image with a circle, the operator would respond only to parts of the circle. These
parts depend on the preferred orientationθ. That information is split into different orientation
channels is not always desirable (it depends on the goal one has in mind). In case of a circle
one could prefer a non-orientation selective edge filter. WhenN different orientations of
theCσ;θ-operators are combined with a max-operator, to get the strongest responses over all
orientations, we get a non-orientation selective edge filter. The operator thus obtained we
also call complex operator. ThisCσ-operator is given by:

Cσ(x;y) = max
i2[0;:::;N)

�
Cσ;θi(x;y)

�
; (3.22)

whereN is the number of orientations andθi =
iπ
N . Since all orientation specific information

is available we introduce another operator which can be used together with (3.22) to facilitate
edge detection. The operator selects the orientation which has the strongest response and thus
selects the orientation that is closest to one of the preferred orientations of theCσ;θ-operators:

Oσ(x;y) = θi(x;y); (3.23)
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wherei 2 [0; : : : ;N) is a value which satisfies

8 j2[0;::: ;N)

�
Cσ;θi(x;y)� Cσ;θ j (x;y)

�
:

We call this the principal orientation orOσ-operator.

3.5 Selection of scales in a multi-scale representation

As mentioned before we will use multiple scales for corner detection (Chapter 5). All oper-
ators we used up to now contain a parameterσ which determines the size of the receptive
field. A singlescaleis interpreted as a discrete two-dimensional layer of one type of op-
erator which all have the sameσ. A multi-scale representation consists of several discrete
two-dimensional layers of identical size, where every layer has a differentσ. We use a multi-
scale representation which is called ascale spacewhere the image size (two-dimensional
layer) is kept constant and the size of the filter is changed. Another method for creating a
scale space is keeping the filter size constant and resizing the image, an approach used by
Koenderink and van Doorn [98] in their stack model. These scale spaces mostly use resizing
factors of two since this is the simplest way to scale a discrete image.

Lindeberg [112, 113] defines as scale spaceL(x;y; t)= (g(�; �; t)� f (�; �))(x;y; t)as a convo-
lution of a two-dimensional signalf with a Gaussian kernelg, where scale parametert = σ2.
Creating a scale space by using parameterσ is more flexible than scaling a discrete image,
sinceσ can have any arbitrary value larger than zero.

In practice a number of scales is selected. We elaborate two types of multiple scales:
linear scalingin spatial domain and linear scaling in frequency domain. The latter scales
non-linearly in spatial domain.

In either case we use receptive field radiusr as scale parameter.4 Let s+1 be the number
of scales considered and letr0 be the minimal scale andrs be the maximal scale. For linear
scaling the other scales are then given by

ri = r0+ i
rs� r0

s
: (3.24)

We will call this alinear scale space.
In this thesis most operators are directly or indirectly based on a convolution. An image

is convolved with a GaussianGσ, a Mexican-hatMσ, or a Gabor functionĜσ;θ when the
operators are directly based on a convolution. All three functions are based upon Gaussians.
Therefore Gabor and Gaussian functions in the spatial domain show identically shaped Gaus-
sians in frequency domain. Normalization of Gabor functions, as described in this chapter,
causes the Gaussian to have negative values in the frequency domain (Figure 3.7). Since a
Gaussian is not band limited it always causes some aliasing. To eliminate aliasing negative
frequencies can be set to zero5 (Würtz [197]).

4The relation betweenσ and the receptive field radiusr is linear (A.5).
5In all our experiments we did not set the negative frequencies to zero.
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Figure 3.7: Frequency spectra of the real part of the Gabor function (similar to Figure 3.5c) for 8
different receptive field radii.a) Linear scaling gives linearly increasing receptive field radii (3.24).b)
Linear scaling in frequency domain gives non-linear scaling in spatial domain (3.27). The following
constants are used:r0 = 5, rs = 40, ands= 7.

Let us Fourier transform the Gaussian function from time (or spatial) domain to frequency
domain:

FG( f ) =
Z ∞

�∞
G(t)e�

p�12π f tdt

= e�2(σπ f )2

=

�
τ =

1
2σπ

�

e�
f2

2τ2 : (3.25)

This gives a Gaussian function without normalization factor.
Linear scaling in the frequency domain is commonly used in literature for information

technical reasons. The formula is similar to (3.24):

τi = τ0+ i
τs� τ0

s
: (3.26)

A linearly increasing scale space parameterτ with increasingi in frequency domain is not
increasing linearly in spatial domain. If we useτ = 1

2σπ = c
r , where constantc =

p�2logε
2π ,

then scale space parameterr in spatial domain is as follows:

τi = τ0+ i
τs� τ0

s

� c
ri
=

c
r0

+ i
c
rs
� c

r0

s

� ri =
sr0rs

srs� i(rs� r0)
: (3.27)
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We will call this anon-linear scale space.
The maximum radiusrs is at most half of the size of the square image since the convolution

kernel should be smaller than the size of the signal (image). In practice the radius is smaller,
because the receptive field radius of a cell is smaller than the whole visual field. Figure 3.7
illustrates that the minimum radiusr0 should be approximately eight to avoid aliasing effects
in frequency domain.

3.6 Mapping the visual field onto the cortex

Using our visual system we have the feeling that everything we see is detailed, although this
is not true, as mentioned in Chapter 2. The illusion that everything is detailed is created by
the movement of the eyes. The decreased number of cells per degree of visual field in the
periphery is therefore not a disadvantage, but rather an advantage since the total number of
cells can be highly reduced.6

We can get a deeper understanding of the geometry of the cortex by comparing it with the
visual field or retina.

For practical reasons the eye is a sphere, and that is consequently the shape of the retina.
With a spherical eye, retinal magnification is constant: the movement in degrees of visual
field per millimeter movement in the retina is constant throughout the retina. For the human
eye it is 3.5 degrees per millimeter (Hubel [89]). Because the retina is spherical, its layers
are not uniform. The ganglion cells in the retina are several layers thick in the fovea (center
of the visual field) but in the far periphery there are holes in a single layer (van Buren [18]).

Unlike the retina, the cortex does not have to be spherical. In the cortex the foveal part
is expanded relatively to the periphery. It presumably expands so that the thickness remains
the same throughout. Daniel and Whitteridge [22] predicted that the unfolded cortex has a
shape like a pear. Tootell et al. [185] illustrated how a two-dimensional stimulus is mapped
on two-dimensional flattened sections of cortex. A model of this deformation between cortex
and visual field will be given in this section.

A location dependent operator is created to model the response of a cortical cell at a
position(xc;yc) in the cortex. This is possible since there is a relation between coordinate
(xv;yv) in the visual field and coordinate(xc;yc) in the cortex. We transform both coordinates
to polar coordinates(rv;φ) and (rc;φ), respectively. Herexv = rvcosφ, yv = rvsinφ, xc =
rccosφ, andyc = rcsinφ are the transformation functions from Cartesian to polar coordinates.
Finding a relation betweenrv andrc will be sufficient, since the size of the receptive field
changes with eccentricity only (Daniel and Whitteridge [22]).

3.6.1 Magnification between cortex and visual field

Before we start with the magnification between the primary visual cortex and the visual field,
let us first consider the visual range of a human being. A human being has two visual ranges,
one for the left and one for the right eye. In Figure 3.8 the visual range of the left eye is

6Standard CCD cameras need a little less than half a million light sensitive units where a camera based on
a decreasing number of units with eccentricity would only need 8,000.
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Visual field center

Left eye

Figure 3.8: The visual range for the left eye of a human being. The maximum horizontal left angle is
about70� and the maximum horizontal right angle is about35� (due to physical limitations: our nose
prohibits us from an angle which would be about the same as the horizontal left angle). The vertical
upper angle and vertical lower angle are about40� and50� degrees, respectively. The vertical angles
are also both limited due to the fact that the physical structure of the face prohibits larger angles. In
the model only the largest possible visual field angle is used, which implies that one gets a circular
shaped visual range.

shown. In the model, for simplicity, we do not take into account the limited physical visual
field angles but the maximal visual field angle reached by the horizontal left angle of the left
eye. We define the maximum visual field angle asαVF;max. A radiusr can be obtained from
angleα if one radius and its corresponding angle are known. In formula:

r =
rk tanα
tanαk

; (3.28)

whererk with correspondingαk are known.
The magnification is a relation between an angle in the visual field and a distance in

the primary visual cortex. In the center (fovea) of the visual field a human being has a more
detailed image than in the periphery, suggesting that more spatial information from the center
of the visual field is (temporarily) represented in the primary visual cortex in comparison
with the information from the periphery of the visual field. This implies that a larger area of
the cortex is used for an area in the center of the visual field than for an identical sized area
in the periphery. Daniel and Whitteridge [22] show that the visual field maps systematically
on the cortex. They definedmagnificationas the distance in the cortex corresponding to a
distance of one degree in the visual field. As we go out from the fovea, a given amount of
visual field corresponds to a progressively smaller and smaller area of cortex. In the fovea a
movement of approximately17

�
corresponds to a movement of 1 millimeter in the cortex and

at the far periphery (a visual field angle ofαVF;max) a one millimeter movement in the cortex
corresponds to a shift of about 8� in the visual field (Daniel and Whitteridge [22]).

Daniel and Whitteridge not only showed that the magnification drops logarithmically if
one moves from the center of the visual field to the far periphery, but also that this relation is
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Figure 3.9: a) The magnification factorM (3.29) and the inverted functionsL�1 andA�1. b) The
inverted magnificationM�1, logarithmic functionL (3.30), and linear approximationA (3.31).

approximately valid in every direction. This means that the magnification only depends on
the angle between the fovea and a certain position in the visual field.

Hubel et al. [91] also showed a relation between magnification and eccentricity. In contrast
to Daniel and Whitteridge, who measured up to an eccentricity of about 65�, they measured
within a maximal angle of 22� from the fovea and derived an expression for the inverse
of magnification in degrees per millimeter. Thus they express a movement of one millime-
ter in the cortex as a displacement of the inverse of magnification in degrees in the visual
field. Their results are comparable with those of Daniel and Whitteridge with respect to the
maximal angle of 22�.

We make an approximationM (Figure 3.9a) of the magnification factor from the results
reported by Daniel and Whitteridge [22], by using two linear functions and one logarithmic
function:

M(α) =

8<
:

7:00�1:34α α 2 [0�3:5)
1:69�0:44log(α�3:25) α 2 [3:5�35)
2:42�10�1�2:3�10�3α α 2 [35�65)

: (3.29)

Whereα is the retinal eccentricity or visual field angle in degrees. If an inverted magnifica-
tion is used, as suggested by Hubel, and we assume that the inverted magnification shows a
logarithmic behavior then the following functionL (Figure 3.9b) can be used:

L(α) =
1
6
+

35
6� log(αVF;max+1)

log(α+1) α 2 [0;αVF;max]: (3.30)

From the inverted magnificationM�1 the third linearly increasing approximation func-
tion A (Figure 3.9b) was derived. (See also Figure 6A from Hubel et al. [91] for a linearly
increasing inverted magnification factor.) This functionA is given by:

A(α) = 0:14+0:11α: (3.31)
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Figure 3.10:An enlargement of the center of the visual field from Figure 3.9a, to emphasize the differ-
ence between the magnification factor M and the inverted approximated linearly increasing function
A�1.

Hubel and Freeman [90] use linear inverse magnification factorA(α) = 0:11+ 0:06α.
Schwartz useda(x+ b)=((x+ b)2 + y2) with constantsa = 7:7 andb = 0:33 which leads
to an inverse factor ofA(α) = 0:04+0:13α (Swindale [181]).

If we consider the inverse function approximationM�1, we conclude that the function
is rather linear and can be approximated byA, although at first sight there seems to a big
difference if the visual field angle is larger than 25� (Figure 3.9b). This in fact is true, but
if the approximationA is inverted (A�1) it gives a good approximation ofM as shown in
Figure 3.9a. The difference is not in the periphery but near the fovea (i.e. a visual field angle
< 5�), as illustrated in Figure 3.10. SinceA andM�1 hardly differ for visual field angles
larger than 25 degrees and although Hubel et al. did only measure up to an eccentricity of 22
degrees we assume that usingA for these angles is valid

3.6.2 Determining the relation between eccentricity and cortex radius

We define the “center of the primary visual cortex” as the position where the center of the
visual field is mapped. With this definition we are able to define the relation between the
radius from the center of the primary visual cortex and the visual field angle. With a given
cortex radiusrc (in millimeters) the visual field angleα is

α =
d0

d

�
edrc�1

�
; (3.32)

whered0 andd are constants, which can be, e.g., obtained from (3.31). Suppose that the
cortex radiusrc = n millimeters and that we move with a step ofε millimeters, in such a way
that the radius becomesn+ ε. Using functionA, we obtain the relation between visual field
angleα and the cortex radiusrc from (3.32) with the following function:

α(n+ ε) = α(n)+ εA(α(n))
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Figure 3.11: Relation between eccentricity and cortex radius, using linear magnification functionA
(solid line) or the logarithmic inverted magnification functionL (dashed line).

� α(n+ε)�α(n)
ε = A(α(n)) fε ! 0 and A(η) = d0+dηg

� α0(n) = d0+dα(n)

� α(n) =Cedn� d0

d
fα(0) = 0g

� α(n) =
d0

d

�
edn�1

�
:

If the visual field angleα is known then the cortex radius is:

rc =
log( d

d0
α+1)

d
; (3.33)

which is obtained by using (3.32).
Figure 3.11 illustrates that for a visual field angle of 40� a radius of 32 millimeters is

needed for the linear inverted magnification functions. The part actually used in the cortex
is smaller. This is because the receptive field center of a cell can be smallerαVF;max and
still cover the maximum possible visual field angle. We can use a radius approximately 2
millimeters less and still cover the whole visual field. If we assume that the striate cortex
has a circular shape and that on average the visual field angle for both monkey and human
is about 40� (see Figure 3.8) then we need approximately 2800 mm2 of cortical area. This is
surprising, because according to Daniel and Whitteridge [22] the primary visual cortex of a
macaque monkey has a surface of about 1300-1400 mm2.

3.6.3 Eccentricity dependent receptive fields

In Figure 3.2, we illustrated that the receptive field centers of the M and P cells grow linearly
with eccentricity. This implies that small receptive fields appear in the fovea, where we dis-
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tinguish with high detail. With increasing eccentricity, information is less and less detailed.
An illustration of this decrease of detail by blurring is illustrated by Beaudot et al. [14].

Let receptive field angleρ be related to the linear inverted magnification factorA:

ρ = cA(α); (3.34)

wherec is a constant. Note that the receptive field radius can be obtained fromρ by using
(3.28) and thatρ grows linearly with eccentricity.

Hubel [88] described that roughly a two millimeter movement in the cortex is needed to
displace fields from one region to an entirely new region. We may conclude that, if one moves
two millimeters in the cortex that the receptive fields do not overlap with each other. Let us
use assume that all cells in the cortex which are at a two millimeter distance from each other
have no receptive field overlap but border on each other then we can determine the constant
c as follows:

α(n)+cA(α(n)) = α(n+2)�cA(α(n+2)) (3.35)

� c=
α(n+2)�α(n)

A(α(n))+A(α(n+2))
=

d+2
(d+1)2+1

(3.36)

� fd = 0:11g
c� 0:945:

Equation (3.35) is illustrated in the left part of Figure 3.12. With constantc receptive field
angleρ is known but the relation between two receptive fields which have the same visual
field angleα is still not defined. So the last step for covering the whole visual field is the
relation between two adjacent receptive fields who have both the same receptive field angleα
but a different position in the visual field, which is illustrated in the right part of Figure 3.12.
For this relation again a two millimeter movement is used to be in an entire new field region.
We assume that two adjacent receptive fields with an equal visual field angle also have a two
millimeter position difference in the cortex.

Angle φ (Figure 3.12), which is needed to cover the visual field for a constant visual field
angleα given by

φ = arcsin
�ρ

α

�
: (3.37)

The numberN(α) of receptive fields for a given constant visual field angleα is:

N(α) =
�

2π
φ

+
1
2

�
: (3.38)

From the properties described in the previous sections, a cell whose receptive field size
depends on the eccentricity can be modeled. An eccentricity dependent receptive field is as
follows:

LR
θ (x;y) =

Z r

x1=�r

Z r

y1=�r
I(x1;y1)Rr;θ(x�x1;y�y1)dx1dy1; (3.39)
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Figure 3.12: The receptive fields are represented by grey discs. By using the neighboring receptive
fields in the cortex with a radius of n, n+1, and n+2 millimeters, the maximum receptive field angle
cA(α(n)) can be calculated. With the maximum receptive field is meant that two receptive fields are
adjacent when their centers are at a 2 millimeter distance in the cortex (left part). With a constant
visual field angleα and the receptive field angleρ, φ can be calculated (right part). Note that we
visualized radii but depicted the corresponding angles.

wherer is the radius of the receptive field,I is a two-dimensional visual field (image) andR
is one of the center-surround, simple, or complex receptive field profiles.

By using theLR
θ -operator, a cortical response map is obtained. We apply this operator to

a natural input image in Figure 3.13a. Also for this operator we validate the negative output
by using a tuple. A tuple is illustrated by mapping the output of one cell in a range from
gray (zero output) to white (strong response) and the other cell from gray (again zero output)
to black. The results of the eccentricity dependent operator are illustrated in Figure 3.13c-
d. The difference between the two is due to the use of a different magnification factor. In
Figure 3.13c we use the linear increasing magnification factor (3.31) and in Figure 3.13d the
logarithmic factor (3.30). For better visualization we enlarged the results obtained with the
linearly increasing factor (Figure 3.13b).
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a) b)

c) d)

e) f)

Figure 3.13:Response maps obtained with theLM-operator whereM is a Mexican-hat function.a) A
natural input image. The center of the visual field is a slightly below the right eye in the image.c)-d)
Response maps of the striate cortex area are represented as a two-dimensional grid. In fact, this grid
should be folded over the pear shaped striate cortex. A linear and logarithmic inverted magnification
factor are used, respectively.b) An enlargement ofc. e)-f) Responses of a non-distorted map, for a
linear and logarithmic inverted magnification function, respectively.
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a) b)

c) d)

e) f)

Figure 3.14: Response maps of different operators applied to the input image of Figure 3.13a.a)-f)
Results obtained withMσ-, Nσ-, Pσ-, Ss

σ;θ-, Sa
σ;θ-, andCσ;θ-operator, respectively. The used parameters

are:σ = 5 andθ = 0.
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The retinal map is not distorted because of the ordering of the ganglion cells. Therefore,
the ganglion cell density decreases with retinal eccentricity (van Buren [18] and Stone [177]).
Because the receptive fields of retinal ganglion cells are small in the center of the visual field,
detailed information of the visual field will be obtained here. As receptive fields grow linearly
with eccentricity, the information gets less detailed and this means that the two-dimensional
response map of ganglion cells will be blurred more and more as one moves away from
the center of the visual field. This map is illustrated in Figure 3.13e-f. We used the same
magnification factors to illustrate the difference between a distorted and a non-distorted map.

Layer 4C of the monkey striate cortex contains concentric center-surround cells, but these
cells are ordered on a pear shaped map (Tootell et al. [185]). This distorted map will give a
completely different view (Figure 3.13c-d) compared to the resulting maps from the retinal
ganglion cells or cells in the LGN. The distorted map uses in comparison to the ganglion
cell map a large surface for the center, where details are visible. Note that the image which
is used as input stimulus has a size of 256�256 pixels, which gives a maximum visual field
angle of 7.9 degrees. The angle is obtained by using equation (3.28), whereαk = 22:6� is the
horizontal visual angle of the used camera lens, which results in a rowrk of 768 pixels.

3.6.4 Results of other operators

Figure 3.14a gives the response map of theMσ-operator (3.6). The output of theMσ- andPσ-
operators are about the same (Figure 3.14a,c), which is expected since the response of the P
cells increase in an almost linear way with increasing contrast. The output of theNσ-operator
(3.7) responds strongly to differences in contrast and differs in this sense clearly from the
Pσ-operator (3.8). We should emphasize that the P cells most probably serve another task,
since they are wavelength sensitive and their receptive fields center radii are about four times
smaller than the M cells.

The outputs of theSs
σ;θ- andSa

σ;θ-operator (3.17) and (3.18), illustrated in Figure 3.14d-e,
both respond well to a preferred orientation, but the latter can also discriminate between a
down- or up-going edge. Finally, theCσ;θ-operator (3.20) responds to edges of a preferred
orientation at the proper location (Figure 3.14f).

3.7 Summary and discussion

In this chapter several different cells in early vision have been modeled with respect to their
spatial filtering properties, using the building block architecture proposed by Hubel. We ex-
plained the relation between receptive field and dendritic tree of a ganglion cell. The recep-
tive field profiles of center-surround cells have been modeled with a Mexican-hat function,
but can also be modeled with a difference of two Gaussians. The difference in contrast re-
sponse in monkey M and P cells has been modeled. There is a difference of about a factor
four in receptive field size between these two types. The wavelength selectivity of the P cells
is not considered here, but is elaborated in Chapter 7.

The receptive field profiles of simple cells can be fitted well by Gabor functions. In the
following chapters we will use these functions, although the receptive field profiles of sim-
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ple cells can be approximated well by differences of Gaussians too. In several models the
simple cells get their inputs from the center-surround cells, e.g. the model used by Atick and
Redlich [6]. The response of simple cells is modeled by convolving Gabor functions. For
computational reasons we did not use the output of the center-surround cells as input for the
simple cells. Several models for the simple cells have been proposed and the degree of lin-
earity exhibited has been debated by many authors. In the “emergent” model of Somers et al.
[176], synaptic potentials add and subtract linearly. This model also contains three sources
of non-linearity: action potential thresholds, voltage dependent driving forces on synaptic
potentials, and cortical amplification of responses. The “normalization” model of Heeger
[67, 68] employs strongly oriented LGN inputs with no cortical excitation. It has three forms
of non-linearity: rectifying threshold, normalizing (divisive inhibition), and squaring of out-
put responses. Our choice for the linear model is based on two points: it is widely used and
most simple cells show a linear behavior with respect to spatial summation.

The complex cells get their inputs from the simple cells. We use the “local energy”Cσ;θ-
operator (3.20) because of its smoothness. TheCσ;θ-operator enhances lines and edges with
a certain orientation at the proper location. This makes the operator suitable for line enhance-
ment. The operator corresponds to the complex cell model suggested by Pollen and Ronner
[153] and is in agreement with the observation that complex cells usually exhibit no phase
dependence in response to gratings (Maffei and Fiorentini [123] and Movshon et al. [137]).
The choice for this operator is that it models a variety (but not all) of different types of cells
in the complex category and that it is computationally inexpensive. An additional complex
cell-based operator has been defined and called the principal orientation operator. It will be
used in Chapter 6 to facilitate the line detection mechanism.

We introduced two types of multiple scales, a scale space with linearly increasing receptive
fieldsr and a non-linear one (which is linear in frequency domain). Multiple scales are used
to obtain better results. E.g., in Chapter 5 the results obtained with the multiple scale corner
operator are better than the results with the same operator at a single scale. Also a multiple
scaleC -operator is used to get better edge enhancement as compared with the results at a
single scale.

We modeled receptive fields growing linearly in size with retinal eccentricity and also the
distorted map between visual field and cortex. Experimentally a distorted map in a macaque
monkey was determined by Tootell et al. [185]. Models of this so-called “spatial mapping”
and “retinoptic mapping” are made by e.g. Schwartz [168] and Mallot et al. [124, 125, 126,
127].

We did not include the growing receptive fields with eccentricity and the distorted map-
ping. Growing receptive fields indicate that there is a reduction of information. When motion
is involved this reduction is desired since it makes the system faster. If spatio-temporal prop-
erties are involved we can use the movement of the eyes to get the illusion that the visual
scene is percepted sharply. A typical application where a reduction of information can be de-
sired is a moving robot which rapidly moves its “eyes” from one point of interest to another.
The distorted map is not used because it will be more difficult to compare two identical ob-
jects which are at different positions in the visual field. This map can become of real interest
if we know what kind of location independent features are extracted.





4
Localization Properties of Cortical

Corner Detectors

Jesus said to them, “Have you never read in the Scriptures: ”‘The stone the builders
rejected has become the cornerstone; the Lord has done this, and it is marvelous in
our eyes’?

Matthew 21:42 (NIV)

THE USE OF THE TERM“ CORNER” in the vision literature is not uniform. We consider
a junction to be a point where two or more differently oriented line segments (or
edges) end. Acorneris a junction where one of the angles between the line segments

is larger than 180 degrees. With larger we mean that a human must be able to see two different
line segments and not a straight line.1

Corners are important features because they provide useful segmentation clues, and their
robustness with respect to changes in perspective or small distortions in objects makes them
useful for object recognition. Matching corners is fast and easy compared to matching line
segments. It is fast, not only because the number of corners is generally less than the number
of line segments in a discrete image, but also because a corner contains only one pixel (in a
discrete image) and a line segment at least one (but usually a lot more). Matching a single
point to another point is easy compared to a line segment since the latter has length and
orientation. Also the direction of movement of a single straight edge through an aperture is
ambiguous since the perceived movement is orthogonal to the edge. This ambiguity of the
direction of motion is known as theaperture problem. The direction of movement of a corner
is not ambiguous and therefore avoids this problem.

The robustness and speed of corner matching can be improved by adding specific feature
attributes to the corners (Rosin [165]). From the definition of a corner we know that at least
two line segments start from (or end at) the corner. This means that we can use the number
of outgoing line segments and theanglebetween two neighboring line segments as feature

1This angle is very small (hyperacuity).
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Figure 4.1: Different junction types. The left type is called the I-junction. It is not a real junction
since there is only one line segment but can be interpreted as a junction with zero degree angle. The
second column are the corner junctions types, since there is one angle between two neighboring line
segments which is larger than 180 degrees. The third column contains junctions with 3 line segments
or more brief 3-junctions, illustrated are the T- and Y-junctions. In the rightmost column the K- and
X-junctions are shown, they are 4-junctions.

attributes for a corner. Also thesharpnessof the corner (sharp, round, or blunt), itssizeby
which is meant the range of scales over which a corner exists,2 and thecolorsor grey-values
of foreground and background are corner attributes. Finally thejunction type, as illustrated
in Figure 4.1, is used as extra information about the corner (e.g. V, Y,#, T, K, or X).

Our method for detecting corners will yield position, sharpness and size (Chapter 5), color
and contrast (Chapter 7). The junctions for a corner are limited to the V,#, or I (line-end)
types because our definition of corner does not allow other mentioned junction types. Once
line segments that end at a corner point are detected, the angle between neighboring line
segments and orientation of the corner can be derived too.

It is clear that corners also play an important role in human perception. A triangle, e.g., can
be constructed easily when 3 corner points are given which are not collinear. A perceptual
construction of a triangle from three non-connected curves (or line segments) which are part
of its outline is much harder because the corner information (sharpness) is missing. Since
we are able to detect corners very accurately, the choice for a biologically motivated corner
operator is a logical one. Our choice is to use the response ofend-stopped cells, found in
monkeys (Hubel [89]). Peterhans et al. [149, 190] studied the role of end-stopped cells in
mechanisms of figure-ground segregation and found that these cells respond well to termina-
tions (line-ends and corners) and to T-junctions, but weakly or not at all to X-junctions. Two
types of end-stopped cells are found. The so-calledsingle end-stopped cells, which have re-
ceptive field profiles with one inhibitory and one excitatory lobe, and thedouble end-stopped
cells, which have one excitatory lobe and two inhibitory lobes. Examples of both types of
cells are given by Zeki [204] and Hubel [89], respectively.

In this chapter an operator which models the functionality of end-stopped cells, proposed
by Heitger et al. [71] is used as corner detector. The strongest responses of end-stopped cells
for different receptive field sizes occur at corners and line-ends. The position of the strongest
response is scale invariant and robust under rotations of the visual input stimulus.

2For example, the curvature of the corner is scale dependent.
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In Section 4.1 the responses of end-stopped cells are modeled. Two types of end-stopped
cells are modeled: the single and double end-stopped cells. Both receive excitatory and
inhibitory responses from complex cells. The used operator is not sufficient in the two-
dimensional case, i.e. it gives false responses, and therefore an additional inhibition mech-
anism is added. Sections 4.2 and 4.3 elaborate on the position invariance and rotation ro-
bustness of these operators. In Section 4.4 a number of standard corner operators are imple-
mented and compared with the end-stopped operator. The chapter ends with a summary and
discussion.

4.1 End-stopped cells

End-stopped cells that receive their input from the complex cells show the following behav-
ior: when a longer line segment is presented the response increases up to a certain limit and
after this limit is exceeded the response decreases. This indicates that end-stopped cells re-
spond best to short line segments, line-ends or corners. Since end-stopped cells respond well
to corners, we will check the response properties of modeled end-stopped cells at different
types of corners. The end-stopped cells are found in layer 2 and 3 of monkey area V1 and
also in area V2 (Peterhans and von der Heydt [150]). A schematic illustration of both types
of end-stopped cells is given in Figure 2.6. The single end-stopped cells respond well to line-
ends. The double end-stopped cells respond best to very short line-segments or small spots,
small circular objects, blobs, or sharp bends of contours.

4.1.1 Responses of end-stopped cells

Heitger et al. [71] proposed a model for the two types of end-stopped cells. Since their
model shows responses at the line-ends and corners where we expect them, we will follow
their model. They used theCσ;θ-operator defined in (3.20) to model the responses of the
complex cells. TheCσ;θ-operator localizes intensity discontinuities, but its output does not
carry information about their type (edge or line) and polarity (light or dark), as is illustrated
in Figure 4.2d.

The responses of simple and complex cells to a long straight line are constant along the
line, and can therefore be characterized completely by their variation in the orthogonal direc-
tion. They do not provide an explicit representation of terminations of an edge or line nor of
deviations from straightness (e.g. corners). The end-stopped cells will respond only to line
terminations and to corners. The definition of a line termination is obviously the point where
the line ends, but a proper definition for a corner is not trivial. Our definition excludes T-, Y-,
K-, or X-junctions, since there should be an angle between two neighboring line segments
which is larger than 180 degrees. With arounded cornerwe mean that two straight line seg-
ments with different orientations are connected to each other by a curved segment. A highly
rounded corner is connected by a small part of an ellipse since their line segments end close
to each other but not exactly at the same position as the line segments at “standard” corners
do.

A combination of output responses of complex cells is used as input for the modeled end-
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stopped cells. Our notation differs slightly from Heitger et al. [71] in when thresholding is
applied. The response of single end-stopped cells, is modeled as follows:

Ês
σ;θ(x;y) = Cσ;θ(x+dσsinθ;y�dσcosθ)�Cσ;θ(x�dσsinθ;y+dσcosθ);

(4.1)

whereθ 2 [0;2π) is the orientation andd a positive constant. The constantd represents the
distance between the excitatory and inhibitory part of the receptive fields of the end-stopped
cells relative to the size of the receptive field. Obviously, it cannot be chosen arbitrarily
(Figure 4.2l). If for example a larged is chosen, the line segment (or edge) will only be
eliminated in the middle and two shorter line segments will remain. Whend is chosen too
small a corner will be detected at the wrong position. The correct position orexact locations
of corners we determined manually. Every response of the modeled end-stopped cells other
than at these corners is called afalse response.

The double end-stopped or̂Ed
σ;θ-operator which models the response of double end-

stopped cells approximates the second derivative of theCσ;θ-operator in the direction or-
thogonal toθ and is as follows:

Êd
σ;θ(x;y) = Cσ;θ(x;y)�0:5Cσ;θ(x+2dσsinθ;y�2dσcosθ)�

0:5Cσ;θ(x�2dσsinθ;y+2dσcosθ):
(4.2)

TheÊs
σ;θ-operator, which models the receptive field profile of a single end-stopped cell is

an approximation of the first derivative of theCσ;θ-operator in the direction orthogonal toθ.
As illustrated in Figure 4.2d the strongest responses of theCσ;θ-operator for orientationθ= 0
occur at the vertical edges. Since these responses are not at the positions of the corners, they
must be suppressed by theÊs

σ;θ- andÊd
σ;θ-operators.3 Therefore not position (x;y) is taken

but positions at a distance dependent on parameterd, orthogonal to orientationθ of the
modeled complex cell.

The performance of the end-stopped operators strongly depends on the choice of the dis-
tance parameterd. To get the strongest responses at the exact positions of the corners, as is
illustrated in Figure 4.2k and 4.2l, it becomes clear that the choice ofd depends on the exact
location of the corner and the position of strongest response of theCσ;θ-operator (which is
most close to the exact position of the corner). If the building block architecture is used, the
end-stopped cells receive input from complex cells and complex cells in turn receive their
input from simple cells. We then can conclude that the distance depends on the receptive field
size of the simple cells. It follows from the arbitrarily chosen receptive field size (σ =

p
5)

and the corresponding end-stopped distancedσ = 4 that

d =
4p
5
� 1:8: (4.3)

With this choice ofd theÊs
σ;θ- andÊd

σ;θ-operators gave the strongest response at the manually
marked positions of the corners.

3Equations (4.1) and (4.2) are similar to equations (6) and (7) of Heitger et al. [71].
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Figure 4.2:Responses of different types of modeled cells.a)The character P is used as input stimulus.
b)-c)The output of theSs

σ;θ andSa
σ;θ-operators, respectively.d) The output of theCσ;θ-operator. Black

denotes a positive output and white zero output ina andd. Black, gray, and white represent positive,
zero, and negative output, respectively, inb andc. The parameters used for the Gabor functions (3.10)
and (3.11) areσ =

p
5 andθ = 0 and the discrete image contains 256x256 pixels.e) The intensity

profile of the vertical slice between the arrows at the left most side of P ina, which is just in the black
part of the character P.f-h) The output of the operators for the positions on the vertical slice.i) An
enlargement ofebut only part of it is shown. It starts at the top ofa and ends 32 pixels below the left
upper corner of character P.j) Part ofh. The strongest responses of theCσ;θ-operator are not exactly
at the corner of P but shifted downward (from position 18 to position 25).k) The strongest response
of the Ês

σ;θ-operator is at the correct position, since these operators are anti-symmetrical. We used
orientationsθ = 0 andθ = π together to be sure to always have one positive response.l) The strongest
responses of̂Ed

σ;θ-operator are shifted 4 positions downward. This is exactly the valuedσ used in the
Ês

σ;θ- andÊd
σ;θ-operators.
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Figure 4.3: The Êd
σ;θ-operator is constructed by three displacedCσ;θ-operators with preferred ori-

entationθ = 0:5π. The excitatory part in the center is twice as strong as the two inhibitory parts.
Below, theÊs

σ;θ-operator is constructed by twoCσ;θ-operators, the excitatory part shifted to the right
and inhibitory part to the left. The performance of theÊs

σ;θ- andÊd
σ;θ-operators is dependent on dis-

placementd of the Cσ;θ-operators; whend is chosen using (4.3) the receptive fields of the modeled
complex cells (Cσ;θ-operator) have a considerable overlap.

To validate why we need two different types of end-stopped cells, we use the outputs of the
Ês

σ;θ- andÊd
σ;θ-operators for a single orientationθ, because the responses of the operators

can be illustrated more accurately in the one-dimensional case. The one-dimensionalÊs
σ-

operator can be obtained from (4.1) by substituting the orientationθ = π
2. The 1-D operator

is then as follows:̂Es
σ(x) = Cσ(x+dσ)�Cσ(x�dσ). The second̂Es

σ-operator, withθ = 3π
2 ,

gives an identical result as forθ = π
2, but has opposite sign. The results of bothÊs

σ-operators
are shown together in Figure 4.2k. It gives the desired maximum responses at edges, this in
contrast to the response ofÊd

σ-operator, which show a maximum response (Figure 4.2l) at a
position which is shifted over a distancedσ, at the same edge. ThêEd

σ-operator will give a
maximum response at the proper position if a line segment fits entirely in the excitatory part
of the receptive field. That means that the operator responds properly to thin line segments,
spots, blobs, and small circularly shaped objects. However, on blob input stimuli theÊs

σ-
operators give false responses (Heitger et al. [71]). This validates that both types of end-
stopped cells are needed to get a strong response on the proper location. The shifts of the
strongest responses in the one-dimensional case can be compensated by using the amplitude

Êa
σ =

q�
Ês

σ
�2

+
�
Êd

σ
�2

of the two end-stopped operators. The receptive fields of complex
cells (3.20) are modeled by taking the amplitude of the symmetrical and anti-symmetrical
simple operator, with the same purpose: to have the strongest responses at the exact positions
of the edges and line segments. Figure 4.2f shows a negative output of theSs

σ;θ-operator,
where one would desire positive output, which is the case in Figure 4.2g for theSa

σ;θ-operator.
Thus the positive response of theSs

σ;θ-operator in Figure 4.2b is shifted when the bar is wide.
If the bar had been smaller (i.e. a line) then an edge going up and down would have fitted
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a) b) c) d) e)

f) g) h) i) j)

k) l) m) n) o)

Figure 4.4: Responses ofCσ;θ-, Ês
σ;θ-, andÊd

σ;θ-operators for different orientations at input stimulus
character P from Figure 4.2a.a-d) The outputs of theCσ;θ-operators for orientationsθ = 0, π

4, π
2,

and 3π
4 , respectively.e) The output of all four orientations combined with the max-operator.f-i) The

output of theÊs
σ;θ-operators for the same orientations.j) The output of the four different orientations

combined with the max-operator.k-o) The outputs of thêEd
σ;θ-operators again for the same orienta-

tions and combined with the max-operator. We usedσ =
p

5 for theSs
σ;θ- andSa

σ;θ-operators defined
in (3.10) and (3.11), and for thêEs

σ;θ-operator (4.1) and̂Ed
σ;θ-operator (4.2).

into one receptive field of a symmetrical simple cell (Ss
σ;θ-operator) and would have had the

strongest response on the proper place. In such a case, when a bar is so thin that its width fits
in the receptive field of the modeled simple cells, theSa

σ;θ-operator responds at the wrong
location.

4.1.2 False response elimination

From our test image (Figure 4.2a) we took a vertical slice and illustrated that theÊs
σ;θ- and

Êd
σ;θ-operators responded only at and near the position of a line-end (Figure 4.2k-l). Since the

Ês
σ;θ- andÊd

σ;θ-operators have a preferred orientationθ, the response will be inhibited by one
or two inhibitory lobes orthogonal toθ. If Figure 4.2d (which is identical with Figure 4.4a) is
considered, we notice that the responses of theÊs

σ;θ- andÊd
σ;θ-operators (Figure 4.4f and k)

differ considerably from the response of theCσ;θ-operators at the same receptive field center
at the vertical edges of P. The responses of theCσ;θ-operator are strong also at the circular part
of P, since these responses are not at the optimum vertical orientation the inhibitory lobes of
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Figure 4.5: Two inhibition operators. TheI t
σ-operator is illustrated in the middle and theI r

σ-operator
at the right. On the left a more realistic distance is given between the excitatory and inhibitory parts
of the two operators, the receptive fields give a considerable overlap. For better illustration we used a
larger distance between the excitatory and inhibitory parts.

Êσ;θ-operators do not suppress the responses at the circular part sufficiently. These responses
are called false responses, since they are not desired and therefore need to be inhibited.

In the two-dimensional case the amplitude of the receptive fields of the two types of mod-
eled end-stopped cells will not be sufficient to have no response at wrong positions. This
has to do with the fact that every modeled complex cell with a certain preferred orientation
which is near to the orientation of a line segment (or edge) also responds well, although
the response of these cells is weaker than the response of the cells which have a preferred
orientation identical to the orientation of the line segment. Figure 4.4a-d shows this phe-
nomenon: a response at the horizontal edges in all orientations exceptθ = 0 (Figure 4.4a).
The modeled end-stopped cells will respond strongly at the edge with the preferred orienta-
tion (θ = π

4) in the sense that thêEs
σ;θ-operators respond strongly at the two positions which

are exactly where the edges end.4 This is illustrated in Figure 4.4h where four black “dots”
appear. The strong responses are shifted inwards for theÊd

σ;θ-operators (Figure 4.4m). How-
ever, the responses of these two operators with preferred neighboring orientations will not be
suppressed by the inhibitory lobes and false responses appear all over the edges as shown in
Figure 4.4g and 4.4i for thêEs

σ;θ-operator and in Figure 4.4l and 4.4n for theÊd
σ;θ-operator.

It is most likely that end-stopped cells as they are found in the brain avoid the prob-
lem of false responses; either excitatory and inhibitory subunits are composed differently
or additional inhibitory input eliminates the false responses. Heitger et al. [71] assume the
latter. They solve the problem of false responses by adding a surround inhibition mechanism
and propose two operators. The first operator gives the differences between peripheral and
central activities within the same orientation channel and is therefore called tangential inhi-
bition or I t

σ-operator. This operator is chosen in such a way that its responses are parallel
to the edges, but there are, however, no responses where theCσ;θ-operators respond well,
since the response is strongly inhibited by this operator. An illustration of the output of the
operator applied to the P-image is in Figure 4.6a. The second operator is the radial inhibition
or I r

σ-operator, since it gives the difference between two orthogonal orientation channels.

4The strength of the responses is coded in gray level, white denotes no response and black strong response.
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a) b)

c) d) e) f)

Figure 4.6: a)-b) The results of the surround inhibitionI t
σ- andI r

σ-operators applied to the P-image.
c)-d) The output of theEs

σ- andEd
σ-operators (4.11) and (4.12), respectively. For both operators we

used the max-operator to combine different orientations of theEs
σ;θ- andEd

σ;θ-operators defined in
(4.6) and (4.7).e) The output of theEσ-operator (4.14).f) The results ofe combined with the input
image. For visualization character P has a gray color. The parameters are:σ =

p
5, wr = 4, wt = 1,

g= 2, andN = 8.

This operator responds strongly where theCσ;θ-operator responds strongly, but it does not
respond at corner coordinates since it is inhibited here by theCσ;θ+π-operator. An illustra-
tion of the operator is given in Figure 4.6b. For both operators at every orientation a pair of
Cσ;θ-operators is used which are first multiplied with a weighting factor, then subtracted and
thresholded at zero. The operators defined below are slightly different from the two proposed
by Heitger et al. [71]. In theI t

σ-operator the weights+1 and�wt are swapped, we multiply
the firstCσ;θ-operator with�wt and the second with+1. In theI t

σ-operator we used 0:5dσ
in the secondCσ;θ-operator as distance where Heitger et al. usedd. The operators are as
follows:

I t
σ(x;y) =

2N�1

∑
i=0

��wtCσ;θimodN
(x;y)+Cσ;θimodN

(x+dσcosθi;y+dσsinθi)
��0

(4.4)

and

I r
σ(x;y) =

2N�1

∑
i=0

�
Cσ;θimodN

(x;y)�wrCσ;θ(i+N
2 )modN

(x+0:5dσcosθi;y+0:5dσsinθi)

��0

;
(4.5)

whereN is the number of orientations,θi =
iπ
N , andwt andwr are constants. The weights

should be chosen properly, otherwise they do not suppress all false responses. The number
of orientations should always be even, otherwiseN

2 in (4.5) is not an integer. The weights
wt = 1 andwr = 4 are found empirically, and seem to be independent of input stimulus,
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ς = σ2 N=4 N=6 N=8 N=10

1.25 [1.2, 1.4] [1.6, 1.8]
2.50 � 2.2 � 1.0
5.00 � 1.5 � 0.8 � 0.6 � 0.5

10.00 � 1.2 � 0.6 � 0.5
20.00 � 1.2 � 0.8 � 0.6 � 0.5
30.00 � 1.2 � 0.6

Table 4.1:The interval for a proper gain factorg for differentσ and different number of orientations
N.

receptive field size, and number of orientations. Both inhibition operators are illustrated in
Figure 4.5, whereN = 4 orientations are used.

Figure 4.2h and 4.2j illustrated that the responses of theCσ;θ-operators at the manually
marked position of the corner is about half of the response on the edge. This makes it suitable
for an inhibition mechanism because it will not much affect the responses at line-ends.

The I t
σ-operator suppresses all responses parallel and adjacent to the edge if we move

along the strongest responses of theCσ;θ-operator. This operator therefore inhibits all false
responses of thêEs

σ;θ- andÊd
σ;θ-operators from neighboring directions. TheI r

σ-operator in-
hibits all responses where theCσ;θ-operators respond well, except at those positions where
the operators with orthogonal orientation respond well.

TheEs
σ;θ- andEd

σ;θ-operators inhibited by theI t
σ- andI r

σ-operators are as follows:

Es
σ;θi

=

�h
Ês

σ;θi

i�0
�g(I t

σ + I r
σ)

��0

i = 0; : : : ;2N�1 (4.6)

and

Ed
σ;θi

=

�h
Êd

σ;θi

i�0
�g(I t

σ + I r
σ)

��0

i = 0; : : : ;N�1; (4.7)

whereg is the gain factor.
Like the two weight factorswt andwr , also the gain factorg can be chosen independently

from the receptive field size. In Table 4.1 the two smallest values forς have a different
gain factor, this is mainly caused by discretization of the coordinates in theEs

σ;θ- andEd
σ;θ-

operators. The coordinates(x;y) 2 Z
2 of the Es

σ;θ- andEd
σ;θ-operators depend on distance

dσ. If this distance is small, the relative error of rounding a real number to an integer is
much larger than it is with a larger distance. The gain factor is independent of the number of
orientations. The notation “� x” in the table means thatg should be at leastx to avoid false
responses. Note that the maximum gain factor we tried isg= 25, so formally� x means that
g2 [x;25], since we did not test for largerg.

The minimum gain factor which still avoids false responses becomes lower if the number
of orientations increases. This has do to with the inhibitionI t

σ- and I r
σ-operators because

their response is the sum over an excitatory and an inhibitory modeled complex cell over all
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orientations. A possibility for having a constant minimum suitableg independent from the
number of orientationsN is to take the maximum or average of all orientations instead of the
sum in (4.4) and (4.5).

Table 4.1 indicates thatg is independent of the number of orientations and receptive field
size. We used a constant gain factor(g= 2) in all our model experiments.

4.2 Relational position invariance and rotation robustness
of end-stopped cells

In this section we elaborate on the position invariance and rotation robustness of theEs
σ;θ-

andEd
σ;θ-operators, because relative relations of corners must remain stable under translation

and rotation. This stability of a corner is measured by checking how the responses of these
operators change when a constant number of different orientationsθi for theSa

σ;θ- andSs
σ;θ-

operators is used and the input image is rotated over an angleϕ.
We start with the rotation of the Gabor function by adjustingθ, we do not rotate the

input image, and use the results as reference material. Rotating the Gabor function has the
advantage that this causes negligible discretization effects compared to the rotation of a two-
dimensional image. In fact, rotating the function and taking the discrete image from a camera
is comparable to taking a discrete image from a rotated camera and use the non-rotated Gabor
function. We check the responses of the modeled complex and end-stopped cells, and expect
a smooth decrease or increase in response whenθ is adjusted.

Rotation of the input stimulus is trivial when the stimulus is continuous but is more diffi-
cult when it is discrete. We use a standard rotation algorithm and a rotation algorithm with
bilinear interpolation. With both methods we checked the responses of theCσ;θ-, Es

σ;θ-, and

Ed
σ;θ-operators.

4.2.1 Changing the preferred orientation of simple cells

Rotating a square discrete image gives loss of information due to discretization effects. Also,
part of the background is lost because the image should keep its original size. Therefore
we change the orientationsθi in the Gabor functions. By rotating the function we choose
different preferred orientations for the modeled simple cells. Rotation is possible since the
following property of (3.17) and (3.18) in continuous coordinates holds:

Sσ;θ(x;y) =
Z

x1

Z
y1

I0(x1;y1)Gσ;θ(x�x1;y�y1)dx1dy1

�
S0σ;θ(xϕ;yϕ) =

Z
x1

Z
y1

Iϕ(x1;y1)Gσ;θ+ϕ(x�x1;y�y1)dx1dy1; (4.8)

where(xϕ;yϕ) = (xcosϕ+ysinϕ;�xsinϕ+ycosϕ) andIϕ is the input image rotated around
the center of the original image, i.e. the center of the discrete image has coordinates(0;0).

In (4.8) both input imageI and Gabor functionG are rotated byϕ compared toSσ;θ.
Intuitively it is clear that the responses ofSσ;θ(x;y) andS 0σ;θ(xϕ;yϕ) are identical. Note that
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Figure 4.7: Responses upon cell rotation.a) Character P is again used as input image. Six corners are
labeled P1 to P6. The other coordinates C1-C6 are chosen arbitrarily on the edges of P.b) The response
of theCσ-operators. Since the responses at C1-C3 are all equal, only C1 is displayed.c) The responses
of the same operators at the coordinates where the corners appear. (Note the difference in scale.)d)
The responses of theEσ-operators at corners P3, P4, and P5 for different preferred orientations.e)
Identical tod, only the number of orientationsN is doubled to 8. Note that the responses at corners
P1, P2, and P6 are not displayed since they are equal with the response of P3. The used parameters
areσ =

p
5, wr = 4, wt = 1, andg= 2.

S0σ;θ should be rotated back over an angleϕ to be exactly equal toSσ;θ. Fortunately the last
step is not necessary since we are interested in the output of theEσ-operator at corners only.

Consider thatN orientationsθi =
iπ
N + θ0 starting at orientationθ0 = 0 are used, then

theSa
σ;θ- andSs

σ;θ-operators will respond best if line segments (or edges) in the image have
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orientationsiπ
N , i 2 [0;N). The response drops if the line segment is not exactly in one of

these orientations. By rotating the input stimulus aroundϕ 2 �� π
2N ;

π
2N

�
we notice that the

response of theCσ- andEσ-operators change. The results of change in response are shown
in Figure 4.7b-d.

WhenN different orientations are used there are intervals ofπ
N between two preferred

orientations. If the preferred orientations are rotatedπ
N , it gives exactly the same response as

when it is not rotated at all. Therefore the maximum useful rotation is� π
2N .

The strongest responses of theEσ-operators were remarkably stable when we changed the
preferred orientation, considering the maximum useful rotation. For all tested orientations,
23 samples in�π

8 and 15 samples in� π
16 for N = 4 andN = 8, the strongest responses were

at the manually marked positions of the corners.
Figure 4.7b illustrates that theCσ-operators have an almost linear decrease in response

(worst case example C1). The response drops to about 75 percent of the maximum. Note that
the orientations of C5 and C6 are not at one of the four preferred orientations but rotated
-17 and 5 degrees away from one of the four preferred orientations (0,π

4, π
2, 3π

4 ). TheCσ-
operators have a similar decrease in response as theS-operators. The latter have about 95 and
75 percent of the strongest response atπ

16 and π
8, respectively (Petkov et al. [151]). However

when the responses of theCσ-operators are measured at the positions of corners, they show a
remarkably stable response for all rotated input responses. Although the responses of P1-P6
are about 60 percent of the strongest responses of C1-C6, they do not drop below 96 percent
of the strongest response (Figure 4.7c). The strongest response is obtained when there is no
rotation.

Figure 4.7d-e illustrate that there is almost no difference between the number of orienta-
tions, if the stimulus is rotated within� π

16. The worst response with 8 orientations is approx-
imately 10 percent less than the strongest response, this is the same for 4 orientations if we
take the same maximum rotation of� π

16 into account. This means that if the number of ori-
entations is once more doubled to sixteen, the weakest response of the modeled end-stopped
cells will be at approximately 95 percent of the maximum response. The human brain is able
to discriminate between more than 16 different orientations and therefore we conclude that
with this set of orientations theEσ-operators are almost insensitive to rotation of the input
image.

Four different orientations are not recommended because there is a remarkable drop (Fig-
ure 4.7) in response when the stimulus is rotated over more than�21 degrees. Probably,
when the four different Gabor functions are transformed into the frequency domain there is
a small gap between two different orientations which cause the dramatical decrease in re-
sponse. For most applications eight different orientations will be enough to find all corners
and strongly curved edges.

4.2.2 Rotation of input image

In the previous subsection we mentioned the discretization problem when rotating an image
and that rotation of the preferred orientation of modeled simple cells causes fewer problems.
Unfortunately the different preferred orientations of simple cells are fixed, which means that
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Figure 4.8: Responses upon stimulus rotation. The preferred orientations are kept constant. The six
corners P1-P6 and the other coordinates C1-C6 on the edges of character P, as illustrated in Fig-
ure 4.7a, are used again.a) The responses of theCσ-operators for different rotations of the input
image. Since the responses of C1-C3 are all equal, again only C1 is displayed.b) The responses of
the same operators at the coordinates where corners appear.c) The responses of theEσ-operators
at corners P3, P4, and P5 for different rotations of the input image.d) The max-operator applied to
Eσ(x;y) and its eight neighbors. The responses of corners P1, P2, and P6 are again not displayed since
they are equal with the response of P3. The used parameters are identical to the ones in Figure 4.7.
e-f)are similar toc andd, respectively. The image is rotated with the bilinear interpolation technique.
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it is not possible to change the preferred orientation. Since we want a biologically plausible
model we are now rotating the input image and keeping the preferred orientation fixed.

We useN = 4 different orientationsθi =
iπ
N wherei 2 [0;N) and character P again as input

imageI . The image rotated by angleϕ is denoted asIϕ and is obtained as follows:

Iϕ(x;y) = I(xϕ;yϕ): (4.9)

From the rotated input image the discrete coordinates(x;y) are used to find the best inte-
ger coordinate(xϕ;yϕ) in the original image. Hence the image is rotating clockwise with
increasing angleϕ. The coordinates(xϕ;yϕ) are obtained as follows:�

xϕ
yϕ

�
=

��
cosϕ sinϕ
�sinϕ cosϕ

��
x
y

�
+

1
2

�
: (4.10)

The responses of theCσ-operators in coordinates C1-C6, illustrated in Figure 4.8a show
a capricious behavior when the difference between two rotated stimuli is small. The de-
crease in response becomes clear when the stimulus is rotated from 0 to�π

8. Comparing
Figures 4.7b and 4.8a both show a similar decrease when rotating from 0 towards�π

8. Al-
though the latter figure shows a non-smoothly decreasing response due to discretization ef-
fects.

The constant responses of theCσ-operators at corners and line-ends seem promising for
using their constant responses as corner detection mechanism (Figure 4.7c). However the
responses shown in Figure 4.8b are by far not so stable as in the previous section. The dis-
cretization effects have a significant influence on the responses of these operators. They drop
to 75 and 60 percent of the maximum response in the best (P3) and worst (P4) case, respec-
tively.

The responses of theEσ-operators as shown in Figure 4.8c show results comparable with
the responses of Figure 4.7d. The discretization effects in Figure 4.8c give strong decreases
in response for certain orientations, e.g. coordinate P4 at 10� and P5 at -8� and 10�. To avoid
a large influence of discretization, the maximum response of the expected position plus its
eight neighbors is taken. That means that a movement of�1 in horizontal and vertical direc-
tion of the calculated position of the corner is allowed. The reason for taking the maximum
response of the coordinate and its neighbors is that the coordinates are integer values. By
rounding the rotated coordinates to the nearest integers we can get the wrong coordinate,
therefore this discretization effect is compensated by assuming that one of its direct neigh-
bors also could have been the proper position of the corner. The response where a drift of�1
is allowed (Figure 4.8d) definitely gives better results than when the calculated position is
allowed only, as shown in Figure 4.8c. The strong decreases in response are eliminated but
the response is still not decreasing as smoothly as in Figure 4.7d.

4.3 Position of strongest response of ES-cells with different
receptive field sizes

In this section the response and improvement of the strongest response of theEσ-operator is
examined with increasing receptive field size. The idea of using different receptive field sizes
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Figure 4.9: a) The strongest responses of theEσ-operator at coordinates P1-P6 with increasing re-
ceptive field size.b) The movement of the strongest responses of the same operator at coordinates
P1-P6 for different receptive field sizes.c) The relative movement of coordinates P2-P6. Note that the
strongest responses at coordinate P1 are hardly moving and is therefore displayed with a solid line.
The following parameters are used:wr = 4, wt = 1, andg= 2.

is to obtain corners and line-ends which are very reliable. For example, if a complex input
image is presented and small receptive fields are used, undesirable corners and line-ends
can be detected due to the background or texture of an object. These responses at corners
and line-ends are weak or zero when large receptive fields are used, but the disadvantage
with large receptive fields is that details from the input stimulus are lost and that corner
localization is poor.

In Figure 4.9b the strongest response of theEσ-operator at coordinate P1 stays at the same
position for all the receptive field radii from 6.7 to 50.2. The responses at this coordinate
are constant over all the sizes (Figure 4.9a) and can therefore be marked as a very stable
corner. The responses are also strong at corner coordinates P2 and P6, when a visual scene is
presented at a short distance (observed in detail). When the same visual scene is seen from a
larger distance (observed in less detail) everything will appear smaller on the retina. In such
case character P will be smaller and can appear for example as a printed character P. When
such a P is considered, a human observer will find one corner at position P1 and one line-end
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a) b)

Figure 4.10:We applied theEσ-operator to images containing a convex corner, to check the response
near the corner and position of the strongest response. The response of theEσ-operator of anglesα
between 3 and 180 degrees have been elaborated.a) The corner has an angle of 3 degrees and near
the corner it is a line-end, smaller angles will not change anything near the corner and are therefore
not applied to theEσ-operator.b) The largest angleα = 120 degrees where the responses of the
Eσ-operator around the corner are still strong (see Figure 5.1).

between coordinates P2 and P6. The effect of differently sized input of the same object is
modeled by using several different receptive field sizes. The corners located at P2 and P6
are fused to one new line-end exactly in the middle of P2 and P6 when large receptive fields
are used. The fusion of the coordinates causes an increasing response of about 15 percent
(Figure 4.9a).

The response of coordinate P3 vanishes first because the coordinate is at a distance 20 in
horizontal and 18 in vertical direction from P1 and P4, respectively and therefore influenced
by these coordinates. The receptive fields of the modeled simple cells with centers at coordi-
nates P1, P3, and P4 start overlapping each other when they have a radiusr larger than 9. At
a receptive field radius of 19 the response of P3 starts decreasing because strongly inhibitory
parts are located in P1 and P4. With increasing size of receptive fields the strongest response
at coordinate P4 starts moving upwards and is disappearing quickly. TheCσ-operators are
responding accurately to edges for smallσ, but when larger and largerσ are used, fine detail
at the edges near corner P4 is vanishing. Whenσ is large theCσ-operators respond well to the
upper horizontal edge but the response for theEσ-operators is completely zero at coordinate
P4. The identical phenomenon is repeating for largerσ with coordinate P5.

We also elaborate on the position of the strongest response of the end-stopped operators
at convex corners with different angles. These responses are expected to be around the exact
location of the corner. To be able to combine the end-stopped operators with the same recep-
tive field center(x;y) but different receptive field radii, we need to know how the response at
position(x;y) for different scales will be. Even more important is thedrift of a corner which
is defined as the deviation of the position of the strongest response from the exact location
of the corner. If the drift is large and in different directions for different scales, the receptive
fields do not or only partly overlap and combining will be difficult.

Since end-stopped cells respond well to corners and line-ends we used a synthetic corner
as input image (Figure 4.10), where a line-end can be interpreted as a corner with a small
angle.
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α ∆x ∆y α ∆x ∆y
3 1.5� 2.5 0.0� 2.0 80 0.0� 0.0 0.0� 1.0
5 3.0� 4.0 0.0� 1.0 90 0.5� 0.5 0.5� 0.5

10 0.0� 3.0 0.0� 0.0 100 0.5� 0.5 0.0� 0.0
15 -1.0� 3.0 0.0� 0.0 110 -1.5� 1.5 0.0� 2.0
20 -1.5� 2.5 0.0� 0.0 120 -2.0� 1.0 0.0� 1.0
30 -1.5� 2.5 0.0� 0.0 125 -2.0� 1.0 0.0� 1.0
40 0.5� 0.5 0.0� 1.0 130 0.0� 1.0 0.0� 1.0
50 0.5� 0.5 0.0� 2.0 135 ??� ?? ??� ??
60 1.0� 1.0 0.0� 2.0 140 ??� ?? ??� ??
70 -0.5� 0.5 0.0� 2.0 150 ??� ?? ??� ??

Table 4.2: In the leftmost and fourth column the convex angleα of the corner is given. In Figure 4.10
two corners with angles,α = 3 and 120 degrees are illustrated. The drift in pixels of the strongest out-
put of theEσ-operator inx andy direction is in the second and third column forα � 70, respectively.
In the fifth and sixth column the drift forα > 70 is given. The question marks ??� ?? indicate that
at these angles the strongest output of theEσ-operator is zero and no position(x;y) can be marked as
the maximum output.

For the simulationN= 8 orientationsθi =
iπ
N , i 2 [0;N) for theCσ;θ-operators are used. The

outputs of theEs
σ;θ- andEd

σ;θ-operators at position(x;y) are combined with a max-operator
for all orientations:

Es
σ(x;y) = max

θ
(Es

σ;θ(x;y)) (4.11)

and

Ed
σ(x;y) = max

θ
(Ed

σ;θ(x;y)): (4.12)

That different orientations need to be combined is obvious since a single orientation channel
never contains all corners. We choose the max-operator since it is simple and independent of
the number of orientations and is biological plausible (winner-takes-all).

SinceÊs
σ;θ = �Ês

σ;θ+π and because we use the max-operator: max
�

Ês
σ;θ; Ê

s
σ;θ+π

�
, equa-

tion (4.6), can be written as

Ẽs
σ;θi

=
h���Ês

σ;θi

����g(I t
σ + I r

σ)
i�0

; i = 0; : : : ;N�1: (4.13)

This has the advantage that only half of theEs
σ;θi

-operators need to be calculated,i =
0; : : : ;N� 1 instead ofi = 0; : : : ;2N� 1 and also that the orientation parameterθ of both
Ẽs

σ;θ- andEd
σ;θ-operators is in the same domain.

TheẼs
σ- andEd

σ-operators are combined with another maximum operator to what we call
general end-stopped orEσ-operator:

Eσ(x;y) = max
�

Ed
σ(x;y); Ẽ

s
σ(x;y)

�
; (4.14)
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to obtain the strongest response from both types of modeled end-stopped cells for all possible
orientations. By using the building block architecture the response of such anEσ-operator
can represent the functionality of a biological cell in the brain. The outputs from all single
and double end-stopped cells for all different preferred orientations but the same receptive
field center and the same receptive field size make excitatory synapses with a single “E”-cell.
That makes the E-cell a biologically plausible cell.

Fifteen different receptive field radiir from (A.5) ranging fromr = 5 to r = 40 with steps
of 2.5 have been used to measure the drift of theEσ-operator. Table 4.2 gives the drift to
the exact location of the corner where the strongest responses of theEσ-operator appeared.
The drift in y direction is given by∆y. The largest drift inx direction is when the corner
has an angle smaller than 30 degrees. With the small receptive fields (r = 5 andr = 10) the
strongest response is exactly at the location of the corner, when the radius is increased with
steps of five the position of the best response remains the same or moves one position to the
left. Exactly the same happens with large angles. The corners with angles smaller than 10
degrees show a different behavior, they tend to move to the right because they are almost
identical to line-ends.

We conclude that the strongest response of theEσ-operator at corners drifts a little. This
is important if different receptive field sizes should be combined since it would be difficult if
corners drift considerably with increasingσ. In Chapter 5 we are improving corner detection
by combining end-stopped operators with differentσ.

4.4 Related work

Corner detection methods in the literature can be broadly divided into two groups. The first
group consists of approaches that work on images indirectly, whereas the second group of
approaches works on the image directly.

Approaches in thefirst groupinvolve extracting edges as a chain code (e.g. using the Free-
man indices [48, 49]), and subsequently either searching for points of maximum curvature
(Asada and Brady [5], Deriche and Faugeras [27], and Medioni and Yasumoto [132]) or per-
forming a polygonal approximation on the chains and then searching for the line segment
intersections (Horaud et al. [77]). The majority of these approaches involves the application
of local operations along the length of a curve (Rutkowski [166], Anderson and Bezdek [3],
Ray and Ray [158], and Seeger and Seeger [169]).

Let a sequence ofn coordinates describe a contourC:

C= fpi = (xi;yi); i = 1; : : : ;ng (4.15)

wherepi+1 is the successor ofpi . The contour is “eight-connected” which implies that if
positionpi is known its successor can have eight possible positions. The Freeman chain code
describes these possible positions with a number ranging from zero to seven, where zero is
in downward direction and with increasing number the direction moves counter-clockwise.
Whenai is the Freeman chain code number betweenpi and pi+1 then the local curvature
(Seeger and Seeger [169])Ki at i is approximated as difference of neighboring chain code
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numbers:

Ki � ai+1�ai�1: (4.16)

Since the resolution of the Freeman indices is onlyπ=4, the quantization error is high. In
order to reduce the effect of quantization and smooth out the local fluctuation thek-curvature
method is used. An orientation functionζi is introduced:

ζi = arctan

�
yi+k�yi�k

xi+k�xi�k

�
: (4.17)

Parameterk is called the smoothing factor, generally chosen to be two or three (Lee et al.
[107]). Non-maximum suppression is used to associate corners with pixels whoseζ values
are local maxima (exceeding a chosen threshold). The scale at which corners are detected
is dependent onk. If k is too small, a rounded corner will not be detected, ifk is too large
problems may arise for corner pairs separated by less thank pixels. Fischler and Bolles [46]
use several different values ofk to detect corners at different scales. Since corners can exist
at many different scales, Hartley and Rosenfeld [64] and Baugher and Rosenfeld [10] used a
pyramid in order to detect corners at different scales. Hartley and Rosenfeld require a corner
to lie at the intersection of the approximating lines, but Baugher and Rosenfeld require the
corner to lie on the curve.

The classical iterative end-point algorithm, proposed by Duda and Hart [36] is a method
using corner detection with splitting methods of two-dimensional image curves. The method
splits a curve into sub-curves separated by corner-points. In each iteration a corner-point is
identified to be the curve point most distant from the chord between the sub-curve’s two
end-points. Faster algorithms are proposed by Han et al. [60] and Espelid and Jonassen [42].
Although splitting curve algorithms are fast they have the property to detect corners on a
circle. This indicates that they do not show rotation invariance.

Seeger and Seeger [169] use a real time corner detection method. Only few integer oper-
ations on a 3x3 pixel-matrix are required. Within a given direction quantization, local cur-
vature is approximated by finite differences. The extrema of curvature are classified and
subsets are selected as corners. Because a 3x3 matrix is used the corners are detected on a
small scale. Consequently, a straight ragged line will yield corner points.

A common problem withk-curvature methods is that they fail to detect and localize what
humans perceive as corners (Sohn et al. [175]).

The second groupconsists of approaches that work on grey level images directly (e.g.
Dreschler and Nagel [35], Noble [143], Harris and Stephens [63], Guiducci [59], Singh and
Shneier [172], Deriche and Giraudon [28], Rohr [162], Kitchen and Rosenfeld [97], Zuniga
and Haralick [205], Rangarajan et al. [156], Deriche and Giraudon [29], and Wang and Brady
[192]).

In 1978, Beaudet [13] proposed a rotationally invariant operator called DET, derived using
a second-order Taylor expansion of the intensity surfaceI(x;y):

DET= IxxIyy� I2
xy: (4.18)
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Figure 4.11:Different kernels used for the standard corner operators.a) Gaussian function.b) Partial
derivative of the Gaussian in x-direction.c) Partial derivative in y-direction.d) Second order deriva-
tive, twice in x-direction.e)Second order derivative, twice in y-direction.f) Derivative once in x- and
once in y-direction. For the Gaussian function (A.3) constantσ was chosen to be five.

The best realization ofIz;z2 fx, y, xx, xy, yyg is to take a kernel as illustrated in Figure 4.11
and convolve it with an input imageI , for exampleIxx = I �Gxx. This is faster than blurring
the image by convolving it with a Gaussian and then calculate the derivatives.

Corner detection using the DET-operator is based on thresholding of the absolute value of
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the extrema of this operator. In fact the operator equals the determinant of the Hessian

H =

�
Ixx Ixy

Iyx Iyy

�
; (4.19)

which is related to the product of the principal curvaturesκminκmaxand is called the Gaussian
curvature, Lipschutz [115]:

κminκmax=
DET�

1+ I2
x + I2

y

�2 : (4.20)

Dependent on the output, these curvatures are divided into three groups (elliptic, hyperbolic,
or parabolic). Dreschler and Nagel [35] proposed an operator based on this Gaussian curva-
ture principle.

Kitchen and Rosenfeld [97] proposed a measure of “cornerness” based on the change of
gradient direction along an edge contour multiplied by the local gradient magnitude:

KR=
IxxI2

y �2IxyIxIy+ IyyI2
x

I2
x + I2

y
: (4.21)

The local maximum of this measure isolates corners using a non-maximum suppression pro-
cess applied on the gradient magnitude before its multiplication with the curvature. In fact
KR is the explicit representation for the second derivative in the direction orthogonal to the
gradient (Torre and Poggio [186]). The measure of cornerness is sometimes expressed as

KR=
q

I2
x + I2

y (e.g. Noble [143] or Lindeberg [113]).

Noble [143] has shown how the Plessey corner detector of Harris and Stephens [62] esti-
mates image curvature and has proposed an image representation that is based on differential
geometry:

P=
traceM
detM

; (4.22)

where traceM = ∑i Mi;i, detM is the determinant ofM, andM is the matrix introduced by
Nagel [139] in calculations concerning optical flow estimation:

M =

�
I2
x IxIy

IxIy I2
y

�
+µ2

�
Ixx Ixy

Ixy Iyy

�2

; (4.23)

with a suitable constantµ. DetectorP is only suitable for V-junctions, and its performance
on higher-order structures is unpredictable.

A slightly modified version of the Plessey corner detector, what has become known as
the Plessey feature point detector, is considered by Harris and Stephens [63]. They have the
following operator:

PHS= detM�k(traceM)2; (4.24)
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for providing discrimination against high-contrast pixel step edges (k= 0:04). The output of
the operator is thresholded for corner detection.

Many gray-level corner detectors do not extract feature attributes of a corner apart from
the strength of the response (e.g. Kitchen and Rosenfeld [97], Zuniga and Haralick [205],
Rangarajan et al. [156], Deriche and Giraudon [29], and Wang and Brady [192]) but assume
an idealized corner that is sharply pointed and has straight, steep edges. In natural images
most corners do not have such properties. Sometimes edges are ragged and corners rounded
or blurred. Also contrast, adjacent edges, color, and texture have influence on the detection
of corners.

Rosin [165] provides several post-processing techniques for determining additional corner
features, such as color, orientation, angle, and contrast. Additional information about corners
can be used to resolve otherwise ambiguous correspondences during matching, e.g. corners
whose additional features do not match certain criteria. Rosin derives cornerness from a
subset of the following properties:position, subtended angle, orientation, edge shape, edge
texture, contrast, edge profile, sharpness, color, junction type, andsize.

There are a few corner detectors which do measure some of those feature attributes. Li and
Madhaven [111] use a set of basis functions which also provides the orientation. Rosin [165]
gives a definition ofcorner orientation, which is the average of the orientation of two edges
forming the corner. Thesubtended angleis the angle between those two edges. The same
definitions can be used for two neighboring edges with an angle larger than 180 degrees.

Mehrotra et al. [133] detect half edges, from which orientation and subtended angle can
be calculated. Liu and Tsai [116] determine orientation and subtended angle, while Rohr
[163] additionally provides blur and contrast. Guiducci [59] also estimates orientation, sub-
tended angle, blurring, and contrast based on differential geometry. Wang and Brady [192]
use Beaudet’s [13] DET-operator to estimate corner sharpness. Rosin [165] describes meth-
ods for calculating color (light vs. dark), orientation, contrast, and subtended angle between
two edges.

Koenderink and van Doorn [99] and ter Haar Romeny et al. [182] use methods of differ-
ential geometry. Their differential operator

Diff = IxxI
2
y +2IxIyIxy� IyyI

2
x (4.25)

enhances corners in an image. Their approach (like the others given before) is an elegant
mathematical formalism, but only part of the model is neuro-physiologically inspired.

Perona [146] used Gaussian derivative based kernels with an elongated shape to achieve
high orientation selectivity. The real part is a Gaussian:G(x;y;σx;σy) = exp(�((x=σx)

2+
(y=σy)

2)) differentiated twice along the y-axis using aσx : σy ratio of 1 : 3. The imaginary
part of the kernel is the real part of the Hilbert transform taken along the y-axis (Perona
[147]).5 The first derivative along the axis of the initial kernel yields the end-stopped kernel.

Five different standard operators have been implemented and applied to the P-image of
Figure 4.2a. The outputs of the operators are set to zero if the absolute value does not exceed
a certain threshold. The Plessey operator forms an exception, its absolute value should not
exceed a certain threshold, otherwise it is set to infinity.

5The “gauss-3” kernel used by Perona looks similar to the Gabor kernel, illustrated in Figure 3.5a-b.



66 Localization Properties of Cortical Corner Detectors

a) b) c)

d) e) f)

Figure 4.12: The thresholded results of the outputs of different operators which are applied to the
smoothed synthetic P image, illustrated in Figure 4.2a (without the two small arrows).a) Diff-
operator.b) DET-operator.c) Gaussian curvature.d) Kitchen-Rosenfeld operator.e) Plessey feature
point operator.f) Plessey-operator. We usedσ = 2 andµ= 1, the outputs are thresholded at 20000,
50, 0, 10, 0, and 0.01, respectively.

In Figure 4.12b-d black, grey, and white represent a positive, zero, and negative response,
respectively. The first implemented operator is the “Diff” or corner enhancing operator from
(4.25). The strongest responses of this operator are moved towards the inside of the verti-
cal bar of P. The results of the DET-operator (4.18) are almost at the proper place. Although
smaller than the strongest responses of the Diff-operator, the strongest responses of the DET-
operator are displaced in to the same direction as well. The strongest responses of the Gaus-
sian curvature operator (4.20) are not at the proper position. The Kitchen-Rosenfeld operator
(4.21) and the Plessey feature point operator (4.24) give the strongest responses at the proper
locations. For the Plessey feature point operator we usedµ= 1. The Plessey-detector (4.22)
gives the weakest responses at the proper locations (Figure 4.12f), also withµ= 1. The out-
put of the Plessey-operator is treated differently from the other operators in the sense that a
point is marked as a corner if and only if the absolute value of the output is smaller than a
certain threshold.

Only a few explicit models for end-stopped cells have been published. Fukushima [51]
computed differences between offset complex cell responses and both single and double
end-stopped cells were considered. The complex cells used by Fukushima are different, they
are specially designed for representation of lines. More recently Dobbins et al. [32, 33] con-
structed a model which only considered double end-stopped cells. The inputs of these cells
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were obtained from simple cells and not from complex cells. The excitatory and inhibitory
inputs also had different receptive field sizes.

Fukushima [51] recognized the problem of false responses, to eliminate these responses
inhibitory end-zones were made larger and given higher weighting. Recently, Weitzel et al.
[193] proposed a neuronal model for contour segmentation which includes neurons with
end-stopped properties.

4.5 Summary and discussion

In this chapter we used a family of two-dimensional Gabor functions to model the receptive
fields of simple cells, which were defined in Chapter 3. The Gabor functions used are dif-
ferent from those used by Heitger et al. [71] but their functionality differs marginally. The
symmetrical and anti-symmetrical part of the Gabor function are combined in the same way
as Heitger et al. do. TheEs

σ;θ- andEd
σ;θ-operators are slightly different in the sense that they

are defined for all orientations and are not thresholded at zero. We thresholded the outputs
of the Es

σ;θ- andEd
σ;θ-operators after inhibition by the surround inhibition mechanism for

computational reasons. When different orientations of the operators are combined with the
max-operator, instead of 2N only N different orientations have to be calculated.

The strongest responses of theCσ;θ-operators appear at line segments (or edges) but the
response decreases before the line-end is reached, as illustrated in Figure 4.2j. TheÊs

σ;θ-

andÊd
σ;θ-operators have their strongest responses exactly at the locations of the corners but

inhibit the response at line segments at or nearθ only and false responses appear. Hence the
output is inhibited by two additional operators:I t

σ- andI r
σ-operators.

The main contribution in the chapter is in the properties (rotation and relative movement
of the strongest response) theẼs

σ;θ- and Ed
σ;θ-operators have. Also the choice of the four

constantsd, wr , wt , andg is motivated. The choiced = 1 of Heitger et al. [71] was not clear
and for our purpose (responses at junctions only) also not optimal. We do not get responses
at circles but if the parameters are used as proposed by Heitger et al. responses appear at
circles as illustrated by Fellenz [44]. The weightswr andwt are found empirically and are
independent of orientation and receptive field size. The gain factorg was examined for a
large number of receptive field sizes and for 4 different numbers of orientations (N = 4, 6, 8,
or 10). The number of orientationsN should be at least four in order to be able to eliminate
all false responses. It turned out thatg can be chosen rather arbitrarily if the only criterion
is false response elimination. In Table 4.1 is illustrated that forσ � p

5 everyg� 1:5 is
sufficient. In order to have almost the same responses over a limited range of receptive field
radii the gain factor should quadratically increase with the receptive field radius. The range
is limited since responses to corners disappear when large receptive fields are used as shown
in Figure 4.9.

We examined the discretization effects of rotated input stimuli with and without bilinear
interpolation and used the rotation of simple cells as reference material. It became obvious
that the discretization effects of a rotated input stimulus have considerable influence on the
output of theEσ-operator. Globally the responses at the rotated input stimulus are the same as
the response of theS-operators with a rotated preferred orientation. However the difference
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between two rotated input stimuli which are rotated over slightly different angles is unpre-
dictable. The response of theEσ-operator decreases to 60 percent of the maximum response
when 4 orientations are used. This decrease can be explained by comparing the responses
with the response of theC -operators, when an edge does exactly fit one of the preferred
orientations the response is optimal and when it does not exactly fit, the response decreases.
Although at first sight the responses of these operators seem to be constant over all orienta-
tions (rotating the preferred orientation of the modeled simple cells), we should not compare
the responses ofE-operators with these responses since the excitatory and inhibitory parts
of theE-operators are at the edges of the input stimulus and not at the corners.

A denser sampling of preferred orientations forS-operators implies that each edge is closer
to one of the preferred orientations, which means that the decrease of the response ofEσ-
operators is small. When the input stimulus is rotated it is recommended not only to take the
manually marked position of the rotated corner but also its eight neighbors, i.e. to allow a
drift of the corner of� 1 position in order to obtain more stable responses. When the number
of orientations is 8 or 16 and the drift of�1 position is taken into account the responses are
robust to rotations.

Finally we checked the responses ofEσ-operator on the stability of the position of corners
(i.e. where do these operators have the strongest responses) with increasing receptive field
sizes. For a convex corner the maximum drift of a corner is small for all different angles
and scales. The drift is strongest when the angle is small, the corner looks like a line-end
and the strongest response of theEσ-operator is found a little before the position where the
line actually ends. We showed that the responses of theEσ-operator at corners are stable
up to a certain receptive field radius. When the receptive field radius is increasing more,
accuracy is lost and the strongest response at these corners start drifting and their responses
are decreasing rapidly. Figure 4.9a illustrates this phenomenon for corners P3, P4, and P5.
If receptive fields are made larger and larger strong responses of theEσ-operator spread and
the exact position of the corner becomes less and less accurate, even responses at corners are
becoming weak, because different corners of the input signal appear in the same receptive
field and inhibit each other. Finally, the receptive fields are so large that they respond to a few
corners. Instead of having a rapid decrease of the response it also happens that the response
at a certain position increases, e.g., when two corners are fused to one line-end. If receptive
fields would be larger than the input stimulus, the stimulus can be seen as a blob. In such a
case the operator will respond best in the center of the blob.

We conclude that when sixteen differentSa
σ;θ- andSs

σ;θ-operators with respect to the pre-
ferred orientation are chosen arbitrary but equally spread over 180 degrees the responses
of the Eσ-operator drop in the worst case to 95 percent of the maximum response but the
strongest response is obtained from the same position of the input stimulus. Therefore it
does not matter which sixteen equally spread preferred orientations we take. Although dis-
cretization effects play an important role, comparable results are obtained by rotating the
input stimulus and keeping the preferred orientations fixed. In both cases, rotating these ori-
entations and keeping the input stimulus fixed or keeping the orientations fixed and rotating
the input stimulus, the positions of the strongest responses of theEσ-operator have been
found to be invariant.
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For comparison, we implemented five different standard corner operators, the results of
these operators are good (i.e., only corners are enhanced) when applied to simple images
(e.g. the P image) and give almost identical results when compared with the results of theEσ-
operator. The advantage of most of these standard corner operators is that they are calculated
fast. There is also a disadvantage: a threshold needs to be tuned in order to obtain proper
results. In the following chapter these standard operators will be applied to more complex
images and their properties will be discussed in more detail. The large computation time of
the Eσ-operators as compared with the standard operators (Section 4.4) is a disadvantage
in the current implementation. The computational time can be cut down since theSa

σ;θ- and
Ss

σ;θ-operators can be calculated in parallel for everyθ (andσ). After the S-operators are
calculated allCσ;θ-operators can be calculated in parallel for everyθ (andσ). Finally the
Ẽs

σ;θ, Ed
σ;θ, I t

σ, andI r
σ-operators can be calculated in parallel for everyθ (andσ). In terms

of parallel complexity the time needed to obtain corners is the sequential flow from center-
surround, simple, complex, to end-stopped cells.
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Improving Corner Detection using

Multiple Scales

So this is what the Sovereign Lord says: “See, I lay a stone in Zion, a tested stone,
a precious cornerstone for a sure foundation; the one who trusts will never be dis-
mayed.”

Isaiah 28:16 (NIV)

SINGLE SCALE CORNER DETECTIONas described in the previous chapter is usually
not sufficient in the sense that there is a large possibility that some corners are not
detected at all and others appear at a position where they are not expected. If a corner

appears at a place where no corner exists then it is a false response (see also Page 46) and if
no response appears at the exact location of a corner it is called amissing response. When
a single scale is used for theEσ-operators and a corner appears at a certain position one is
not able to detect automatically if such a corner is correct or false. In this chapter different
scales are used to reduce the chances of missing or falsely detected corners or line-ends to a
minimum. If the response ofEσ(x;y) is strong for several differentσ (scales), there is more
evidence that there is a corner at position(x;y).

Corner detection at small scales for instance is very accurate but highly sensitive to every
small detail, e.g. fine texture or camera noise. At large scales the detection is more reliable
but inaccurate, also two or more corners can fit into one receptive field. The choice for scales
which are neither small nor large seems to be the best one, although those operators do not
respond well to rounded corners like the large scales do, and are not as accurate as the small
scales.

The choice for a combination of scales improves the judgment whether there is a reliable
corner or a noise response. A corner isreliable if it appears in more than a certain number of
scales with a response higher than a certain threshold. Combining scales also gives additional
information about the corner. For example noise responses appear in small scales and the
Eσ-operators for largeσ will respond well to rounded corners where smallσ will give no
response at all. Figure 4.6 illustrated the strong responses at the exact locations of corners and
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line-ends of theEσ-operators when applied to a simple image created by hand, but complex
images (of natural scenes) can contain fine textures, e.g. plaster on a wall.

On a single scale different properties of theEσ-operators must be elaborated first. Impor-
tant are the position of the strongest responses of these operators. Are the strongest responses
close to the exact locations of the corners? Does the operator respond well to any arbitrary
corner? If it happens that this is not the case, can or should we improve the operator so that
it responds to a wider range of corners? Does the operator respond to junctions?

In Chapter 4 we showed that the drift of the strongest responses of theEσ-operators at
different angles for a number of scales is small. This means that it is possible to combine
different scales. For combining scales we need to answer the following questions: How many
scales should we take? Which scales are needed? Should a linear or non-linear scale space
be used? The most important question: how to combine the responses of theEσ-operators at
different scales? What is the advantage of using multiple scales? It is clear that with multiple
scales the aim is to find all corners and have no false responses, but are we really going
towards this goal by using multiple scales or is a single scale good enough? Do we introduce
other problems by using multiple scales? For example is there a possibility that there is a
conflict between two or more corners at different scales? In this chapter we will try and find
an answer to these questions.

The chapter is organized as follows: in Section 5.1 a limited overview of related work of
multiscale corner detection methods is given. In Section 5.2 a synthetic input image with one
convex corner is presented and the response of theEσ-operator for different scales present-
ing different angles of the corner between 3-180 degrees is studied. Corners smaller than 3
degrees are not considered anymore because the corner will look like a line-end. Junctions
and rounded corners are examined as well. In this section we also discuss a specific exam-
ple of drift. In Section 5.3 a potential corner feature (PCF) area and marked corner (MC)
are introduced, since we want one single (pixel) point to be marked as a corner. The choice
for a coordinate(x;y) to be marked as a corner is based on two criteria, the first one is that
the response ofEσ(x;y) should be stronger than responses at the neighboring positions and
secondly the response should exceed a known threshold. The responses of the end-stopped
operators which exceed this threshold are called potential corner features. In a PCF area
there is at least one position which is marked as a corner, outside the PCF areas no corners
are marked. The results of theEσ-operator and standard corner operators (from Chapter 4)
are applied to complex images and compared with each other. Combining different scales
will be discussed in Section 5.4. One of the advantages of using multiple scales is that we
get an additional feature attribute, which indicates on which scales a corner is found. For
example the responses at the corner can be found in the small, middle, or all scales. Such an
attribute can be used to facilitate an object detection task (Rosin [165]). The multiple scale
end-stopped operator will be applied to several different natural images. The chapter ends
with a summary and discussion.



5.1 Related work 73

5.1 Related work

Baugher and Rosenfeld [10] use an image pyramid for corner detection. A pyramid is a
multi-layer data structure used to represent a digital image at different scales. Each level
of the pyramid consists of a square array, with a difference in image resolution of a factor
two between each level. They apply a curvature algorithm to all levels of the pyramid. The
corners detected in every level are combined using a max-operator.

Fischler and Bolles [46] use smoothing factorsk in order to detect corners atk different
scales, as mentioned in Chapter 4.

Deriche and Giraudon [29] consider a corner model based on a scale space approach that
combines useful properties from the Laplacian and Beaudet’s measure and is then used in
order to detect the exact corner position.

Rattarangsi and Chin [157] use a technique for detecting and localizing corners of pla-
nar curves. The technique is based on Gaussian scale space, which consists of the maxima
of absolute curvature of the boundary function presented at all scales. This scale space is
transformed into a tree that provides a simple but concise representation of corners at multi-
ple scales. A multiple scale corner detection scheme is developed using a coarse-to-fine tree
parsing technique.

A scale space can be created for the standard corner operators also by using differentσ for
the Gaussian kernels. We combined different scales of the standard corner operators with an
average operator and compared the results with the multi scale end-stopped operator.

Also Lindeberg [113] uses a scale space representation for junction detection but does not
combine these scales.

Our approach is based on convolving a grey-scale image with Gabor functions with dif-
ferentσ. Using filters with differentσ has the advantage that any scale sampling can be used
and not only factors of two. Unlike Rattarangsi and Chin who used a max-operator to find all
corners, we use an average operator to combine different scales since the max-operator does
not rule out strong responses to noise or tiny features at small scales.

5.2 Responses at different corners

5.2.1 Convex angles

In the previous chapter we checked the drift at different angles of synthetic images, an illus-
tration of such an image is given in Figure 4.10. In this section the responses of these images
are elaborated.

In Figure 5.1 the strongest responses of different receptive field radii are illustrated. It is
remarkable that the responses are almost identical for all scales at angles between 10 and
120 degrees, only the smallest receptive fieldr = 5 is an exception.

The smallest receptive field has a strong response at corners with a small angle (3 degrees),
the response drops rapidly with increasing receptive field radii. Its response is only half for a
receptive field with radiusr = 10 and it is less than fifth for radii larger than 35, compared to
the strongest response. The decrease is caused by the thin line, as illustrated in Figure 4.10a.
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Figure 5.1: The relative output of theEσ-operator at corners with different angles. The response of
theEσ-operator with receptive field radiusr = 5 responds best to a corner with an angle of 3 degrees,
this response is scaled to 100 and all others are related to this response. The lines labeled fromr = 5
to r = 40 represent the different receptive field radii.

Such a line influences the main part of a small receptive field at the corner and therefore it
responds well but if the receptive fields get larger the part of the receptive field that influences
the thin line gets relatively smaller and smaller, this implies that the influence of such a line
in the receptive field gets smaller and smaller, and therefore also its response.

The responseEσ-operator decreases rapidly at corners with an angle between 120 and
125 degrees and vanishes completely for larger angles. Large angles are not recognized any-
more, this phenomenon is caused by the orientation selectivity of theS-operators and the
I r

σ-operator. TheS-operators respond best to a preferred orientationϕ but still respond well
(fifty percent of the response at the preferred angle) at an angleϕ� 2π

9 (Petkov et al. [151]).
HenceS-operators will respond to both lines if the angle between them is between 120 and
180 degrees. This means that theI r

σ-operator has little or no influence on the response, at
corners with such angles, since both edges give a good response at the same orientation. An
increase of the number of orientations will not have an improving effect. For corners with an
angle between 120-140 degrees, we can improve the response of theI r

σ-operator at corner
points. This is possible because if an edge differs 40� from the preferred orientation the re-
sponse is still about half of the response compared to the response of the edge which has an
orientation which is equal to the preferred orientation. When the edge differs 30� from the
preferred orientation the response is still 60 percent of the maximum.

We conclude that the response at every different scale for a corner with the same convex
angle is almost the same. In the previous chapter we already mentioned that the drift is
small. The combination of a small drift and the equal response of different scales makes the
Eσ-operator suitable for combing different scales. TheEσ-operators respond well to angles
from 20 to 125 degrees and are scale independent. For angles larger than 130 degrees theEσ-
operators fail to respond at every scale. TheEσ-operator fails here while a human is still able
to mark the corner. Although it does not necessarily mean that the end-stopped cells should
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a) b)

Figure 5.2: a) An input image with different junctions. A T-junction and Y-junction (3-junctions) are
at the top row on the left and right, respectively. In the middle of the top row are different X- and
K-junctions (4-junctions). In the second row other n-junctions (n� 5) are illustrated. The squares
and triangles at the bottom are used to show how theEσ-operators respond to different combinations
of edges and line segments.b) A maximum operator is used to combine the responses of theEσ-
operator at different scales. The thresholded output of the maximum operators is illustrated in gray.
Scales ranging fromr = 5 to r = 40with a step-size of 2.5 are used. At large scales the black triangle
is like a blob therefore theEσ-operator responds well at this position.

respond at angles larger than 130 degrees we interpret this as a limitation of the modeled end-
stopped cells. Using “simple cells” with different bandwidths does not improve the response
at angles larger than 130 degrees. The responses at small angles are good at small scales but
decrease with increasing scale, these angles are therefore scale dependent.

The difference in response at corners with angles between 20 and 120 degrees is 20 percent
only, from 90 percent at a corner with an angle of 20 degrees to 70 percent of the maximum
response at 120 degrees. This indicates that theEσ-operator responds well to a corner of any
angle between 20 and 120 degrees and no compensation is necessary to be able to compare
corners with a different convex angle.

5.2.2 Junctions

Peterhans et al. [149] and van der Zwan et al. [190] studied the role of end-stopped cells in
mechanisms of figure-ground segregation. They recorded the responses of single neurons in
areas V1 and V2 of rhesus monkeys, that were trained on a visual fixation task that reinforced
foveal viewing, to stimuli that mimicked occlusion cues (line-ends, corners, and T-junctions).
Of the 100 end-stopped cells studied 98 did respond to terminations (line-ends and corners).
About half of these neurons gave a stronger response when the stimulus covered one half of
the receptive field, and only half of that response or less when it covered the other half. The
remaining neurons had symmetrical receptive fields giving similar responses independent of
which side of the receptive field was covered by the stimulus. When tested, both types of
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neuron also responded to T-junctions and only weakly or not at all to X-junctions.
We applied theEσ-operators, with scales ranging from a radius of 5 to 40 with a linear

increasing step size of 2.5, to different junctions which are in one input image, illustrated in
Figure 5.2a. The output of theEσ(x;y) is taken and marked if its response was higher than a
thresholdT, which is about two percent of the strongest response. The results are shown in
Figure 5.2b.

The Eσ-operators respond well to T-junctions and do not respond at all to X-junctions
when they are formed by line segments. In one case there is a response but the response is
weak in three scales only and is not at the position of the X-junction. Remarkable are the
responses at X-junctions which are formed by edges instead of line-segments, which are
illustrated in the lower part of Figure 5.2a. The responses at these junctions are strong at
all scales. The responses at X-junctions which are a combination of two edges and two line
segments are strong also, but at the middle and large scales only. These responses are not at
the exact location of the X-junction but moved towards the inside of the black square.

The Eσ-operators respond at all scales to the 3-junction in the upper row at the right of
Figure 5.2a. Like the 3-junction the response at the 8-junction, second row at the left, and the
symmetrical 6-junction are good at all scales also. Strong responses at 5- and 7-junctions are
in the middle and large scales. The non-symmetrical 6-junction, second row in the middle
evoked a response at large scales but the responses at these scales are weak.

We conclude that theEσ-operators respond to alln-junctions (n� 3), except K- and X-
junctions (n= 4) where all parts of the junction are line segments.

5.2.3 Rounded corners

Corners in natural scenes are not always sharp, therefore it is important to examine the re-
sponse of theEσ-operators at rounded corners. It is expected that the operators with small
σ do not respond to rounded corners because their receptive fields are too small to contain
the entire corner area. The operators with largeσ do not only contain the complete corner
area but also parts of the straight line segments. In such case the response is expected to
be strong at the corner. Figure 5.3d shows that theEσ-operator with small receptive fields
(r = 5) respond to rounded corners up to a radius of two. The operators with large receptive
fields (r = 40) respond well to rounded corners with a radius up to 15.

If 80 percent of the strongest response is used as a threshold for corner detection then the
maximum radius of the rounded corner and end-stopped distancedσ are almost the same.
This is expected because the receptive fields must contain the entire corner plus parts of
the straight lines and because the output ofI r

σ- and I t
σ-operators are suppressed at line-

ends. We conclude that the end-stopped distancedσ gives the upper bound for the radius
of the rounded corner. Sincedσ is proportional to the receptive field radius, every rounded
corner can be detected. However, when large receptive fields are used the position of the
rounded corners can be determined less accurately because there are a lot of receptive fields
with different receptive field centers which can be influenced by the same corner. However,
determining the exact location of a rounded corner, even marked manually, is difficult since
one has a choice to mark the corner on the edge in the middle of the rounded part or at the
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Figure 5.3: Images with different rounded corners.a), b), andc) have radii of 5, 10, and 15, respec-
tively. d) Responses of theEσ-operator at rounded corners with different receptive field radii. The
lines labeled fromr = 5 to r = 40 represent the different receptive field radii of the simple cells. The
parameters used are identical to the ones used in Figure 5.1. TheI r

σ-operator is used.

imaginary intersection of the two straight edges.

5.2.4 Conflicting corners

In Figure 5.4 an image is created (without the two small grey spots) which models corners
like P4 and P5 from Figure 4.9b-c. Using again 8 orientations and identical parameters for
theEσ-operator as in Section 5.2, the spots in Figure 5.4a indicate that two areas with strong
responses are found. Strong responses at the lower spot of Figure 5.4a are appearing in small
scales, as illustrated in Figure 5.4b. Strong responses at the upper spot are found in large
scales. We conclude that this is a special form of drift which we will callconflicting corners
since it depends on the scale and the context in which the image is shown.

Combining scales in order to find a reliable corner with conflicting corners is a harder
problem. One can decide to take a position which depends on the direction of the drift or just
to take one of the conflicting corners. The latter has the advantage that different scales can
be determined by combining different scales at one coordinate(x;y) in the visual field.
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Figure 5.4: a) An input image which has two separable areas where theEσ-operators respond well.
This are the two grey areas in the image. At small scales the operators respond well to the lower area
and at the large scales it respond well to the upper area.b) Response of theEσ-operators at different
scales for the upper and lower corner.

If the first method is chosen, the combination of different scales at position(x;y) is not
sufficient. The drift of such a corner must be traced starting at a large scale since their re-
sponses are most reliable, moving towards the best response of a smaller scale, predicting
the direction for the next scale.

5.3 Detected corners at a single scale

The scales we are using range from receptive field radiusr = 5 to r = 40. The minimal pos-
sible radius isr � 2:5 because the end-stopped distancedσ should be at least one pixel when
discrete images are used. Discretization effects for such small radii are so severe that their
results are not predictable when applied to a discrete image. In the Fourier domain the high-
est possible frequencies without overlap (aliasing) are obtained whenr = 7. For more details
about the choice of different scales in the frequency domain we refer to Section 3.5. The
maximum radius is mainly based on the resolution of the used input images. We use square
input images with a resolution of 256�256 pixels. A circularly shaped receptive field with
radiusr = 40 is influenced by almost eight percent of the image. Larger receptive fields are
not useful, first of all because it will not give better or additional information compared with
a scale which is a little smaller, secondly the implementation of filters with such large radii
can cause considerable wraparound artifacts. These artifacts can be avoided by enlarging
the image but will take more (computer) memory and computation time. The use of larger
receptive fields will be useful when larger images are used.

In Chapter 4 and the previous sections of this chapter we checked the response of theEσ-
operator at several different corners and junctions and analyzed their drift at different scales.
The current section gives criteria when a position(x;y) is marked as a corner, and a real-
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Figure 5.5: An image with five objects on a fine texture background.

world image is used to test the “quality” of theEσ-operator. The response of the operator is
compared with the output of the standard operators from Chapter 4.

The response of theEσ-operator at position(x;y) in the visual field is marked as apotential
corner feature(PCF) if it satisfies the following condition:

PCFT;ω(x;y)� [Eω(x;y)� T] ; (5.1)

where constantT is a threshold andω 2Ω. The setΩ containsσ and all possible scale com-
binations, e.g. the average (avg) of all scales. The square brackets denote boolean variables
throughout this chapter. By searching thelocal maximaof the Eσ-operators in a PCF area
we usually get the exact position or a position quite near to the manually marked corner or
line-end. In formula amarked corner(MC) satisfies the following condition:

MCT;ω(x;y)�
h
PCFT;ω(x;y)^8(x1;y1)2Bn(x;y) (Eω(x;y)� Eω(x1;y1))

i
; (5.2)

whereBn(x;y) is a disc with center(x;y) and radiusn. In the discrete case it means that
coordinate(x;y) and its neighbors within radiusn are taken, when the responseEσ(x;y) is
equal or stronger than all neighbors it is marked as a corner, line-end, or blob. The definition
of marked corner is chosen in such way that in one PCF area at least one position is marked
as a corner and at most all the possible positions in the PCF area. There is always one since
we can always find a maximumEω(x;y), where(x;y) is a coordinate in the PCF area. In case
Eω(x;y) are equal for all coordinates(x;y) in the PCF area, all coordinates will be marked.

5.3.1 Potential corner features and marked corners

Figure 5.5 is a difficult test-case for corner detection, because it has a fine texture as back-
ground and some corners are rounded, vague, or with low contrast. If we take different scales
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a) b)

c) d)

e) f)

Figure 5.6: a)-f) Potential corner features of the image illustrated in Figure 5.5 using receptive field
radii from r = 10 (a) to 35 (f) with linearly increasing steps of 5.
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separately as illustrated in Figure 5.6, we obtain PCF areas in the background for small
scales. Also middle scales show over 50% percent falsely detected potential corners features
and even the most reliable scales still show false responses at the round part of the scissors.

If small scales are used, we get very small PCF areas, responses at a corner are very
accurate since the areas contain a single point only, but most of the PCF areas do not contain
a corner but small details of the background. As the receptive fields increase, the size of the
PCF area increases too, and the number of PCF areas in the texture which are not perceived
as a corner or line-end decrease. Figure 5.6c shows areas at all corner-points but also a
considerable amount of non-desired PCF areas. In the largest scale the areas are large and
some corners are not covered by a PCF area, but almost all areas where we do not perceive a
corner or line-end are gone.

It is important to notice that for example the corner at the top of the pen is covered by a
PCF area in the small and middle scales. The corners at the top of the left marker appear
in the middle and large scales only, this makes it clear that multiple scales are not only
necessary to obtain all corners but also to eliminate all PCF areas which do not contain a
corner or line-end.

The MCs at the smallest scales are at the proper locations of the prints on the markers.
Most of the corners in the image are slightly rounded therefore there are no marked corners
at the smallest scales. The drift of corners is small at the left marker in the image. All six
possible corners are marked at the same position in Figure 5.7a-e. Usually the positions of
the MCs are well positioned if we do not consider the marked corners at the background.

5.3.2 Comparison with other corner operators

Using a single scale

In Chapter 4, we used six different standard corner operators. The outputs of these operators
are at a single scale, multiple scales can be obtained by blurring the input image with Gaus-
sians with a constantσ and by down-sampling the input image, which is a pyramid structure,
or by taking differentσ for the Gaussian kernels, which is called a scale space.

In Figure 5.8 we used a Gaussian kernel withσ = 3 for Ix, Iy, Ixx, Ixy, andIyy, with such a
σ no responses appear in the background and it is small enough to have still enough detail to
detect most of the corners. The choice of different Gaussians does not improve the responses
at the corners. Responses at ragged edges are caused if a smallerσ is chosen. The choice for
a largerσ will cause lack of response to proper corners.

The outputs of five different standard operators, illustrated in Figure 5.8, all show good
corner responses at the texture of the markers. The Diff- and DET-operators are sensitive to
large differences in contrast, this is illustrated well at the light-dark edge of the left marker.
They both respond well to most of the positions on this edge. The Diff-operator performs
poorly at the left background edge, where several positions are marked as a corner. The
Kitchen-Rosenfeld operator does not respond well to any corners of the markers, it responds
mainly at positions with strong contrast. The Plessey feature point- and Plessey-operator
respond rather well to the corners of the markers and the pencil. The responses at the round
parts of the scissors are numerous and most of these responses are at a wrong location. All
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a) b)

c) d)

e) f)

Figure 5.7: Marked corners (MC) of the potential corner feature areas of Figure 5.6a-f. For better
visualization the MCs are displayed larger.
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a) b)

c)

d) e)

Figure 5.8: The thresholded results of the outputs at a single scale of different operators which are
applied to Figure 5.5.a)-e)The PCF areas obtained with the Diff-, DET-, Kitchen-Rosenfeld, Plessey
feature point, and Plessey-operator, respectively. The outputs of the operators are thresholded at100,
2, 3, 15, and0:4. Lowering the threshold will give more PCF areas but not at the desired positions,
i.e. the perceived corners. The parameters used are:µ= 1, andσ = 3 for the Gaussian kernel.
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operators do not respond to corners with low contrast, for example the pen at the right of
the image, the two Plessey operators respond to one corner of the pen only. The operators
all respond to the rounded parts of the scissors. Local detail is caused by reflection of light,
which causes a strong contrast. The Gaussian curvature operator, from Chapter 4, did not
respond at all to proper positions, the responses where placed at random in the input image,
therefore it is not illustrated.

If we compare theEσ-operator with the standard operators, we conclude that theEσ-
operator responds properly to almost all corners in the image but also detects a lot of noisy
corners. The standard operators do not respond at all to the fine background texture but fail
to respond to certain corners. The performance of theEσ-operator will be far better than
the standard operators if we succeed in separating the response to fine texture from the real
corners.

Using multiple scales

Of course, a fair comparison is only possible if a multiscale combination is also used for
standard corner operators. To improve the results of the standard operators we combined the
operator outputs at different scales. Before the different scales are combined, the positive
parts of the derivatives of the Gaussian kernels are normalized, like we did with the Gabor
functions (3.13) and (3.14). The responses at different scales are then comparable, if the
kernels would not have been normalized the responses at small scales are far stronger then
the responses at large scales. The different scales are combined with an average operator. The
choice for this operator is motivated in Section 5.4. The results of the multiscale standard
corner operators are illustrated in Figure 5.9.

Combining different scales for the standard operators have improving effects in the sense
that more marked corners are found near the exact locations of the corners. By combining
scales the operators do not lose their properties, which means that if the operator responds
well to strong contrast at a single scale, it will still respond well to contrast when multiple
scales are used. The Diff-, DET-, and Kitchen-Rosenfeld operators at multiple scales are not
very useful when applied to Figure 5.5 as illustrated in Figure 5.9a-c, there are too many
responses at wrong positions. The performance of the two Plessey-operators is better but
still a considerable number of false responses appear in the image (Figure 5.9d-e). The false
responses can be reduced if the threshold is increased but then proper corners are lost too
and that is not desired. It is better to detect all corners and to have false responses, than to
miss some corners, because false responses can still be eliminated at higher level processing,
see Chapter 8.

5.4 Combining scales

The combination of scales is supposed to improve the results we obtained in the previous
sections with single scales. Different scales should be combined in such a way that responses
to noise or fine texture disappear and that the corners found are more reliable than at single
scales. The results depend on the number of scales, the receptive field radii of the different
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a) b)

c)

d) e)

Figure 5.9: The marked corners at multiple scales (combined with the avg-operator) of different
standard operators which are applied to Figure 5.5.a)-e)The marked corners obtained with the Diff-,
DET-, Kitchen-Rosenfeld, Plessey feature point, and Plessey-operator, respectively. The outputs of
the operators are thresholded at5�104, 200, 25, 106, and0:005. The parameters used are:µ= 1, and
linear increasing receptive fields ranging fromr = 5 to r = 40with a step size of2:5.
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Figure 5.10: The threshold (solid line) for the average output of theEσ-operators with identical
centers butS different scales. If the responses are above this threshold the corner will be accepted
and otherwise rejected. Horizontally the number of scales is illustrated and vertically the average
response. The two horizontal dotted lines denote the minimum and maximum criteria, i.e. if a response
at a single scale is below this minimum it will be rejected or if a single scale is above the maximum
criterion this response will be accepted.

scales, and the kind of operator used to combine different scales. The following properties of
the responses ofEσ-operators should be taken in account when combining different scales.
We have found that the observations made in the previous sections carry over well to real-
world images:

1. The outputs of theEσ-operators at a corner or line-end are (almost) identical at
all different receptive field sizes.

2. Usually if a corner is detected with a receptive field radiusr, it is detected also in
the “neighboring” receptive field radiir� r 0 (In the simulationsr 0 = 2.5 or 5 are
used).

3. TheEσ-operators respond well to sharp corners at all different scales but they do
not respond to rounded corners, except for larger.

4. The responses of theEσ-operator at large scales give large spots as potential
corner feature areas. These spots cover the proper locations.

5. TheEσ-operators at small scales locate corners very well but are very sensitive
to local changes (high frequency noise) and therefore less reliable.

A coordinate is marked as a corner if the output of the combining operator of theEσ-
operator with the same centers but different scales is stronger than a certain threshold. This
threshold usually depends on the type of combining operator. The combining operator is
between two thresholds, a minimum threshold which is a constant value larger than zero and
a maximum threshold which is a constant value smaller than the strongest response possible
response. For example if we consider the average-operator then the minimum threshold is
reached at the maximum number of scales and the maximum threshold at one single scale,
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as illustrated in Figure 5.10. The solid line in the figure gives a criterion for marking a corner,
if it is above the line the corner is marked and otherwise it is rejected.

Elimination of responses to noise or a fine texture seems to be quite easy since they usually
occur in small scales but when a response is considered not to be noise but a real corner
depends on the choice of the thresholds, for example if the response of theEσ-operator in
one of the small scales is very strong (above the maximum threshold) it can be marked as
a corner. The minimum threshold should be chosen in such a way that a corner with low
contrast and therefore weak responses which appear in all scales should be marked as a
corner. This implies that theEσ-operators which give weak responses at a wide range of
scales will be marked and that small responses at certain scales which are usually no corners
are ignored.

5.4.1 Equidistant versus scale-dependent scale sampling

The combination of different scales does not only depend on the type of combining operator
but also on the number of scales and the sizes of these scales. The scales are proceeding in a
certain way. Two types of progression are possible: linear, or non-linear scaling.

We tested two methods: a linearly increasing scale and an increasing scale which is ordered
in such a way that we have a constant step-size in frequency domain. A constant step-size
in the frequency domain is used to spread the information equally, therefore it is used more
often. Shifting such a non-linear scale is more easy, for example if the smallest scale causes a
lot of responses to noise one can “shift” the scales and eliminate the smallest scale. The linear
scale has the advantage that rounded corners are detected better since it yields relatively
more large receptive fields. In Section 3.5, differences between a linear and non-linear scale
in both spatial and frequency domain have been elaborated. Most receptive fields of the non-
linear scale are small in spatial domain, small scales are sensitive to fine textures or noise.
Combining scales will give numerous useless corners if the majority has a small scale, as
illustrated in Figure 5.12a. Hence less high frequency scales should be taken since they are
noise sensitive. To avoid responses in noisy areas, we should make a choice which of the
different scales to take. By selecting specific scales in frequency domain we can avoid the
problem of fine texture or noise responses but it is easier to take linearly increasing receptive
fields to get a non-linearly increasing frequency map (Figure 5.12b) with relatively little
small scales, since the actual sampling is less important than the relative influence of large
and small scales.

In the simulations fifteen different scales are used, they perform considerably better than
when eight or four different scales are used. The results obtained with 31 or 63 scales are not
much better than with fifteen scales since the overlap of two neighboring scales gets bigger
when 31 or 63 scales are used and therefore additional scales do not add extra information.

5.4.2 Classifying a corner by its scale signature

Before combining different scales it is useful to see how the responses are distributed over
different scales for corners. We used 15 different linear increasing fields ranging from 5 to
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40 with a step size of 2.5. By using multiple scales we can evaluate the response of theEσ-
operator at a manually marked corner. For example if the responses appear in large scales
only we can conclude that such a corner is different from another marked corner where the
responses of theEσ-operator appear in small scales only. Corners are classified by their re-
sponses at different groups of scales. By classifying corners we get an additional feature
attribute. A coarse subdivision of different groups of corners is made by evaluating the re-
sponses at different scales. The results of the responses at corners are shown in Figure 5.11.
Note that the use of attributes speeds up the search if a set of corners needs to be compared
with another set of corners.

The group with small scales are responding at receptive fields with a radius smaller than
20, and is calledgroup small(GS). In the group with large scalesgroup large(GL) responses
for radii that are at least 15 are found only. Two groups have responses in the “middle” scales,
in the first group with middle-large scalesgroup middle large(GML) for radii that are at least
10 and there is response at one or more receptive fields with radius 25 or larger. In the other
group middle-small scalesgroup middle small(GMS) are found, i.e. corners in this group
respond at scales with radii less than 30 but there is at least one scale with a radius of at least
20 that responds. The fifth groupgroup all (GA) is for the corners which show a response
at all scales, all except the smallest scale, or all except the largest scale. The sixth group
is called therest group(GR), it is for non standard responses, for example when responses
appear in two or more clusters of scales.

Corners found in GS are typically “detail” corners, for example the positions where a
keyhole begins and ends, where the black text on a marker ends, or the end-points of cor-
ners where thin line-segments end. Corners in GL respond to rounded corners and ends of
rounded bars. In the group GML a background corner was found, coincidently three black
line segments came together in this point which caused the response. In this group, rounded
corners are found also. Corners found in GMS are sharp corners with usually small line-
segments or edges, the top of a ball-point is such a corner. In GA corners with long straight
edges, line segments, and also corners with low contrast are found. In Figure 5.11e there is
a corner where the response of theEσ-operators does not exceed 12 percent of the strongest
response of all tested corners in Figure 5.11. This figure also illustrates that in natural images
corners frequently occur in all scales except the smallest scale. The rest group (GR) contains
corners which are split into two clusters: they respond well at small scales and at large scales
but not at middle scales. These corners are found at positions where e.g. at detailed scales it
is a corner and at large scales it is a line-end.

5.4.3 Combining scales with different operators

Since we know what kind of response can be expected at different scales simple operators
are defined to combine different scales. The operators should be biologically plausible.

Let us introduce a general operator which sums over all receptive fields:

E∑(x;y) = ∑
σ

cσϑ(Eσ(x;y)) ; (5.3)

wherecσ is constant andϑ is a neural function. The output ofE∑ is strong enough even
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Figure 5.11:The responses at different MCs using 15 linearly increasing scales ranging from 5 to 40.
The responses are divided into five different groups. The division depends on the response of theEσ-
operators at the 15 different scales.a) Responses of theEσ-operators are found at small scales only.b)
Responses found at large scales only.c) Responses found at middle and large scales.d) Responses at
small and middle scales.e) Responses at all scales.f) Responses found in different clusters of scales
belong to the rest group.

if the responses of all differentEσ are weak, which is the case when the contrast around a
corner is low. If the response of a single scale or a few scales is high, the output ofE∑ is also
high enough. The operator will respond properly to rounded corners because the sum of the
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responses in large scales will be sufficient. Corners in small objects will be found since they
respond strongly at small scales.

In the simplest casecσ = 1 (for all cσ) andϑ(x) = x, the operator will sum over all scales
and the total response is used for corner detection. Since a comparable response is desired
when the operator is used for a different number of scales another operator is introduced. If
we assume that allcσ = 1

S then the operator scale independent:

Eavg(x;y) =
1
S∑

σ
Eσ(x;y); (5.4)

which we call the average or avg-operator. This simple operator is biologically plausible and
has only one parameter: the number of scales. The number of scales should be chosen such
that the overlap in Figure 3.7b is sufficient, but also the overlap should not be too large that
results of neighboring scales are almost identical. Increasing the number of scales has the
advantage that a strong response in a single scale has a less strong influence. For example
consider a threshold ofT = 5 and a number scalesS= 15, the response of a single scale
must be at least 75 to be marked as potential corner feature. The results improve considerably
when 15 scales instead of 8 in the range from 5-40 are used, because the absolute threshold
ST decreases the chance that a single scale coordinate is marked as a corner.

Figure 5.12 illustrates marked corners of 5 different images using the avg-operator. Fig-
ure 5.12a shows the MCs of a non-linear scale from (3.27) with radii ranging fromr = 5
to r = 40. This choice of radii is not useful since too many small scales are used and MCs
appear everywhere in the background. In Figure 5.12b-f a linear scale with radiir = 5�40
are used. The choice of a linear scale with these radii is a good one. In Figure 5.12b, there
are only 3 of the 55 marked corners in the background.

In the “Door” image (Figure 5.12d) sixteen corners are found. Using a single scale in
this image will give several responses at the area to the right of the door, using multiple
scales avoids this problem. Although the image has no false responses, there are two missing
corners near the door handle. However when not only a gray channel is used for detecting
corners but also different color channels the two corners are found. In Chapter 7 different
color channels will be introduced and used for corner detection. Figure 5.12e contains a
rounded corner and a corner with low contrast both will not be detected if a single scale is
used. The edges in the image seem smooth but they are in fact ragged, which gives false
responses at single scales.

The “Building” and “Text” images, Figures 5.12c and f, respectively, contain a lot of
detailed corners close to each other, although corners appear almost all at proper locations it
is recommended to enlarge the image. Two of the three marked corners classified in the rest
group are found in the “Text” image between the O and G in the word “programming”.

5.5 Summary and discussion

In this chapter we elaborated on the output of theEσ-operator for corners with convex angles
between 3 and 180 degrees. The output of the operator was the same at every scale, except
in the smallest scale but this is due to aliasing effects. At angles larger than 125 degrees
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a) b)

c) d)

e) f)

Figure 5.12:a) Detected corners at a non-linear scale.b)-f) Detected corners at a linear scale applied
to different natural images. The avg-operator from (5.4) is used with parameterS= 15. For marking
corners a thresholdT = 5 is used.
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the operator did not respond at all. This is a limitation of the operator. The response of the
operator can be improved by changing theS-operators in such a way that they are sensitive
to a smaller orientation bandwidth.

The drift of a corner is strong when two (or more) positions can be marked as a corner,
which we called conflicting corners. At such a corner the position is dependent on the scale,
actually this means that the position of the corner differs when we look at the details in the
image or look at the image globally.

The operator responds well to all junctions, except 4-junctions (crossings). Peterhans et al.
[149] and van der Zwan et al. [190] confirm that the end-stopped cells respond to T-junctions
and only weakly or not all to X-junctions when they studied the role of end-stopped cells in
mechanisms of figure-ground segregation. Until now nobody studied biological end-stopped
cells for other junctions, so there is no biological evidence that end-stopped cells do respond
to n-junctions, wheren� 5.

A relation between the rounded corners and end-stopped distancedσ was found. If 80 per-
cent of the maximum response is used as a threshold for a corner to be marked (Figure 5.3d),
the maximum radius for a detected rounded corner is almost equal todσ. This is because the
entire corner plus parts of the straight lines must fit in the receptive field. Thus, they should
be rather large and therefore the position of the corner is less accurate compared to the lo-
cation of the corner when a smaller receptive field is used. Although large scales are less
accurate, it is still better than to detect nothing at all. If a response is found in large scales
only, it is most probably a rounded corner and the location of such a corner is ill-defined
anyway.

The goal of corner detection is to mark a certain location where a corner is found, and
therefore two terms have been introduced: a potential corner feature (PCF) area which is
the area where responses of theEσ-operator exceed a certain threshold, within this area the
positions of the locally maximal responses of theEσ-operator are marked as corners (MCs).
This implies that the MCs are a subset of the PCF areas, within a PCF area there is always
at least one MC. By definition, MCs contain a single point, although in the figures they are
displayed larger. In the smallest scale (Figure 5.7a) it is clearly visible that at the borders of
the image there are no MCs, neither PCF areas in Figure 5.6. The PCF areas at the borders
can contain artifacts since the convolutions are implemented with wrap around conditions
and theEσ-operators at distancedσ from the border of the image are set to zero, so if we
consider the largest used scale about six percent of the boundary is omitted.

If we compare the results of theEσ-operator at a single scale (Figure 5.6e) with the stan-
dard corner operators we find that theEσ-operator performs better than all standard corner
operators, when the best scale is chosen for both operators (Figure 5.8). However theEσ-
operator is more time consuming compared to the standard operators in the current imple-
mentation. TheEσ-operator detects almost all corners where the standard operators lack to
respond to a lot of corners.

The use of multiple scales can improve corner detection when the proper samples and
scale combing operator are taken. The actual sampling, the choice for a linear or non-linear
scale, is less important than the relative influence of small and large receptive fields. We
chose an average operator to combine different scales, this is simple, independent on the
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number of scales, and biologically plausible. Intuitively, it seems reasonable to have different
receptive field sizes, which have the same receptive field center and functionality. There is
neurophysiological evidence that there exist receptive fields with the same (or almost the
same) receptive field center and functionality but with different receptive field sizes. From
the work of Hubel [89] the sizes do not differ much, say about a factor of two in a simple
cortex area between the smallest and largest receptive field. In area V5, Zeki [204] studied
the receptive fields of cells in a long oblique penetration and found the first sixteen cells to
have relatively small receptive fields and the next group of cells to be significantly larger
(about 10 times). Probably in most areas receptive fields also differ in size but we should
be careful, since there is no direct evidence that the difference between the smallest and the
largest receptive field (with similar functional properties) is large and that every size between
the smallest and largest receptive field is available.

The results obtained with a multiple scale corner detector (avg-operator) give better results
than the standard multiple scale corner operators since the avg-operator detects almost all
corners and has only a few false responses. The standard operators are not able to find certain
corners. This has to do with the type of corner (e.g. rounded or low contrast) and not with
the number of scales. Using multiple scales for the standard operators is recommendable but
less successful than the avg-operator.

In all our simulations we used 15 scales in the range from 5-40 with a step size of 2.5. To
combine different scales the avg-operator and a constant threshold of 5 were used to mark
the possible corner features. The use of multiple scales not only gives better results but also
an extra feature attribute which delivers information about the scales a corner is detected and
thus some information about the corner. We created six different groups to give additional
information about the corner. They are classified by checking where the responses of theEσ-
operators appear: at small, middle, large scales, or a combination of them. The size of a PCF
area can be used as another feature attribute, to give an indication how big the possibility is
that there is a corner in the area.

A more stable response at location(x;y) for a certain scale can be obtained by taking
a maximum local neighborhood. Such neighborhood can be constant at all scales but also
increase with the receptive field size. Small receptive fields respond to detailed information in
the input image and are not location robust, large receptive fields show a response at a certain
location(x;y) that does not differ much from its direct neighbors. We tried the maximum
response for a constant size, with its 8 direct neighbors the results were good. There were
however artifacts: the possibility that a corner is marked which has no response at all and
the possibility that all the neighboring coordinates get the same maximum response from
the center coordinate and therefore all points are marked as a corner. With 24 neighbors the
positions of the corners were not as accurate as the positions of the corners for 8 neighbors.
We conclude that a small neighborhood can improve the stability of the responses but that
one can get some non-desired artifacts.





6
Graph Extraction from Images

Then the Lord answered Job out of the storm. He said: “Who is this that darkens my
counsel with words without knowledge? Brace yourself like a man; I will question
you, and you shall answer me.” Where were you when I laid the earth’s foundation?
Tell me, if you understand. Who marked off its dimensions? Surely you know! Who
stretched a measuring line across it? On what were its footings set, or who laid its
cornerstone– while the morning stars sang together and all the angels shouted for
joy?

Job 38:1-7 (NIV)

A SIMPLE ALGORITHM WILL BE PROPOSEDthat extracts segments (lines, edges,
and curves) from an image. The detected corners obtained by the corner operator
described in Chapter 5 and an edge enhanced image are used by the algorithm to

extract the segments. A segment will only be added to the set of segments, which is repre-
sented as a chain of edges, if the segment has a corner as start-point and a corner as end-point.
The output of the algorithm is a set of segments. Corners and the set of segments represent
vertices and edges of a graph, respectively. These graphs will be used for object detection
and recognition by using graph matching, which will be elaborated on in Chapter 8.

Standard algorithms for edge extraction like the border-tracking algorithm (Haralick and
Shapiro [61]) or edge following as graph searching (Ballard and Brown [8]) are known. A
more widely used algorithm is the Hough transform (Hough [78]). This transform is used for
detecting straight lines in images (Duda and Hart [37]) and has been further generalized to
detect curved segments which are specified by a sequence of boundary points (Ballard [7]).
The algorithm we propose here differs from these methods because the set of corners is used
as an input parameter, and the algorithm gives as result a set of segments. Since every seg-
ment has a corner as start- and end-points, postprocessing (e.g., edge linking) to compensate
for gaps and noise is not necessary. In Chapter 8 we reduce the extracted segments to straight
edges but one can obtain an extra matching criterion by comparing two segments with each
other.

In Section 6.1 we give a global description of the algorithm and give definitions for en-
hancement, detection, and extraction. In this section we also define our representation of
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Figure 6.1: Representation of a graph. The verticesci represent the corners and the other verticesvj
are used as additional vertices to approximate the segments. Note that verticesvj are not necessary if
the segment is straight.

the graph, which differs marginally from the standard graph representation. Section 6.2 de-
scribes the algorithm in more detail. Section 6.3 illustrates some results of extracted graphs
from real-world images. Section 6.4 describes related work, and the chapter ends with a
summary.

6.1 Segment extraction algorithm

The terms edge enhancement, edge detection, and edge extraction are not used uniformly in
literature. We assume that a squareN�N sized discrete imageI has elementsI(x;y)2 R, for
all 0� x<N and 0� y<N. An edge enhancingoperator is an operator on imagesI , yielding
an edge enhanced imageIenhwith all elementsIenh(x;y)2R. In this image high values appear
at edges and lines and low values elsewhere. Anedge detectingoperator applied to imageI
results in a binary imageIdet where all elementsIdet(x;y) 2 B . If Idet(x;y) is true (or 1) then
point(x;y) belongs to a line or edge. Anedge extractingoperator is an operator on imagesI ,
Ienh, or Idet yielding a set of extracted edges or segments. Anextracted edgeand anextracted
segmentare represented as a pair of points and a chain of points, respectively.

Our algorithm includes an edge extracting operator that operates on an edge enhanced
image. Asegmentis represented as(n+2;ci;vk1

;vk2
; : : : ;vkn;cj), whereci andcj are corner

points andn gives the number of pointsvkl
needed to give a proper approximation of the

segment. Note that a segment can be described also with a set ofn� 1 edges. The set of
segments and the set of corners are used to represent a graph.

A graph G(V;E) consists of a setV of elements calledverticesand a setE of edges. In
our approach, we initially represent a set of corners as a set of verticesV and represent an
edge by a tuple of vertices. We slightly adjust the graph representation by augmenting the
vertices with twocoordinate attributes xandy to indicate the location of the corner in a
two-dimensional image. Since we use segments instead of edges we add a set of verticesvkl

to setV, which are used to give proper approximations of the segments. The setE represents
the set of segments, since this is more compact than writing every segment as a set of edges.
An example of a representation of a such graphG with this notation is given in Figure 6.1.
The vertices of the graph are represented as circles, and the segments as a chain of edges.

It is known that segment detection and extraction are difficult problems in discrete color
or gray-scale images. It is difficult since a segment can have arbitrary length and is not
guaranteed to be straight. The quality of segment detection and extraction strongly depends
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1 ProcedureExtractGraph (C; I ;ϒ;G)
2 segmentset :=/0
3 forall c2C
4 forall σ 2 ϒ
5 O := SetOfAnglesAtDistFromCornerWhereSegmIsDetInImage (dσ;c; I )
6 forall o2O
7 p := c + DistanceInDirection (dσ;o)
8 Store (p;P)
9 o0 := o

10 repeat
11 FollowSegmentInDirection (o0)
12 Adjust (o0) /* if necessary */
13 p := p + DistanceInDirection (dσ;o0)
14 Store (p;P)
15 until StopCriterionFulfilled
16 if StopCriterionIsCorner (Cnc)
17 segment := Chain (P)
18 AddTo (segment, segmentset)
19 Optimize (segmentset)
20 G := Graph (segmentset,C)

Figure 6.2: Pseudo algorithm for extracting a graphG from an edge enhanced imageI by using a set
of cornersC and a setϒ of scaling values.

on the results obtained by the edge enhancing operator. The image should have high values
at edges and lines of the input image and low values elsewhere and, e.g., the values on a line
should be high and not drop suddenly at a corner only. Also one would not desire high values
where no edge or line is perceived.

We enhance segments in the image by usingCσ;θ-operators from Chapter 3. In order to
obtain high values at lines and edges, we used the output of theCσ-operators at multiple
scales. Similar to theEavg-operator also here different scales are combined with an averaging
operator to a so calledCavg-operator. Combining is possible since strong responses (high
values) at edges and lines of these operators are not shifting at different scales, unlike the
S-operators. TheCavg-operator together with the set of corners which are obtained by using
the MC-operator (5.2) is used as input for the algorithm.

The pseudo algorithm for graph extraction is illustrated in Figure 6.2, it contains five stages
and uses as input a set of cornersC, an edge enhanced imageI , and a set of scaling valuesϒ,
and gives as output a graphG.

The first three stages are the edge extracting operator (lines 2-18). Basically the first stage,
line 5, is the initialization: the selection of orientations at a distancedσ from the corner,
whered is the distance constant (see (4.3)). In the direction of every selected orientation a
segment will be followed (traced). This following of a segment is the next stage (lines 10-
14). A segment is followed until it satisfies a stop criterion (line 15). A segment is added to
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the set of segments if the stop criterion is another corner (lines 16-18). These lines represent
the third stage of the algorithm.

During the following of a segment at every step a point is selected and stored. Normally
it is not necessary to keep all the selected points to represent a segment. In the fourth stage
redundant points are eliminated from every segment (line 19). The final stage (line 20) is the
representation of the graph.

6.2 Segment extraction

In this section we will give a more detailed description of the segment extraction algorithm
but first we give a complexity analysis of the algorithm in terms ofK, the number of corners.
The algorithm contains four loops. The three inner loops take constant time sinceϒ contains
a constant number of scaling valuesσ, the selected number of orientations is bounded by
the constant number of sample points, and also line following is bounded by a constant
maximum number of steps. Therefore the algorithm isO(K). Note that the total number of
sample points will be never more than there are pixels in the discrete image.

6.2.1 Orientation selection

A corner (or line-end) contains implicit information (one or more segments start from this
position) but it does not carry any information about the direction in which a segment is
starting. In Chapter 4 we described that the response of theCσ-operator near the location of
corners is relatively weak. We showed that the responses of theCσ-operator are strong when
it is at some distance from the corner. Therefore we start searching for possible segments
using a circle with radiusdσ and the corner as center. On this circle a number of samples are
taken where the response of theCσ-operator is determined. If samples at a certain position
(x;y) are taken the chance that response of theCσ-operators for a knownσ is strong at a
“noise” point is realistic. To reduce non-desired strong responses we combine the responses
of theCσ-operator atSdifferent scales with an averaging operator:

Cavg(x;y) =
1
S∑

σ
Cσ(x;y); (6.1)

and take sample points from the output of this operator. In the previous chapter we subdivided
corners into groups; some of the corners are found in all scales while others appeared in
large or small scales only. If a number of samples on a single circle are used to determine the
orientations of different segments then it is possible that the radius of the circle is taken too
small and therefore the responses at the samples are all weak and no orientation is selected.
It is important that all possible orientations are found, if a certain orientation is not found the
segment with this orientation will not be detected.

We do not use a single circle but a number of circles with radiidσ = 4p�10logε r (see (4.3)

and (A.5)), wherer 2 [10; 15; : : : ; 40]. To avoid discretization effects we omit the smallest
radiusr = 5. Figure 6.3a illustrates samples, represented as dots, on these circles. The number
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Figure 6.3: Finding the orientations of different segments starting from cornerc5. a) Samples of
seven circles for the determination of orientations are taken fromr = 10 to r = 40 with steps of 5.b)
The responses of theCavg-operator along the circle starting from the right on the horizontal axis going
round counter-clockwise.c) The orientations in degrees found for different radiir.

of samplesQσ on a circle with radiusdσ is obtained in the following way:

Qσ =
π

arcsin
�

1
dσ
� : (6.2)

The samples are ordered counter-clockwise starting at the horizontal axis on the right-most
position. The angle of a sample is obtained byφ j = 2π j=Qσ, j 2 [0; : : : ;Qσ). Pair(dσ;φ j)
should then be transformed from polar- to Cartesian-coordinates by using the corner as cen-
ter. The responses of theCavg-operator at these sample points on the circle are taken and
illustrated in Figure 6.3b. Forr = 15 tor = 40 the responses are all rather similar at the same
orientation. This is expected since the edges are straight, so for every different radius the
orientation of the edges should be the same. An exception isr = 10, only 14 sampling points
are on this circle, this implies that a sample is taken with steps of almost 26 degrees.

A sample point with orientationφ j is selected if the response of theCavg-operator at the
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sample point is a local maximum, is above a low constant thresholdT, and is clearly stronger
than one of the responses at the other sample points on the circle. In Figure 6.3a the measured
angles of the three segments have an angle with the horizontal axis of 30, 167, and 211
degrees, respectively. The selected orientations for cornerc5 (for labeling of corners see
Figure 6.6b) are given in Figure 6.3c. The selected orientations are close to one of the three
measured orientations. In the largest circle the number of sampling points is far more than in
the smallest circle and therefore the orientations selected are most accurate.

6.2.2 Following a segment

The selected orientations described in Section 6.2.1 are used to follow a potential segment.
A condition must be satisfied: if we assume that a corner is located at(x0;y0) in the image
and that the sample point on the circle with orientationφ j is (x1;y1), then the value of theO-
operator (see (3.23)) at(x1;y1) should be near to the selected orientationφ. Since the segment
is not necessarily straight,φ does not need to be the optimal orientation, therefore we take
a number of samplessk, k 2 [0; : : : ;K] betweenφ� δ andφ+ δ, all at a distancedσ from
(x1;y1), as illustrated in Figure 6.4c-d. We chooseδ = π=8. We take the responses of the
Cavg-operator at these sample points and pick the sample which has the strongest response.

Assume that sample point(x2;y2) has the strongest response then we found a new position
in the process of following. A schematic image is given in Figure 6.4d where one of the black
circles is point(x2;y2). We started at a corner(x0;y0) and then moved via(x1;y1) to (x2;y2).
Orientationφ is adjusted by taking the angle between the horizontal axis and the vector from
(x1;y1) through(x2;y2). We are ready to do a next step, until a stop criterion is satisfied.

At each stepi a point(xi;yi) is stored, in this way we get a chain, i.e., an ordered set of
points(xi;yi); i 2 [0; : : : ;n]. This chain represents a curve from(x0;y0) to (xn;yn).

6.2.3 Stop criteria

At every step we check if one of the five following different stop criteria is satisfied:

1. Another corner is found.

2. One of the sample points which is used for following is outside the image.

3. There is no sample where the output of theCavg-operator is above thresholdT
and with an orientation similar to the output of theO-operator.

4. The response of theCavg-operator differs too much from the response at the pre-
vious step.

5. The segment is too long.

The criteria are applied in the order as they are described above. The first criterion is
satisfied when a corner is found within a distancedσ from the current point and is within an
angleδ from the current orientation.
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Figure 6.4: a) The outputs of theCavg-operator, white denotes no response and black strong response.
b) The output of theO-operator which gives the preferred orientations of theCavg-operator. The image
has 9 different patterns: completely white is the response below thresholdT = 5. The eight striped
patterns denote the preferred orientations with steps ofπ=8. c) Three possible orientations are fol-
lowed for r = 35. Segment following is illustrated with sample points on a part of a circle.d) A
schematic representation of one step in the process of following a segment.

The second criterion is a rather trivial one and can be avoided by zero padding the image
such that the third criterion is satisfied before being outside the extended image.

The third criterion is fulfilled when the output of allCavg-operators at the sampled points
(illustrated as black circles in Figure 6.4d) do not exceed thresholdT, or the current orienta-
tion φ between differs too much from the principal image orientation.

The fourth criterion is the difference in response of theCavg-operator at position
(xi�1;yi�1) and(xi;yi), if the response differs too much, the possibility that this is still the
same segment is rather small, since in such case we expect a corner to be found.
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Figure 6.5: Graph improvements.a) Eliminating a segment.b) Fusing two corners.c) Moving a
corner to the most plausible position.

The last criterion is the length of a segment, it should not be too long, i.e. if a segment
is for example ten times longer than the width or height of the image one can doubt if the
segment is a proper one. In such case the largest probability is that a circular path is being
followed.

6.2.4 Optimizations

During the process of following a segment we keep a point(xi;yi), i 2 [0; : : : ;n] at every step.
Point (x0;y0) is the position of the corner where we start from and(xn;yn) is the end-point
of the segment, which is another corner. When a straight line between these two corners can
be drawn, it is not necessary to keep alln coordinates, in fact we eliminate all coordinates
(x1;y1); : : : ;(xn�1;yn�1) and keep the two corner points.

We apply the segment following algorithm separately for every scale ranging fromr = 10
to r = 40. By using the same algorithm at several scales independently the chance that a
segment is missed is rather small but it is possible that a segment is detected more than once.
To avoid doubly detected segments we mark the pixels in the image where we have been
before. This increases the speed of searching, avoids that the algorithm follows a circular
path, and validates that at most all pixels in the image will be checked.

Further optimizations can be made by eliminating segments and by fusing corners. Fig-
ure 6.5a-b gives an example for both eliminating and fusing. Another improvement is to
move a corner to a more predictable position by intersecting two extrapolated segments (Fig-
ure 6.5c).
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V = fc1; : : : ; c10; v1; : : : ; v11g
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(2; c4; c5); (2; c6; v6); (2; c3; c7);
(2; c6; c4); (2; c8; c9); (2; c10; c7);
(2; c5; c2); (2; c5; c9); (4; c1; v7; v8; c2);
(2; c8; v9); (3; c10; v10; v11); (2; c6; c7) g

Coordinates: c1 = ( 2; 201); c2 = ( 38; 243); c3 = ( 46; 77);
c4 = ( 58; 180); c5 = (120; 194); c6 = ( 67; 143);
c7 = ( 92; 62); c8 = (248; 196); c9 = (197; 149);
c10 = (208; 15);
v1 = ( 1; 205); v2 = ( 32; 249); v3 = ( 28; 59);
v4 = ( 21; 48); v5 = ( 12; 39); v6 = ( 7; 129);
v7 = ( 12; 210); v8 = ( 34; 240); v9 = (253; 191);
v10 = (219; 13); v11 = (230; 9);

Figure 6.6:a)An input image sized 256�256 pixels.b)Exactly 10 corners are used as input. Detected
segments between two corners are marked black-white-black and between one corner and the border
of the image the segments are marked white-black-white.c) The graph extracted from the input image.

6.3 Results

In images where corners are not too close to each other and lengths of segments not too
small, and at such a distance from each other that during the process of following there is no
confusion possible between two or more segments the algorithm performs well, as illustrated
in Figure 6.6. Although at first sight Figure 6.6a seems a trivial image, there are a number
of difficulties to solve such as low contrast at edges and ragged edges. Also strong response
differences between two different edges which are close to each other cause problems since
the strongest responses is selected. This implies that the edge where the response is weaker
will not be detected. An example of a non detected segment is the edge in the upper right
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corner of Figure 6.6b. At starting cornerc10 two line segments where found, one going
towardsc7 and the other going towards the upper corner of the image. When a circle with
sample points is drawn at a distancedσ from cornerc10 there are two orientations found
only. The third orientation is not found because its sample point is too close to the sample
point of the selected orientation. Normally when a segment is in between two corner points
this is not a problem, because if for one corner the orientation is not found there is still a
good chance that the segment will be detected if the other corner is used as starting point.
The results illustrated in Figure 6.6b show that this is the only missing segment. The others
are well on their places and close to or on the edge.

From Figure 6.6 we conclude that the results are very good since all, except one segment,
are detected and all segments, except one, contain corner points only.

The performance is not always that good, for example in Figure 6.7a, we see that cer-
tain segments seem to be detected several times (left marker). The reason that a segment
is detected several times is caused by corners which are relatively close to each other. The
segment which will be followed is the one with the strongest contrast. This means that all
corners near this edge will get the same segment. The pen and pencil have two parallel edges
which are close to each other, close in the sense that during the process of following, there
is at every step a possibility that the other edge will be selected. The pen has such a detected
segment which “jumps” from one to the other edge. Similar problems are encountered in
Figure 6.7c. In Figure 6.7b the lack of corners prohibits the algorithm to detect all segments.
When edges are close to each other, the results can be improved by enlarging the image,
for example Figure 6.7c shows segments which are “jumping” between an edge of U and an
edge of R and O. When the image is enlarged two times these jumping segments disappeared
(Figure 6.7d).

6.4 Related work

In literature there are a huge amount of line and edge enhancing operators. Well known are
the operators proposed by Roberts [160], Sobel [174], and Prewitt [154]. Later Marr and
Hildreth [129] proposed a Laplacian of Gaussian zero-crossing edge operator, its is because
of its shape also known as the Mexican-hat operator. In 1986 Canny [19] proposed an op-
erator which is almost identical with the operator suggested by Marr and Hildreth in the
one-dimensional case.

Edges are usually detected by thresholding the edge enhanced image (e.g., Gonzalez and
Wintz [56] and Haralick and Shapiro [61]). Choosing a threshold leads to broken edge con-
tours. Pentland [145] solved this problem by averaging the edge strength of a contour over
part of its length. If the average is above a threshold, the entire segment is marked, otherwise
no part of the contour appears in the output. Canny [19] mentioned that it is very difficult
to set a threshold so that there is a small probability of marking noise edges while retain-
ing high sensitivity. Good results are obtained with the Canny edge detector, and later with
the logical/linear operators (Iverson and Zucker [92]) and the suppression and enhancement
scheme (Heitger [70]). However, these operators all aim at high sensitivity and do not guar-
antee closed edge contours, while we aim at moderate sensitivity and desire closed contours.
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Figure 6.7: a)-f) Detected segments in complex images. For the selection of different orientations we
usedr 2 [15;20;25;30].
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To reduce the noise responses to a minimum we use theCavg-operator as edge enhancer and
get a moderate sensitivity.

The edge extraction algorithms like the border-tracking algorithm (Haralick and Shapiro
[61]), the edge following as graph searching (Ballard and Brown [8]), and the generalized
Hough transform (Ballard [7]) are all sensitive to gaps and noise. Therefore for all these
algorithms postprocessing is necessary.

Up to now there is not an algorithm (found by the author) that detects segments by using
corners as start- and end-points of a segment. Therefore no postprocessing such as segment
linking is necessary.

6.5 Summary

We presented a segment extraction algorithm that uses the output of the corner detection
algorithm from Chapter 5 as input. At a corner we try to find all possible orientations in which
to follow a segment by using the response of theCavg-operator. Corners do not only form the
starting point but they are also essential for the first and most important stop criterion in
the process of following a segment. When the algorithm is applied to all corners we make a
graph representation. A technique called graph matching will be used to recognize objects in
this graph (Chapter 8).

The proposed algorithm has several nice features:

1. The begin and end position of every segment, which are corners, are a priori
known. Therefore no postprocessing is necessary.

2. ThresholdT which is used to eliminate noise responses is a low constant which
is the same for every image.

3. The responses to noise and background edges are highly reduced by using the
Cavg-operator.

4. The way of selecting a number sample points avoids noise because the sample
with the strongest response is selected only.

The results can be improved by using color to find additional corners. Due to undetected
corners the segments between these corners will not be extracted too. This is the problem for
the image illustrated in Figure 6.7b. In the next chapter we will use color input images, to
improve corner-detection and therefore line-extraction.
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Inclusion of Color Opponent Cells

in the Model

And God said, “This is the sign of the covenant I am making between me and you
and every living creature with you, a covenant for all generations to come: I have set
my rainbow in the clouds, and it will be the sign of the covenant between me and the
earth. Whenever I bring clouds over the earth and the rainbow appears in the clouds,
I will remember my covenant between me and you and all living creatures of every
kind. Never again will the waters become a flood to destroy all life. Whenever the
rainbow appears in the clouds, I will see it and remember the everlasting covenant
between God and all living creatures of every kind on the earth.” So God said to
Noah, “This is the sign of the covenant I have established between me and all life on
the earth.”

Genesis 9:12-17 (NIV)

COLOR PLAYS AN IMPORTANT ROLEin human vision. In the macaque monkey (and
presumably in the human visual system) some 70-80% of the cells in the LGN are
transmitting color information (DeValois [189]). In artificial color vision it can be

illustrated with a simple example that information is lost when a color image is converted to
a gray scale image. In previous chapters we used gray scale images with good results. This is
not surprising since we are color blind in dim light and still find most corners and edges ac-
curately. That gray scale images are not always sufficient is illustrated in Figure 6.7b, where
two corners are missing. The corners will be found if color channels are used. With a simple
image we will show that one achromatic channel is not sufficient but that chromatic channels
are needed to find all corners and segments. It is conceivable, then, that many of the cortical
complex and end-stopped cells respond to lines or corners, but that the information upon
which they detect the presence of a line or corner may be chromatic as well as achromatic
information (DeValois [189]).

In Section 7.1 we give a brief overview of color and color opponent cells. In Section 7.2
the necessary transformations from the(r;g;b)-format, which will be used throughout the
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chapter, to other triples will be given, among them the response of the tristimulus. In Sec-
tion 7.3 the four different types of color opponent cells will be modeled. An image is used
to illustrate the response of these different cell types. In Section 7.4 we present a reconstruc-
tion model to show that the black-white, red-green, and blue-yellow opponency is sufficient
to reconstruct the(r;g;b)-input image. In fact we create a transformation scheme from the
three opponent types to the(r;g;b)-format. In Section 7.5 biological plausible double oppo-
nent color simple-, complex-, and end-stopped cells are modeled to find edges and corners
in the chromatic channels. Although these cells are hypothetical they can be made plausible
by using the building block architecture. The chapter ends with a summary and discussion.

7.1 Color opponent cells in the visual system

Color is commonly used, but what is color exactly? Fundamentallylight is electromagnetic
energy in the 400- to 700 nanometer wavelength part of the spectrum.Color is the perceptual
result of light. The visible part of the spectrum ranges from violet to indigo, blue, green,
yellow, orange, to red, which is illustrated in Figure 7.1. In 1704 Newton [140] reported a
new theory about light and colors to the royal society. He split up white light with a prism and
recombined the light with a second prism, obtaining white again. His discoveries led to the
recognition that ordinary light is made up of a continuous mixture of different wavelengths
in the visual part of the spectrum. Over the eighteenth century, it came to be realized that any
color could be obtained by mixtures of light of three different wavelengths. The fact that color
can be produced using three parameters (wavelengths, cones) was termedtrichromacy. In
1802 Thomas Young [199] put forward a simple theory to explain trichromacy. He proposed
that at each point in the retina there must be at least three light sensitive “particles” (cones)
sensitive to the colors red, green, and violet. The physiological basis for the trichromacy of
color vision was discovered in 1964 when Marks, Dobelle, and MacNichol [128] and also
Brown and Wald [16] showed that as first suggested by Thomas Young, the human retina
contains three cone types with different pigments.

Another theory is proposed by Hering [72, 73, 74]. In his theory, color vision depends on
three opponent processes, black-white, yellow-blue, and red-green. Jameson and Hurvitch
[93, 94] generalized Hering’s theory to incorporate spatial interactions in the red-green and
yellow-blue systems and to give physiological evidence for inhibitory mechanisms in sensory
systems. Their work gives results similar to Land’s retinex (= retina-cortex) theory [105,
106]. His theory provides a framework for computing the color seen at a particular part of the
retina on the basis of relative intensities of three wavelengths and their spatial interactions.

Cells which respond excitatory to one color and inhibitory to another color are calledcolor
opponentcells. These cells are found at the first levels of processing after the photorecep-
tors (DeValois et al. [30]). The activity of these cells follows Hering’s conjecture that color
is analyzed with red-green, yellow-blue, and black-white opponents (Hering translated by
Hurvich and Jameson [75]).

In the parvo-cellular layer of the visual system of the monkey1 three different opponent

1In this chapter with monkey we mean the species which have color vision, e.g. macaques.
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Figure 7.1: The CIE chromacity diagram. The diagram shows the visible part of the spectrum. The
wavelengths around the periphery are in nanometer.

cell types are found (Hubel [89]). Cells of the first type are calledcenter-surround color-
opponent cells. This type is (like the other two color-opponent types) divided into two groups,
the first group has red-green color opponency and the second blue-yellow opponency.

Cells of the second type arecenter-only color-opponent cells, and make up about ten
percent of the four upper geniculate (parvo-cellular) layers.

Cells of the third type, about 15 percent of the cells in the parvo-cellular layers, have
center-surround receptive fields and show no color preferences. Their receptive field size is
about the same size as the first type, where the receptive fields of the second type are more
like the receptive fields of the magno-cells which are about four times larger than the first
and third type (Shapley and Perry [171]).

The opponent-color theory uses the above three cell types and combines the outputs from
red, green, and blue (R,G,B) channels to give an achromatic channel (black and white)
and two chromatic channels (red-green) and (blue-yellow). Analysis made by Gottschalk
and Buchsbaum [57] points out that within the framework of information theory the color-
opponent system is optimal. This implies that its components are orthogonal and therefore
do not contain redundant information. In Section 7.4 we present a reconstruction scheme to
show that these three channels are sufficient.

Another type of color-opponent cells are thedouble-opponent cells. Daw [25, 26] discov-
ered them in the goldfish. These cells are found in the cortex of the monkey but not in the
lateral geniculate nucleus (Hubel [89]).

Probably the most important phenomenon in the perception of color from the point of view
of both every day life and survival, is the fact that the color of an object stays the same when
the spectral content of the scene is varied. This phenomenon is calledobject color constancy.



110 Inclusion of Color Opponent Cells in the Model

Two other phenomena in the perception of color need a physiological explanation: these
aresimultaneous color contrastandsuccessive color contrast. Many investigators have rec-
ognized that there is a relationship between object color constancy and simultaneous color
contrast. This can be illustrated by considering the activity of a double opponent cell de-
scribed in the visual system of several species. Its receptive field has a center and a surround
with opposing responses for different colors in both parts of the receptive field. This accounts
for its name: it has opposing responses for different colors and for different areas. A typical
double opponent cell gives excitatory responses to red light and inhibitory responses to green
light in the center of its receptive field, and inhibitory responses to red light and excitatory
responses to green light in the periphery of its receptive field.

The double opponent cells are found in the cortical upper-layer cells in so-calledblobs.
Within the blobs of the macaque, Livingstone and Hubel found three groups of double op-
ponent cells, known asred-green, yellow-blue, andblack-whitedouble opponent cells. The
most common double-opponent cell has red-green color opponency (Livingstone and Hubel
[117, 119]). It seems likely that cells in these blobs project to cells around the blobs, a few
of which are specific for both color and orientation (Hubel and Wiesel [86] and Livingstone
and Hubel [117]). In all species that have been studied, double opponent cells are found one
stage higher than opponent cells and are probably formed by convergence of the opponent
color cells (Hubel [86]).

7.2 Representation of color

The tristimulustheory, which is a part of the trichromacy theory, is based on the hypothesis
that the retina has three kinds of color sensors (cones). These three cone types are sensitive
to red (long wavelength), green (middle wavelength), or blue (short wavelength) lights. The
terms red and green are a little misleading since their peaks are at 580 nanometer (orange)
and 545 nanometer (yellow-green), respectively. The trichromacy or tristimulus theories are
intuitively attractive because they correspond loosely to the notion that colors can be spec-
ified by weighted sums of red, green, and blue (the primary colors). Three color matching
functionslλ, mλ, andsλ are used to match a color of constant luminance, for all values of
dominant wavelength in the visible spectrum.

In 1931 the Commision Internationale de l’Éclairage (CIE) defined three standard pri-
mariesX, Y, Z, to replace red, green, and blue. The three color-matching functionsxλ, yλ,
andzλ for theX, Y, Z primaries have better mathematical properties than the color matching
functionslλ, mλ, andsλ in the tristimulus theory, since they do not have negative values. In
fact the three CIE color matching functionsxλ, yλ, andzλ are linear combinations of thelλ,
mλ, andsλ color matching functions based on the spectral response of the three cone types
in the human retina (Foley et al. [47]).

The amounts ofX,Y, Z primaries needed to match a color with spectral energy distribution
P(λ) are:

X̃ = k
Z

P(λ)xλdλ; Ỹ = k
Z

P(λ)yλdλ; Z̃ = k
Z

P(λ)zλdλ; (7.1)

wherek is measured in lumens/watt. For self-luminous objectsk is equal to 680. By applying
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Figure 7.2: Color transformation scheme. With color matching functionslλ, mλ, andsλ, the spectral
response functions for the three cone types (l ;m;s) can be obtained from the spectral energy distribu-
tion P(λ). The CIE defined three other matching functionsxλ, yλ, andzλ which have positive weights
only. To obtain the CIE chromacity diagram illustrated in Figure 7.1, triple (X;Y;Z) is transformed to
tuple(x;y). The transformation function used is given in (7.2). For transformations from(X;Y;Z) to
(r;g;b) or (l ;m;s) and vice versa matrix multiplications of different 3�3 matrices are needed.

X̃, Ỹ, Z̃ to X, Y, Z a colorC can be matched:C= X̃X+ỸY+ Z̃Z. Thechromaticityvaluesx,
y, andzare defined by normalizing againstX̃+Ỹ+ Z̃:

x=
X̃

X̃+Ỹ+ Z̃
; y=

Ỹ

X̃+Ỹ+ Z̃
; z=

Z̃

X̃+Ỹ+ Z̃
: (7.2)

Notice thatx+y+z= 1. That isx, y, andz are on theX̃+Ỹ+ Z̃ = 1 plane. An illustration
of the(x;y) tuple is given in Figure 7.1.

7.2.1 Matrix transformations

Ther, g, b primaries are used in Cathode Ray Tube (CRT) monitors and color raster graphics.
A color camera connected to a frame-grabber delivers images which are stored in(r;g;b)-
format, or other triples which can be easily transformed to(r;g;b)-format.

The transformation fromr, g, b primaries to theX, Y, Z primaries is a matrix multiplica-
tion: 0

@ X
Y
Z

1
A=

0
@ Xr Xg Xb

Yr Yg Yb
Zr Zg Zb

1
A
0
@ r

g
b

1
A ; (7.3)

whereXr , Xg, Xb are the weights applied to the monitor’sr, g, b colors to findX. The same
yields forYr , Yg, Yb to findY and forZr , Zg, Zb to findZ.

The first image in vision is obtained in the retina which consist of a two-dimensional array
of cones. Suppose that at all positions (x;y) there exist a combination of three different cone
types, then the response of all the cones can be interpreted as the first “neural color image”
in early vision. Data generated by a color camera should be first transformed to a triple
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which represents the response of the three different cone types at a certain position(x;y) in
order to use it as input for early vision. In real life a color image is displayed (on a screen)
first in order to be seen by a human observer. Therefore the monitor also plays a role in the
transformation from one triple to another. Since every monitor has its own properties, it is
not trivial to find a suitable 3�3 transformation matrix.

Hubel and Livingstone [81] used a 3�3 matrix prepared by Smith and Pokorny [173] to
convert from(r;g;b) values to relative human cone excitations(l ;m;s):0

@ l
m
s

1
A=

0
@ 0:293 0:603 0:104

0:134 0:704 0:162
0:046 0:099 0:854

1
A
0
@ r

g
b

1
A : (7.4)

Inverting the 3�3 matrix, the following matrix is obtained:0
@ r

g
b

1
A=

0
@ 5:575 �4:808 0:233

�1:019 2:339 �0:320
�0:182 �0:012 1:195

1
A
0
@ l

m
s

1
A : (7.5)

The responses ofl , m, ands are positive and, liker, g, andb, do not exceed 255.
The conversion fromr, g, b to l , m, s shifts the peak sensitivities to orange, yellow-green,

and blue. Using relative responsesl , m, ands responses makes l-m opponency (red-green
opponency) almost ineffective since bothl andm get a strong green component: 60 and 70
percent, respectively. With almost ineffective we mean that cells which have l-m opponency
will respond hardly if they getl andmas input. The cells with lm-s opponency (yellow-blue
opponency) respond well since there is a green component and an opposite blue component.

Ineffective l-m opponency and effective lm-s opponency might explain the difference in
amount of cells with l-m and lm-s opponency, the ratio is approximately 3:1 (Livingstone
and Hubel [117]).

It is more realistic to use the absolute human cone excitations. This makes cells with l-m
opponency more effective since there is a difference in peak sensitivity between the cones of
about ten percent. The difference in peak sensitivity betweenl ands cones is approximately
a factor ten (Foley et al. [47]). With such a huge difference we can hardly speak of lm-s
opponency.

To avoid the problems of ineffective opponency in one of the opponent channels and for
information technical reasons we assume thatr = l , g= m, andb= s.

7.3 Opponent cells

Like in Chapter 3 where we modeled the center-surround cells we are modeling the opponent
cells, by first describing a function, which is convolved with an input image to model the
response of the cell. For the opponent cell’s receptive field profiles we need two functions,
one for the excitatory and one for the inhibitory part.

The first type of cell is a center-surround opponent cell. For both excitatory and inhibitory
parts we use a Gaussian to model the receptive field profile. For the excitatory partGcσ
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a) b) c)

Figure 7.3: Opponent receptive field profiles. The profile above the horizontal line is excitatory and
below inhibitory. Receptive field of thea) center-surround opponent cell,b) center-only opponent cell,
andc) double-opponent cell. For visualization, the functions are displayed in one dimension only.

(A.15) and for the inhibitory partGsσ (A.22). Both functions are illustrated in Figure 7.3a.
The response image of the center-surround opponent cell is modeled as follows:

C Se;i
σ = I e� (2πσ2Gσ)� I i � (2πσ2Gσm) = I e�Gcσ� I i �Gsσ; (7.6)

where(e; i)2 f(r;g), (g; r), (b;y), (y;b)g. I a, a2 fr;g;b;yg, denotes which color (red, green,
blue, or yellow) component of input imageI is used, where

I y =
1
2
(I r + I g) : (7.7)

Since the excitatory and inhibitory functions in Figure 7.3a are not symmetrical in the x-axis,
an additional operator is needed when the excitatory and inhibitory functions are swapped.
We will call this the surround-center opponent cell. The response image is as follows:

SC e;i
σ = I e�Gsσ� I i �Gcσ: (7.8)

The receptive field profile for the center-only opponent cell is modeled by two Gaussians
Gσ (A.3) and is illustrated in Figure 7.3b. The response image of the center-only opponent
cell is as follows:

C Oe;i
σ = I e�Gσ� I i �Gσ: (7.9)

The third type of cells does not show color preferences, the response image of the center-
only broad band cell is modeled by the following operator:

Gσ = Iw�Gσ; (7.10)

where imageIw = I r+I g+I b

3 . An illustration of the output of this operator is shown in Fig-
ure 7.4b.

The receptive field profile of double opponent cells is modeled by two Mexican-hat func-
tions based on the differences of two GaussiansMcsσ (A.17). The functions are illustrated
in Figure 7.3c and the image response of these cells is as follows:

DOe;i
σ = I e�Mcsσ� I i �Mcsσ: (7.11)
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a) b) c)

d) e) f) g)

h) i) j) k)

l) m) n) o)

p) q) r) s)

Figure 7.4: a) A simple “color” image. Red, green, and blue components are coded withj, =, n
oriented lines, respectively. A line denotes that the component is 255, no line denotes that the compo-
nent is zero. This implies that white contains all three oriented lines.b) The output of theGσ-operator
(achromatic channel).c) The output of theMσ-operator (achromatic channel) defined in (3.6).d)-g)
Outputs of theC Sr;g

σ -, C Sg;r
σ -, C Sb;y

σ -, andC Sy;b
σ -operators, respectively.h)-k) Outputs of theSC r;g

σ -,
SC g;r

σ -, SC b;y
σ -, and SC y;b

σ -operators, respectively.l)-o) Outputs of theC Or;g
σ -, C Og;r

σ -, C Ob;y
σ -, and

C Oy;b
σ -operators, respectively.p)-s)Outputs of theDOr;g

σ -, DOg;r
σ -, DOb;y

σ -, andDOy;b
σ -operators, re-

spectively. For all operators we usedσ = 1. Black denotes inhibitory, medium gray no, and white
excitatory response.
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Instead of usingMcsσ we can also use a Mexican-hat function given by a Laplacian of a
GaussianMσ (A.7) which needs to be divided by a center normalization factor (A.13).

Note that the receptive field sizes of the center-surround cells are about four times smaller
than the center-only and double-opponent cell types, but this is not shown in Figure 7.3 and
is neither clear from the equations above.

The opponent operators are applied to a simple image which is illustrated in Figure 7.4a.
The following opponent channels are used: red-green, green-red, blue-yellow, and yellow-
blue. The first mentioned color is the excitatory and the second the inhibitory color. The
results for theC Sσ-, SC σ-, C Oσ-, andDOσ-operators are illustrated in Figure 7.4d-g, h-k,
l-o, and p-s, respectively.

Although the responses of theC Se;i
σ - andSC e;i

σ -operators look the same, they are different.
If we subtract the second from the first operator we get an output which is similar to the
output of theDOe;i

σ -operator. TheC Oe;i
σ -operators also have a similar response as theC Se;i

σ -
andSC e;i

σ -operators, but their difference is at the edges, since they have center opponency
only.

The DOe;i
σ -operator only responds at edges. The difference in gray in Figure 7.4p-s are

optical illusions. The brain fills in the color between the edges. If the edges are bright at the
inside, the gray color appears to be brighter than normal. Similarly when the edges are dark
inside, the gray color appears to be darker.

7.4 Reconstruction of color using three channels

The cells found by neurophysiologists are of broadband type (achromatic) or have red-green
or blue-yellow opponency. In this section we will show that these three channels are sufficient
to reconstruct every color. For the reconstruction we use theC Oe;i

σ -operators, since for these
operators holds: -C Oe;i

σ = C O i;e
σ .

When a Gaussian is convolved with an image its result is a blurred image. If we choose
σ = ε to be very small such that the convolved result is identical (in the discrete case) to the
original image

I a = I a�Gσε (7.12)

then we can make an exact reconstruction.
In Figure 7.5 we start with an (r;g;b) color image. In the second and third column the

image is split into five different color components (red, green, blue, yellow, and gray). The
fourth column gives the output of theC Or;g

σ -, C Ob;y
σ -, andGσ-operators, which model the

responses of the cells in the three different channels. By combining theC Or;g
σ - andC Ob;y

σ -
operators we can create two operators with primary color opponency only:

C Or;b
ε

= f(7:9) andf(7:12)g
I r � I b

=
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Figure 7.5: Scheme of reconstruction.
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I r � 1
2

I g+
1
2

I r +
1
2

I g� I b

= f(7:7)g
1
2
(I r � I g)+ I y� I b

= f(7:12) and(7:9)g
1
2

C Or;g
ε �C Ob;y

ε (7.13)

and similarly

C Og;b
σε =�1

2
C Or;g

ε �C Ob;y
ε : (7.14)

The two additional operators are illustrated in the fifth column of Figure 7.5. To make a
reconstruction (sixth column) we take the differences between the different operators:

I r 0 = max
�

C Or;g
ε ;C Or;b

ε ;0
�
; (7.15)

I g0 = max
�
�C Or;g

ε ;C Og;b
ε ;0

�
; (7.16)

I b0 = max
�
�C Or;b

ε ;�C Og;b
ε ;0

�
: (7.17)

This gives us back already a reconstruction for pure colors. Suppose that we have a triple
(r;g;b) = (1;1; 1

2) and a triple(r 0;g0;b0) = (1
2;

1
2;0) which appear as light - and dark

yellow, respectively. The reconstruction using (7.15), (7.16), and (7.17) gives for both colors
(r 0;g0;b0) and that would imply that with two different opponent cells we are not able to
discriminate between these two different colors. It is clear that in this example we lost the
gray component.

When the exact(r;g;b) triple should be reconstructed, we need a broad-band cell with
center-only properties. The exact reconstruction of imageI can be obtained by adding the
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output ofGε� I r0+I g0+I b0

3 to (7.15), (7.16), and (7.17), which is illustrated in the three right-
most columns of Figure 7.5.

7.5 Double opponent color sensitive and orientation selec-
tive cells

Double opponent cells with center surround properties were first found in the goldfish (Daw
[25]). Later these cells were found also in monkey area V1 and V2.2 Their receptive fields
are rather small in comparison with receptive fields of cells in monkey area V4. The cells in
area V1 are connected to area V4, probably in a convergent fashion, with the result that the
recipient cells in area V4 have much larger receptive fields (Zeki [204]).

The cells in area V4 which Zeki passed first when he did his measurements in area V5 are
more difficult to activate, but a great majority of cells which he succeeded to activate showed
color selectivity in the sense that they responded better to certain colors than to others (Zeki
[202, 203]). There are also orientation selective cells found in area V4. The combination
of both color and orientation selections are found too in this area (Zeki [204]). Also Hubel,
Wiesel, and Livingstone mention that it seems likely that cells in blobs project to cells around
the blobs, a few of which are specific for both color and orientation. These cells we term:
color sensitive, orientation selective cells.

Although orientation selective cells with double opponent color properties are not found
in area V4, it can be made plausible that these cells exist since cells in V4 receive their input
from area V1 and V2 which have double opponent properties. We term these hypothetical
cells:double opponent, color sensitive, orientation selective cells. Like for the color oppo-
nent cells in area V1 and V2 we assume that there are 3 classes of cells: the broadband or
achromatic type and red-green and blue-yellow opponent types.

Using the building block principle for the P pathwaydouble opponent, color sensitive,
simple cellscan be obtained in a similar way as the simple cells. If we assume that color
sensitive simple cells are in the visual cortex, and we use theS-operators (3.17) and (3.18)
then the response image of the symmetrical double opponent simple cell can be modeled as
follows:

DOe;iSs
σ;θ = I e�ℜĜσ;θ� I i �ℜĜσ;θ (7.18)

and the response image of the anti-symmetrical double opponent simple operator is

DOe;iSa
σ;θ = I e�ℑĜσ;θ� I i �ℑĜσ;θ: (7.19)

Applying the building block principle to the double opponent color sensitive cells we have
the following operator for the double opponent color sensitive complex cell:

DOe;iCσ;θ(x;y) =

r�
DOe;iSs

σ;θ(x;y)
�2

+
�

DOe;iSa
σ;θ(x;y)

�2
: (7.20)

2The responses of cells in V2 have not been studied in sufficient detail to tell whether they are similar to the
responses of the counterparts in area V1 (Zeki [204]).
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a) b)

c) d)

e) f)

Figure 7.6: Detected corners obtained by using the MC-operator.a)-d) In the MC-operator we use
DOe;iEω instead ofEω. Detected corners for MC05;avg with fe, ig = fred, greeng, fgreen, redg, fblue,
yellowg, andfyellow, blueg, respectively.e) Results of the MC5;avg-operator (also illustrated in Fig-
ure 5.12d).f) Detected corners (MC5;all-operator) by combining all channels with theEall-operator.
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This operator is identical to (3.20) with the exception that we use the double opponent
wavelength sensitive simple cell operators instead of the simple cell operators. Similarly the
following double opponent wavelength operators are used:DOe;iCσ, DOe;iEσ, DOe;iEavg,
which are similar to the operators from (3.22), (4.14), and (5.4), respectively.

We introduce a new combining operator

Eall(x;y) =Eavg(x;y)+

DOr;gEavg(x;y)+DOg;rEavg(x;y)+

DOb;yEavg(x;y)+DOy;bEavg(x;y)

(7.21)

to combine all used channels: broadband, red-green, green-red, blue-yellow, and yellow-blue.
Corners in color images can now be found by using the PCF-operator (5.1) and MC-operator
(5.2) forω = all.

If a single broadband channel is used only one loses information, which can cause corners
not to be detected. With the addition of two chromatic channels we are sure that no informa-
tion is lost, since we can make a reconstruction. The advantage of using multiple channels
is that all corners should be detected. If corners are not detected it is due to short-comes in
the model and not due to loss of information. Most corners appear in more than one channel,
summing the outputs of different channels (7.21) gives a good indication about the robust-
ness of the corner. Another advantage is that we can assign another feature attribute to the
corner. This feature attribute indicates in which channels the corner is found.

In Figure 7.6 the detected corners are illustrated by using the MC-operator, for better
visualization we illustrated the corners larger. Figure 7.6e shows that the results obtained
separately are not sufficient but that the combination of the channels is necessary to find all
corners (Figure 7.6f). Combining corners at multiple channels can cause a local maximum in
a channel to disappear in the combination of channels and vice versa a local maximum can
appear due to summing the responses of different channels which are not in one of the single
channels.

7.5.1 Graph extraction for multiple channels

In Figure 7.7 it becomes clear that most of the segments are detected in every channel. The
combination of all channels improves the results but it is not so remarkable as the improve-
ment of the detected corners.

In Figure 7.7f the detected segments which separate the door from the background are not
displayed because we will consider segments between two different corners only. In the other
images of the same figure these segments are displayed with a white-black-white segment.

The corners obtained with the MC7;all-operator are used as input and applied to the line
detection algorithm from Chapter 6 to all channels separately. For the MC-operator we used
a local neighborhood withn= 4 to avoid local maxima in a PCF area which are very close
to each other and represent the same corner. Two examples of such corners are in Figure 7.6.

The difference between Figure 6.7b and Figure 7.8b is large. In the achromatic chan-
nel some corners are not found and therefore also the corresponding lines. Using multiple
channels has the advantage that almost all corners are detected. However if we compare the
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a) b)

c) d)

e) f)

Figure 7.7: Detected segments ofa) red-green,b) green-red,c) blue-yellow,d) yellow-blue, ande)
achromatic channel.f) Detected segments combining all five channels.

detected graphs at an achromatic channel with the graphs found at multiple channels there is
not always an obvious improvement. For example if we compare the image graph illustrated
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a) b)

c) d)

e) f)

Figure 7.8: Graphs found for different color images using multiple channels.

in Figure 6.7c with the graph of Figure 7.8c we notice that there are more corners detected
at multiple channels and also that the number of detected segments increased considerably
but it is not clear which of them is better.
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7.6 Summary and discussion

We introduced a multi-channel multi-scale edge and corner detection model. The model uses
as input a color image in(r;g;b)-format. Note that with a matrix multiplication this triple
can be transformed to another triple.

In the chapter we first modeled the response of known opponent color cells. The center-
surround, center-only, and double opponent cells. With a simple image we illustrated that
the first two types respond well to specific colors and the latter type responded well to edges
only. In the model our primary goal is to find corners and edges. This implies that we should
use double-opponent cells. However the center-surround and center-only cells are very useful
too, they can be used to determine color. Hence they can serve as color-attributes to facilitate
object recognition. The double opponent cells are the chromatic equivalent of the center-
surround cells in the achromatic channel, i.e. the response of both cell types is similar.

We used two chromatic channels (red-green and blue-yellow opponency) and one achro-
matic channel. These three channels are found in monkeys and it is proven that these channels
are sufficient. Additional opponent channels are therefore not necessary. Nevertheless, if an
industrial application uses only a few colors, it can be useful to define other opponent colors.

In monkey area V4, Zeki [204] found color sensitive and orientation selective cells. In
1978, the concept of a modular organization of the primate area 17 (layers two and 3) took a
new dimension with the discovery of Wong-Riley of a pattern of regularly repeating blob-like
structures. The cells within these blobs are color selective. Livingstone and Hubel [89, 117]
mentioned that it seems likely that cells in blobs project to cells around the blob cells. This
implies that some cells are both color and orientation selective.

A pair of such cells with opposite color pair can be combined to the equivalent of a simple
cell for the color pair in question. These cells have not been found yet, but it is quite plausi-
ble that they exist. We call them double opponent simple cells. Their output is combined in
a similar way as the complex cells for the achromatic channel, this results in the double op-
ponent complex cells. Their existence has not been shown experimentally but the repetition
of the construction of the achromatic pathway seems plausible. By using the repetition we
also introduced the double opponent end-stopped cells which respond well to corners and
line-ends with red-green or blue-yellow opponent colors.

Combining the two chromatic channels with the achromatic channel improved the results
at corners considerably compared to the results with the achromatic channel only, an illus-
tration of the difference is given in Figure 7.6e and f.

The improvement is less obvious for edge detection (complex cells) but it is important that
most and preferably all edges in the image are detected.

In Chapter 8 a graph matching algorithm is used to find objects by using model graphs.
An object is found if there is a copy of the model in the image graph. Since we are searching
for copies, falsely detected lines are not a problem. Of course there is a possibility, although
not likely, that objects are falsely detected. Hence center-surround and center-only cells can
be useful to make sure that the detected object is correctly detected.
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Object Recognition using Graph

Matching

The carpenter measures with a line and makes an outline with a marker; he roughs
it out with chisels and marks it with compasses. He shapes it in the form of man, of
man in all his glory, that it may dwell in a shrine.

Isaiah 44:13 (NIV)

RECOGNITION OF ALL A-PRIORI KNOWN OBJECTSin a two-dimensional color im-
age is the goal of this chapter. In pattern recognition and image analysis, graphs are
used for the representation of objects. By representing the object as a graph we ob-

tain translation, rotation, and scale invariance. Prototypes ormodel graphsof known objects
are used to find objects in animage graphwhich is obtained by preprocessing the image as
described in previous chapters. Thus the problem of object recognition is transformed into a
graph matching problem, which is applied successfully by, e.g., Eshera and Fu [41], Bunke
and Messmer [17, 135], Gold and Rangarajan [55], and Rosin [165].

Generally, the termgraph matchingrefers to the process of trying to find correspondences
between graphs. Our goal is slightly different: we want to findall similar copies of some
collection of model graphs in the image graph. Hence, we consider a specific instance of
graph matching, namely error-tolerant subgraph isomorphism.

Two graphs areisomorphicif there is a one-to-one correspondence function between the
vertices of the two graphs such that the structure of the edges is preserved by the function
(McHugh [131]). If one of the graphs involved in the matching process is larger than the
other, i.e. the image graphG(V;E) contains more vertices than the model graphGm(Vm;Em),
then we are looking for asubgraph isomorphismfrom Gm to G. In fact, we are looking for all
inexact subgraphs inG that are isomorphic withGm. In many applications, the encoding of
objects as graphs will not be perfect due to, e.g, noise or limitations of the graph extraction
algorithm. Hence, it is not realistic to require isomorphic matching. A natural idea is to
introduce cost functions and incorporate the concept of errors into graph matching. Graphs
are then compared to each other by means of theerror-tolerant subgraph isomorphism.
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One of the drawbacks of graph matching is its computational complexity. It is well known
that subgraph isomorphism testing is NP-complete (van Leeuwen [191]). The subgraph iso-
morphism problems are NP-complete even ifG andGm range over planar graphs of valence 3
(Lingas and Proskurowski [114]). Subgraph isomorphism can be solved in polynomial time
if G is a forest andGm is a tree (Reyner [159]) but remains NP-complete ifG is a tree and
Gm is a forest (Garey and Johnson [54]). Consequently, no algorithm can be constructed that
guarantees to find (error-correcting or error-tolerant) subgraph isomorphisms in polynomial
time.

Because of the representational power of graphs, much effort has gone into the develop-
ment of efficient matching algorithms. Dependent on the application different attributes are
assigned to the vertices and edges in a graph. Heuristics that use these attributes can decrease
the search space to a low order polynomial (Gold and Rangerajan [55]). The algorithms used
in literature can globally be divided into two groups.

Thefirst groupinvolves the construction of a state-space which is then searched. Search-
ing by using a state-space always guarantees theoptimal solution. One of the best known
methods for graph and subgraph isomorphism detection is based on depth-first backtracking
search (Corneil and Gotlieb [21]). The number of backtracking steps in a search tree can
be greatly reduced by a combination of backtracking and forward checking (Ullman [188]).
Another approach for subgraph isomorphism detection is based on building a so called as-
sociation graph and searching for maximal cliques in such a graph (Falkenhainer et al. [43],
Horaud and Skorda [76], and Myaeng and Lopez-Lopez [138]).

In the problem oferror-correctingsubgraph isomorphism an algorithm is optimal if it is
guaranteed to find the sequence of edit operations withminimal cost such that a subgraph
isomorphism exist (Messmer [134]). Most of these algorithms are based on theA�-algorithm
(Nilsson [142]). By introducing a heuristic cost estimation function, the size of the search
tree can be greatly reduced. Various cost functions have been proposed (e.g, Tsai and Fu
[187], Shapiro and Haralick [170], Fu [50], Sanfeliu and Fu [167], Eshera and Fu [40], and
Wong [196]).

All the algorithms in the first group are guaranteed to find the graph and subgraph isomor-
phisms. Thesecond groupof algorithms is based onprobabilisticor non-linear approxima-
tion methods. These algorithms generally have a lower computational complexity but do not
guarantee to find the best solution. The algorithms are based on relaxation (e.g., Rosenfeld
et al. [164], Peleg [144], Ton and Jain [184], Christmas et al. [20], and Gold and Rangarajan
[55]), neural networks (e.g., Kuner and Ueberreiter [103], Yu and Tsai [200], and Suganthan
et al. [180]), linear programming (Almohamad and Duffuaa [2]), genetic algorithms (Krcmar
and Dhawan [100]), or Lagrangian optimization (Rangarajan and Mjolsness [155]).

Since we want to recognize all objects in the database that differ at most an a-priori known
error-value from the exact object in the image, we have the problem oferror-tolerantsub-
graph isomorphism. In this problem an algorithm is defined to be optimal if it is guaranteed to
find all subgraph isomorphisms, where the sequence of edit operations is less than a limited
cost (Messmer [134]).

The algorithm we use belongs to the first group since we want all possible objects in the
image graph to be found. To obtain an efficient algorithm we add two attributes (angle and
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length) to the graphs. Cost functions based on these attributes and on tolerating missing edges
should cut down the number of evaluations severely, and only accept (inexact) matches where
the object differs a little from the known object. Inexact matches of missing vertices are not
allowed. The system is therefore error tolerant with respect to edges. In an image small
differences in length and angle of the same object can be caused by perspective projections.
We tolerate matches with small differences in the angles and lengths of an object, i.e, the
algorithm is tolerant to small distortions and changes in view.

The chapter is organized as follows: Section 8.1 describes the use of attributes and gives
the cost functions which are used to find inexact matches. Section 8.2 gives the graph match-
ing algorithm. The results and time-complexity obtained with this algorithm are discussed in
Section 8.3. Section 8.4 gives some related work and disucussion. The chapter ends with a
summary.

8.1 Graph attributes

The graphs we use are extracted from images. We assign length and angle attributes to such
a graph. These attributes give a more accurate description of the objects in the image. Hence,
the search space for matching an attributed model graph with an attributed image graph is
highly reduced. In this section we give the representation of such an attributed graph and
introduce the functions and constants that bound the search space.

We take the graph which is illustrated in Figure 8.1a as an example. Initially we start
with corners which have(x;y)-coordinates. To keep a graph translation invariant we must
not consider the absolute coordinates but use them relatively to each other. This is obtained
by taking the lengths of the edges and the angles between edges. To let a graph be scale
independent we choose the lengths relative to each other. This is illustrated in Figure 8.1b,
where the longest edge is 100.00 and the others are a percentage of the longest edge. Angles
are measured counterclockwise: as a consequence, we have, e.g., in Figure 8.1b that the angle
at vertex 0 is different from the angle at vertex 1, although the graph is symmetrical in the
vertical axis. The choice of these attributes keeps the graph translation, rotation, and scale
invariant. The attributes of the graph are represented in a table. An example of such a table
is given in Figure 8.1c.

An efficient representation of a graph is the adjacency matrix. This matrix used by, e.g.,
van Leeuwen [191] is a boolean matrixB. The elementsB(i; j), i < j and i; j 2 V, of this
matrix are chosen to be true (or 1) if and only if(i; j) 2 E, and false (or 0) otherwise. We
choose a different adjacency matrixA in the sense that the elementsA(i; j) 2 R give the cost
for tolerating a missing edge in the image graph. Due to noise in the color input image and
due to limitations of the graph extraction algorithm not every edge will be extracted. For the
image graph one would desire that, if an edge is missing during the process of matching, one
can tolerate such a missing edge. Since we do not want to tolerateall missing edges, a cost
function is introduced. Thecost function C(v1;v2), v1;v2 2V, for tolerating a missing edge
yields a real. During the process of matching we sum the costs for these tolerated missing
edges. Since tolerating a certain missing edge between two vertices can be more likely than
tolerating another missing edge, there should be a difference in cost. Hence, we do not use
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54
27.97 c)

0
1 0
2 0 ∞
3 ∞ 0 0
4 ∞ ∞ 0 ∞
5 ∞ ∞ ∞ 0 0

0 1 2 3 4 5

angle in at from to edge
degrees vertex edge edge ratio
258.69 0 (0, 1) (0, 2) 0.54
101.31 1 (1, 0) (1, 3) 0.54
78.69 2 (2, 3) (2, 0) 0.93

194.17 2 (2, 0) (2, 4) 0.41
78.69 3 (3, 1) (3, 2) 1.07
87.14 3 (3, 2) (3, 5) 0.38
92.86 4 (4, 5) (4, 2) 0.28
92.86 5 (5, 3) (5, 4) 3.58

Figure 8.1: a) An example of a (model) graph.b) The same graph augmented with attributes, which
are the (relative) length of an edge and the angle between two edges.c) Two tables are used to
represent the attributes of the graph. In the table at the top the adjacency matrix is displayed, zero
denotes that there is an edge and∞ denotes that there is no edge between the two corresponding
vertices. The table at the bottom gives the angular attribute plus the ratio between the lengths of two
edges, which is obtained by dividing the length of the “from edge” by the length of the “to edge”.

a boolean adjacency matrix. For the model graph no cost function is necessary, so only
two values are needed: the value 0 denotes(i; j) 2 Em and otherwise it is∞. Since we use
undirected graphs we only need the lower- or upper-diagonal of the adjacency matrix which
means1

2#V(#V�1) elements, where #V denotes the number of vertices inV throughout this
chapter.

To cut down evaluation costs during matching we try to evaluate as little as possible with-
out loosing proper solutions and allowing inexact matches. During the matching process we
tolerate one or more missing edges in the image graph. Only inexact matches will be con-
sidered where the cost function for missing edges is lower than an a-priori known limited
cost.

In the lower table of Figure 8.1c, the vertices are augmented with a set of angle and ratio
attributes. In the matching process these attributes are used to reduce the search space. When
a vertex is matched we tolerate an angle and a ratio at the vertex in the image graph to differ
at most a known constant angle and a known constant ratio from the corresponding angle and
ratio in the model graph. Additionally we allow the average angle difference of all angles to
differ at most a known constant angle. Similarly the average ratio difference is also bounded
by a constant. We introduce four bounding constants:



8.2 Matching algorithm 127

explanation name type
number of currently matched vertices mv N

vertex which is currently evaluated cv N

angle ofcvwhich needs to be evaluated cva N

list of matched vertices of the image graphL Li 2 N i 2 [0; : : : ;mv)
list of parsed vertices of the model graphLm Lmi 2 N i 2 [0; : : : ;mv)
summed edge cost De R

summed angle difference Da R

Table 8.1:The data structure of the stack of the algorithm.

1. the angle tolerance,

2. the average angle tolerance,

3. the ratio tolerance, and

4. the average ratio tolerance.

8.2 Matching algorithm

The basic matching algorithm is a tree search algorithm. For efficiency reasons we do not
create the complete tree but we use a stack. The data structure used in the stack is illustrated
in Table 8.1.

In the data structure we keep a list of matched vertices from the model graph and a list
of matched vertices from the image graph. The summed edge cost parameterDe is the cost
for missed but tolerated edges. The summed angle differenceDa is used for the average
difference. Both should not exceed a chosen maximum. We use parametercv for the current
vertex, whose attributes have to be evaluated. Since a single vertex can have more than one
angle and ratio attribute we need an additional parametercva to indicate which angle and
ratio have to be evaluated.

A pseudo code for the graph matching algorithm is illustrated in Figure 8.2. The algorithm
finds all inexact matches, which satisfy known criteria, of model graphGm in image graph
G. Lines 2-11 are the initial stage of the algorithm. We start with an empty stack and after
that push all vertices of the image graph one after another on the stack since all vertices of
the image graph can be matched with the first vertex of the model graph. Line 12-31 are the
actual matching. In line 13 we take a possible partial solution from the top of the stack and
check if we have a complete match (line 14). If it is a complete match, the maximum and
average relative length differences between model and match are calculated (line 15). If both
are less than some known constants, the match is accepted and displayed (line 16). If we do
not have a complete match we go to line 18. Here we check if the current angle and ratio can
be evaluated. With evalutation we mean that model angle and ratio can be compared with
image angle and ratio. If we can not evaluate, because one or both vertices to form the angle
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1 ProcedureMatchGraph (G;Gm)
2 stack :=/0
3 forall v2V
4 L0 := v
5 Lm0 := FirstVertex (Vm)
6 mv := 1
7 cv := Lm0
8 cva := FirstAngle (cv)
9 De := 0.0

10 Da := 0.0
11 Push (mv;cv;cva;L;Lm;De;Da)
12 while stack6= /0
13 Pop (mv;cv;cva;L;Lm;De;Da)
14 if mv= #Vm^ Last (cv;Lm) /* All vertices matched */
15 if ProperMaximumAndAverageRelativeLengthDifferences
16 Accept
17 else
18 if CanEvaluateAngleFormVertex (cva;cv;& r;&α;&nv)
19 if ProperRatioAndAngle (r;α;maxDa;Da;&a)
20 if cva= LastAngle (cv)
21 cv := NextVertex (cv, Vm)
22 cva:= FirstAngle (cv)
23 else
24 cva:= NextAngle (cva;cv)
25 Push (mv;cv;cva;L;Lm;De;Da+a)
26 else /* Add missing vertexnv */
27 Lmmv := nv
28 forall v2V nL /* Unused vertices only */
29 Lmv := v
30 if ProperVertex (Ce;maxDe;De;&e)
31 Push (mv+1;cv;cva;L;Lm;De+e;Da)

Figure 8.2: Algorithm for graph matching.

are missing, then we match the missing model vertex by adding it to the list (line 27) and find
all possible vertices in the image graph (lines 28-31). A vertexv is added if it is not matched
yet and if the costCeof tolerating missing edge (Lcv;v) is smaller than the allowed cost.

The speed of the algorithm depends mainly on the condition of line 18. If the maximum
tolerated angle and ratio differences are chosen properly most of the partial matches will be
rejected here, by not pushing it back on top of the stack.

The speed of matching depends on the total amount of pushes. In worst case there are

#V� (#V�1)� (#V�2)��� �� (#V�#Vm) =
#V!

(#V�#Vm)!
(8.1)
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possible one-to-one correspondences between the vertices of a pair of graphs. Since every
partial match is pushed on the stack the total amount of pushes is:

#Vm

∑
i=1

#V!
(#V� i)!

: (8.2)

In this situation the memory requirements for the stack are

#V +(#V�1)+(#V�2)+ � � �+(#V�#Vm) = (#V +1)#Vm� 1
2

#Vm(#Vm+1):
(8.3)

This gives a memory complexity ofO(#V(#Vm)
2) since the data structure is ofO(#Vm).

8.3 Results

We bound the search space of the matching algorithm by five functions as mentioned in
Section 8.1. The edge and ratio functions need to be explained in some more detail. We
assume that the cost of missing edges all have the same cost. Which means that for the
image graph an adjacency matrix is created like the one for the model graph but all∞s are
replaced by 1s.

The difference in ratioδr between two pairs of edges is as follows:

δr = max

�
rm

r
;

r
rm

�
; (8.4)

whererm denotes the ratio of an edge pair in the model graph andr denotes the corresponding
matched ratio in the image graph.

Two images are illustrated in Figure 8.3a-b and their extracted image graphs in Fig-
ure 8.3c-d. We will use the model graph illustrated in Figure 8.1 to find all the markers
in the two different images.

The results are illustrated in Figure 8.4a-b. The parameters for the fault tolerances are
chosen too large (on purpose) such that false matches are found in Figure 8.4b. We tolerated
at most five missing edges from the in total seven edges of the model graph and a maximum
δr of five. We tolerated an angle difference of at most 10 percent (which corresponds with
36 degrees) and also an average angle difference of at most 10 percent, since there are 10
angles in the model graph this means that the summed angular difference should not exceed
360 degrees. When a match is found we tolerate a maximum relative length difference of 50
percent and an average relative length difference of 10 percent. The matching times for both
image graphs are approximately 13 and 17 seconds. If a more reasonableδr = 2 is chosen
correct matches are found only. If the maximum number of edges to be tolerated is reduced
to two, finding all markers in the image graph takes less than a second.

Tables with matches and differences of length and angle compared to the model graph are
given in Figure 8.4c-d. The correct matches show an average angle difference which is at
most 2.82 where we allow at most 10 percent and the average length difference is at most
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a) b)

c) d)

Figure 8.3: a)-b) Input images.c)-d) Extracted image graphs from a) and b), respectively, with num-
bered vertices.

5.65 percent, also here we allow at most 10 percent. To speed up to matching process we can
tolerate a smaller average angle and length.

Since speed is an important factor in graph matching, we applied the algorithm using
different criteria. The speed is measured in number of pushes1 since this number is machine
and time independent. Let us take a closer look to the number of pushes we need for inexact
matching and assume that the maximum number of missing edges that is tolerated is equal to
the number of edges in the model graph. By matching the first vertex of the model graph we
needn= #V pushes. For the second and third vertex we still cannot evaluate angle and ratio
since three vertices are needed and therefore we needn(n�1) andn(n�1)(n�2) pushes,
respectively. When the third vertex is added to the partial match, we start evaluating angle

1Approximately 25,000 pushes can be evaluated in one second on a HP 9000-735 workstation.
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a) b)

c)

avg avg
length angle Missing Accepted matches
diff. diff. edges
3.73 1.49 0 16 17 0 1 2 3
5.65 2.57 0 9 26 8 15 22 21

Largest Total Number
stack pushes matches
122 390492 484

d)

avg avg
length angle Missing Accepted matches
diff. diff. edges
4.05 2.40 0 23 2 1 0 4 5
2.45 2.82 0 17 16 14 9 22 8
9.52 6.17 4 3 17 6 13 24 12
9.88 5.16 2 1 23 0 2 13 15

Largest Total Number
stack pushes matches
150 500774 1082

Figure 8.4: a)-b) Found matches of the markers. The used parameters are: the maximum number
of missing edges that is tolerated is five, the ratio between two edge pairsδr = 5, the average angle
tolerance is 10 percent, the maximum angle tolerance is 10 percent, the maximum length tolerance
is 50 percent, and the average length tolerance is 10 percent.c)-d) The found matches with their
average length and angle difference in percentage and number of missing edges. In the three rightmost
columns the memory requirements and the total evaluation time in pushes are given.

and ratio. At this stage a large number of partial matches is rejected and for the forth vertex
we do not need(n�3) pushes for every partial solution but sayc4, where 0� c4� n�3. This
implies that at this stagen(n� 1)(n� 2)c4 pushes are needed. Similarly for thekth vertex
(k� 4) we needn(n�1)(n�2)∏k

i=4ci pushes, with 0� ci � n+1� i. The total amount of
pushes is

3

∑
i=1

n!
(n� i)!

+
n!

(n�3)!

m

∑
j=4

j

∏
i=4

ci ; (8.5)
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Figure 8.5: Timing results of matching the model graph (Figure 8.1)a with the two image graphs of
Figure 8.3c-d.a) Time in number of pushes.b) Maximum stack size, measured in number of pushes
which are pushed on the stack and not popped from the stack.

wherem= #Vm. If ci = n+1� i (for all i) then the number of pushes is equal to the maximum
number of pushes (8.2).

It is difficult to give a good estimation ofci since it depends on the choice of the angle and
ratio tolerance. If the angle is chosen to be so large that it is always accepted and the ratio
tolerance is large thenci will be approximatelyn+ 1� i. The model graph of Figure 8.1a
which contains six vertices is matched with the two different image graphs of Figure 8.3c-d
which contain 28 and 30 vertices, respectively. In worst case we need 2:84�108 and 4:45�108

pushes for these image graphs. In Figure 8.5a we usedδr = 5 and a maximum angle error
ae= 50% and needed about a factor twenty less than the maximum possible amount of
pushes.

In a normal situation we choose parametersδr = 2 andae= 10% which means that we
allow the ratio to differ at most a factor two (0:5l �2:0l ) and the angle to differ at most 36
degrees (�π=5�π=5). For these parameters we foundc4� 1:7 (7% ofn�3),c5� 2:5 (10%
of n�4), andc6 � 0:15 (0.6% ofn�5) for the two image graphs and the marker as model
graph. It is expected thatci becomes smaller with increasingi since the partially matched
possible solutions need to satisfy more and more angles and ratios with increasing number
of matched vertices and therefore becomes more specific. Partial matches are already so
specific at the sixth vertex that about a factor seven less pushes are needed compared to the
previous vertex. It is expected that model graphs with more vertices are that specific that few
additional pushes (less than the pushes at the sixth vertex) are needed for the rest.

The memory requirements are small compared to the time complexity, see (8.3) and Fig-
ure 8.5b.

8.3.1 Complexity analysis of a case study

In this section we present a case study to get insights in the actual matching time needed
for graphs up to 250 vertices. We try to recognize traffic signs in a normal environment.
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a) b) c)

Figure 8.6: The three used model graphs.a) Danger sign, since inner and outer triangle are related to
each other an extra edge is needed.b) Precedence sign, here we used two extra edges.c) Stop sign.

We choose traffic signs because they are flat, hence they do not change dramatically when
viewed under different angles.

In total we used 39 different image graphs and three model graphs (Figure 8.6). From those
image graphs 26 contain one or more traffic signs, the other 13 contain no traffic signs. We
also used the three model graphs as image graphs. The three model graphs are: the sign for
approaching a precedence road, the sign for being on a precedence road, and the stop sign.
They are abbreviated to danger, precedence, and stop, respectively. Extra edges in the model
graphs of Figure 8.6a-b are needed to retain the relative position and size of the different
parts of the graph.

We expect that model danger will be matched faster than the other two because six instead
of eight vertices need to be evaluated. From the latter two models the precedence model is
expected to be matched faster since it has more angles and edges than the stop model.

Cost function and results

In the previous sections we used a simple cost function for the image graph. For the traffic
signs we have extended the cost function for tolerating missing edges in an image graph. The
cost function for an existing edge is still zero but the cost for a non-existing edge betweena
andb is one if there exist a chain betweena andb, i.e. there are one or more verticesvi on or
near the imaginary line-segment(a;b) for which there exists edges between(a;v0), (v0;v1),
: : : , (vn;b). If there is no edge and no chain between verticesa andb the cost for tolerating
the edge is two plus the number of intersections(a;b) makes with existing edges. The choice
for this cost function decreases the matching time.

In total we used 42 image graphs. Three of them are the model graphs which are trans-
formed to image graphs. All three are (of course) detected correctly. In the 13 graphs which
do not contain traffic signs nothing is detected. In the other images all signs except two were
detected. Both undetected signs are due to a K-junction, which are not detected as illustrated
in Figure 5.2. This implies that a corner is missing and the match is not found. Although two
signs are not found, there is no falsely detected sign in any of the image graphs. The missed
traffic signs are therefore not due to the matching algorithm but due to missing corners. This
problem can be solved by improving corner detection or to tolerate missing vertices in the
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 8.7: Input images, extracted graphs, and found matches, left, middle, and right column, re-
spectively. The parameters used are: the average angle error is three, the average length error is five,
the maximum angle error is five, the maximum length error is 14, the ratio tolerance is one, and the
maximum cost for tolerating missing edges is 15.
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Figure 8.8: Matching time measured in pushes and the regression linesrlD , rlS, andrlP of the three
used model graphs. The correlations found are 0.96, 0.98, and 0.97, respectively.

matching algorithm.
Four images containing traffic signs are illustrated in the left column of Figure 8.7. In the

middle column the corresponding image graphs are illustrated. The image graphs contain
214 and 586, 248 and 681, 161 and 455, and 196 and 461 corners and edges for the first,
second, third, and fourth row, respectively. The rightmost column illustrates the detected
traffic signs.

Resulting complexity

Figure 8.8 gives the graph matching time measured in number of pushes, for all 42 image
graphs. The matching time has an upper bound of approximately #V3. This is not what one
would expected directly since three vertices are needed for the evaluation of the first angle
and ratio, see also (8.5). This would suggest already #V3 but we should take into account that
not every triple is possible. For example if one or both edges should be tolerated the cost can
be higher than we tolerate. For all three models we tolerate an edge cost of 15 which can be
exceeded directly by the cost of tolerating the first edge, therefore a partial match containing
a single vertex can be rejected.

On average 89 matches are obtained (but not all accepted) for the danger sign which has
six corners, seven edges, and eight angles (6-7-8). On average 39 matches are found for
the stop sign (8-8-8). This is almost the most matching time consuming model graph that
can be constructed with eight vertices, only a chain is worse (8-7-6). The precedence model
graph (8-10-12) has eight matches on average. Extending model graphs with more vertices
does increase the matching time when the number of vertices is small and almost constant
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for a larger number of vertices since almost all partial matches are already rejected before.
Extending the number of edges in the model graph will decrease the matching time. This
implies that the matching time is expected not to increase dramatically with large model
graphs.

In Figure 8.8 the regression lines indicate the average amount of pushes needed to match
a model. The average number of pushes needed are 15(#V)2:0, 3(#V)2:7, and 4(#V)2:5 for
the danger, stop, and precedence model, respectively. The correlations found are good which
implies that these regression lines are reliable.

8.4 Related work and discussion

In literature, most of the inexact matching algorithms deal with error-correcting subgraph
isomorphisms and very little are about error tolerating subgraph isomorphisms. The differ-
ence between the two is that the first always finds one subgraph isomorphism with a distance
or cost and the second delivers all subgraph isomorphisms within a known distance or cost.
Hence, it is very difficult to compare the time complexity of these problems with each other.

Messmer [134] used an error-tolerant subgraph isomorphism for detection and recognition
of graphic symbols. His algorithm is tolerant to missing vertices and edges, and even merges
vertices during matching. The angle attribute is used to increase the speed of matching, these
angles are assigned to the edges and therefore a directed graph is necessary. Unfortunately
nothing is mentioned about the time complexity.

Eshera and Fu [40, 41] proposed an algorithm for the error-correcting subgraph isomor-
phism. They assigned attributes to vertices and edges to impose restrictions to the graphs.
They called these graphs attributed relational graphs (ARGs), which use three different fea-
tures types (straight line, arc, and curve) and have relations (joint, intersection, and facing)
between these features. For these relations the distance and angle attributes are used. This
algorithm is of polynomial time, approximatelyO(l3m2), wherel andm are the number of
links in the two graphs. The main problem of this algorithm is the preprocessing. It is difficult
to match the segments with one of the three feature types.

More recently Gold and Rangarajan [55] used ARGs for image representation and analy-
sis. Their probabilistic algorithm has a time complexity ofO(lm). They applied the algorithm
to the error-correcting subgraph isomorphism problem to match an image containing a cup
(model) with an image that contains a coffee pot and a cup. They manually marked 10 cor-
ners and 8 additional points in the model and approximately 40 corners and approximately
40 additional points in the other image. They needed about 30 seconds to find the match. If
we assume that we need #V3 pushes and that we can evaluate 10,000 pushes on the same
machine then we need about 6 seconds to find the match. With our algorithm we are faster
and guarantee that if there is an (inexact) subgraph isomorphism it will be found.

A complementary method is labeled graph matching which is applied successfully for,
e.g. invariant face recognition (Lades et al. [104]). In this method, vertices are assigned lo-
cal texture elements and edges carry the geometrical information about relative locations.
This method is limited to richly structured or textured objects like faces. Objects with ho-
mogeneous surfaces do not provide the sort of vertex labels required there and can only be



8.5 Summary 137

matched using their outlines.

8.5 Summary

In this chapter we presented an inexact graph matching algorithm. The algorithm has as input
an image graph and a set of model graphs and returns as output all possible inexact matches
of the different model graphs in the image graph. The model graphs represent an object or
part of it, therefore these graphs all contain useful corner and edge information. We used
the angle between two edges and the ratio between these edges (length), to speed up the
matching process. The algorithm is edge and distortion tolerant but we do not allow missing
vertices. Hence, we need a good corner detector.

In worst case this algorithm has exponential time complexity. The worst case situation is a
fact if the fault tolerances of angle and ratio are chosen in such way that any arbitrary choice
is accepted. If we choose the tolerances for angle and ratio properly, such that an object is
perceived correctly, we cut down computational costs considerably and will detect proper
objects only. The algorithm has an empirical upper bound of #V3, which is fast enough for
our purpose since the number of corners in an image is usually less than 250. At most 11
minutes on a workstation is needed if we assume both upper bounds.

The matching speed can be increased more by assigning more attributes to the vertices. In
Chapter 5 we divided the corners into six different classes which gives a vertex attribute and
in Chapter 7 we could use the information in which color channels the corner is found which
gives another vertex attribute.

The implementation of the matching algorithm is based on a stack with units containing
partial solutions (Table 8.1). Every partial solution can be evaluated independently and this
makes it suitable for a parallel implementation. The choice for one global stack or several
local stacks (for every process or processor one) can be elaborated on in more detail to get
the optimal performance.

When a match is found, we use a cost function as selection criterion based on straight
edges between the corners. The selection criterion becomes more accurate when the curved
segments are used (Chapter 6). They can also be used to get a better description of the
model graphs. When curved segments are used we can apply a selection criterion by surface
difference.





9
Concluding Remarks

I N THIS THESIS we developed an artificial vision model, inspired by biological vision
models. It is able to recognize objects that are spanned by corners from color images.
This chapter summarizes the contents of the developed model and gives some directions

for future extensions and improvements of the model.

9.1 Summary and conclusions

In Chapter 3 we gave an overview of early vision from a computational point of view. From
this chapter we included (in the model) theS-operators andC -operators which model the
responses of simple and complex cells, respectively. We used theC -operator for line and
edge enhancement, since this operator responds strongly and exactly at the positions where
the lines and edges appear.

In Chapter 4 we used a corner enhancement operator, as proposed by Heitger et al. [71].
This so-calledE-operator models the response of end-stopped cells. The operator responds
well at most corners and junctions, but is sensitive to noise at small scales. To avoid noise
responses we proposed a new corner detector by a multi-scale combination of theE-operator
(Chapter 5). Other advantages of the multi-scaleE-operator is that it responds well to
rounded corners and that it performs better than the standard corner enhancement operators.

In Chapter 7 theC -operator andE-operator are generalized to color channels. We used the
same properties of the complex and end-stopped cells and assumed that these cells respond
excitatory to one color and inhibitory to another color. This generalization made the corner
operator perform significantly better than by using a single achromatic channel.

In Chapter 6 we developed a line detection algorithm, based on the assumption that corners
are more stable than lines, and used it to extract line-segments by following enhanced edges
from one corner to another.

The extracted lines and corners are represented as a graph. This representation is suited
for objects in which all edges are spanned by corners. We chose this representation because
it is compact and leads to invariance under translation, rotation, and scaling.

A graph matching algorithm is used to recognize a-priori known objects (Chapter 8). Since
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graph matching is an NP-hard problem, we used an attributed graph format. The choice of
the attributes (angles and lengths) in the graph led to a reduction of evaluations fromN! to
less thanN3, and robustness under small perspective changes and undetected lines. The used
graph matching algorithm is optimal, i.e., it recognizes all known objects in the image within
known constraints.

The human visual system has limited space for the storage of different objects. Hence,
objects should be stored in a compact and quickly accessible way. How an object is repre-
sented in the brain is unknown. It is likely that specific features are extracted from a visual
scene (image) and that a set of these features, which represent an object, are compared with
stored (learned) objects. Hence, attributed graphs may be part of the representation used in
the brain, and graph matching may be a part of the matching process as it takes place in the
brain.

To summarize, the model is sequentially divided into:

1. theenhancementof features (e.g., edges, corners, and color) in the input image,

2. theextractionof the features,

3. andrecognitionby matching these features.

9.2 Future research

In a few cases the model fails to recognize objects, due to undetected corners. In Chapter 5
we reported that theE-operator does not respond to corners with an angle larger than 130
degrees, and lacks to respond to 4-junctions. A possible way to detect these corners and 4-
junctions is to extend the operator. Another option is to add missing corners when edges are
extracted.

In the current model we used corners and edges only. The model can be extended by
filling in the areas enclosed by edges using color and texture. Texture and color can be
used to improve and facilitate edge and corner detection, and gives additional information to
the model and image graph. Additional attributes make the graph more specific, which will
increase the speed of matching.

The model can be easily extended for stereo vision, since both images can be processed
separately until from both images an image graph is extracted. From these two graphs we
should create a new graph which describes a three-dimensional scene by solving thecor-
respondence problemfor corners. Since these graphs contain the same attributes as two-
dimensional graphs a similar graph matching algorithm can be used.

Furthermore, we want to extend the model in such a way that it automatically extracts
model graphs. If a model graph is extracted automatically and is not known, it will ask its
teacher what kind of object it is. Similar to a young child who perceives an unknown object
will ask what kind of object it is.

All the extensions up to now deal with static images; our final goal is to use a model which
detects objects in a dynamic vision environment. However, including temporal dynamics is
a really difficult task and with the current speed of computers hardly possible.



A
Properties of Gaussian and

Mexican-hat Functions

DEFINITIONS for one- and two-dimensional Gaussian and Mexican-hat functions are
given and their properties discussed. The properties should be known because in the
used models both two-dimensional Gaussian and Mexican-hat functions are used as

filters with different radii. This means that if one of these functions is used as a windowed
filter, the radius of such a filter should be known, i.e. the cut-off radius, since these functions
will never reach zero exactly. If filters with different radii are used, the normalization factor
should also be known if one wants to compare the filtered results.

In this appendix we analyze the cut-off radius of both the Gaussian and the Mexican-hat
function. For the Mexican-hat function, based on the second derivative or Laplacian of the
Gaussian, we determine the center radius and normalization factors. The ratio between center
and surround radius is constant if a Mexican-hat based on the second derivative or Laplacian
is used, therefore also the Mexican-hat based on the difference of two Gaussians (DOGs) is
used. These DOGs are chosen so that they are normalized. We determine the possible ratios
between center and surround radii and the minima of the DOGs.

A.1 Properties of Gaussians

The Gaussian function is as follows:

Gσ(x) =
1

σ
p

2π
e�

(x�µ)2

2σ2 : (A.1)

The function is normalized, which is useful when it is used as a filter and necessary if a scale
space is used and the results within this scale space are compared with each other.1 If we use
a Gaussian filter,µ is always set to zero. The one and two-dimensional Gaussian functions

1The outputs can of course also be compensated for afterwards but this is computationally less attractive.
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then are as follows:

Gσ(x) =
1

σ
p

2π
e�

x2

2σ2 (A.2)

and

Gσ(x;y) = Gσ(x) �Gσ(y) =
1

σ22π
e�

x2+y2

2σ2 : (A.3)

A.1.1 Cut-off radius of a Gaussian

The Gaussian function approaches zero very fast, but it never reaches zero exactly. We ap-
proximate the Gaussian function by zero at those points where the exponential function is
� ε, for some small constantε> 0. The corresponding argumentr is called thecut-off radius.
So we have

e�
r2

2σ2 = ε (A.4)

� r = σ
p
�2logε: (A.5)

This is identical for both one and two-dimensional Gaussian functions. For the latter, we
substituter =

p
x2+y2.

A.2 Properties of the Mexican-hat function

The standard Mexican-hat function is the second derivative of the Gaussian, when it is a
one-dimensional function, and the Laplacian,∇2Gσ = ∂2Gσ

∂x2 + ∂2Gσ
∂y2 , of a Gaussian if it is

a two-dimensional function. Since in both cases we obtain a Mexican-hat which is upside
down, we multiply it with�1 and get:

Mσ(x) =
σ2�x2

σ5
p

2π
e�

x2

2σ2 : (A.6)

and

Mσ(x;y) =
2σ2� (x2+y2)

2σ6π
e�

x2+y2

2σ2 : (A.7)

A.2.1 The cut-off radii of the Mexican-hat function

Thecenter radiusof the one-dimensional Mexican-hat function is

σ2� r2 = 0 � r = σ: (A.8)

For the two-dimensional Mexican-hat function the center radius is

2σ2� r2 = 0 � r =
p

2σ: (A.9)
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The surround cut-off radius is chosen to be the same for both one- and two-dimensional
Mexican-hat functions and are chosen to be identical to the cut-off radius of the Gaussians
from (A.5).

From the equations (A.8), (A.9), and (A.5), we conclude that the ratio between center and
surround is 1 :

p�2logε for the one-dimensional and 1 :
p� logε for the two-dimensional

Gaussian or Mexican-hat function. To minimize aliasing effectsε = e�9 is a good choice,
which is found empirically when the two-dimensional Mexican-hat function was used as a
discrete filter (Lourens [120, 121]).

A.2.2 Normalization of the Mexican-hat function

Since the one-dimensional Mexican-hat function is the derivative of a function which van-
ishes (rapidly) at�∞, its integral is zero:

Z ∞

r=�∞

σ2� r2

σ4 e�
r2

2σ2 dr = 0: (A.10)

The integral of the two-dimensional Mexican-hat function (without constant1
2σ2π) is

Z ∞

x=�∞

Z ∞

y=�∞

2σ2� �x2+y2
�

σ4 e�
(x2+y2)

2σ2 dxdy

= fx= r cosϕ; y= r sinϕ; J(r;ϕ) = rgZ 2π

ϕ=0

Z ∞

r=0

2σ2� r2

σ4 e�
r2

2σ2 rdrdϕ

= fa= 2σ2; r2 = atg�Z 2π

ϕ=0
dϕ
�Z ∞

t=0

2a2

a2 (1� t)e�tdt

=

4π
Z ∞

t=0
(1� t)e�tdt

= fpartial integrationg
0: (A.11)

It can be useful to normalize the Mexican-hat function in such a way that its central part
has integral zero. For instance if we use Mexican-hat filters with different radii, where the
results need to be compared with each other. As an example we give a continuous input
image filtered with a Mexican-hat filter with radiusr and the same input image which is
a factor two larger and filtered with a Mexican-hat filter with radius 2r. If the results of
the two filtered images should be compared, it is necessary to normalize the center of the
Mexican-hat function.

The normalization factor for the center of a one-dimensional Mexican-hat function can be
obtained by calculating the integral over the center part of the Mexican-hat function:

Z σ

�σ

σ2� r2

σ5
p

2π
e�

r2

2σ2 dr
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= fr = σt; dr = σdtgZ 1
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2 σdt

=
1

σ2
p
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The normalization factor for the center of a two-dimensional Mexican-hat function is as
follows:

Z
x

Z
y

2σ2� (x2+y2)

σ62π
e�

x2+y2

2σ2 dxdy

= fx= r cosϕ; y= r sinϕ; J(r;ϕ) = rg
1
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Z 2π

ϕ=0

Z σ
p

2

r=0

�
2σ2� r2�e�

r2

2σ2 rdrdϕ

=
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A.3 The Mexican-hat function using the difference of two
Gaussians

The Mexican-hat function based on the difference of two Gaussians (DOGs) has the advan-
tage that we can control both center and surround, this in contrast to the Mexican-hat function
in Section A.2 where the ratio between center and surround is constant.
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Figure A.1: Gaussian functionsGcσ and Gsσ have cut-off radii ofk and dn, respectively. The
Mexican-hat functionMcsσ is the sum ofGcσ and�Gsσ. Note that the center radius of the Mexican-
hat function is not equal with the cut-off radius ofGcσ.

A.3.1 One-dimensional Mexican-hat function based on DOGs

Instead of the Mexican-hat function defined by formula (A.7) one can also use a Mexican-hat
function based on the difference of two Gaussian functions:

Mσ;m(r) = Gσ(r)�Gmσ(r); (A.14)

for somem> 1. Since both Gaussians are normalized this implies that
R ∞
�∞ Mσ;m(r)dr = 0.

Normalization of
R ∞
�∞ jMσ;m(r)jdr = 0 is only possible in a numerical way. Since normaliza-

tion is not possible analytically we multiplyMσ;m with a factorσ
p

2π to be able to control
the two Gaussians and to simplify both Gaussians.

For convenience we will write the first Gaussian in equation (A.14) multiplied with this
factor as

Gcσ(r) = e�
r2

2σ2 ; (A.15)

the second Gaussian as

Gsσ(r) =
1
m

e�
r2

2σ2m2 ; (A.16)

and the Mexican-hat as

Mcsσ(r) = Gcσ(r)�Gsσ(r): (A.17)

A.3.2 Controlling the difference of two Gaussians

If a Mexican-hat function is used as a filter and one wants to control both center and surround
of the filter then the function should be normalized because when used as a filter will have
better properties.
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Figure A.2: a) Five different Mexican-hat functions all with the same center radiusn but different
surround radii, the different surround radii are5n, 6n, 7n, 8n, and9n, respectively.b) The five different
Mexican-hat functions, enlarged at one of the surround borders. The horizontal line isε =�e�9.

Let us assume that the center of the Mexican-hat function has radiusn and that the sur-
round has a radiusdn (see also Figure A.1). Given the center and surround Gaussians from
(A.15) and (A.16), we should find out howσ andm should be chosen to get a Mexican-hat
center radiusn and a surround radius ofdn (Figure A.2).

For the center radiusn of the Mexican-hat function yields:

Mcsσ(n) = 0 (A.18)

� Gcσ(n) = Gsσ(n)

� e�
n2

2σ2 =
1
m

e�
n2

2σ2m2

� � n2

2σ2 =� n2

2σ2m2 � logm

n = σ
s

2logm

1� 1
m2

: (A.19)

From which we conclude that there is a relation betweenσ andm. For the surround radius of
the Mexican-hat function yields:

Mcsσ(dn) =�ε (A.20)

� Gcσ(dn)�Gsσ(dn) =�ε
� fGcσ(dn)� 0g

Gsσ(dn) = ε

� e�
d2n2

2σ2m2 = mε
� f(A:19)g

e
d2 logm
1�m2 = mε
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Figure A.3: a) The relation betweenmandd. Note thatd is at least four. This means that only a ratio
between center and surround can be realized where the surround radius is at least four times larger
than the center radius.b) The relation betweenm andd.

� d2 logm
1�m2 = log(mε)

� d =

s
log(mε)(1�m2)

logm
: (A.21)

Note that if we had used the Mexican-hat function from (A.14) we would have had
log(σ

p
2πmε) instead of log(mε) in (A.21).

A.3.3 Two-dimensional Mexican-hat function based on DOGs

Similar to the one-dimensional Mexican-hat based on DOGs we use two Gaussians. To sim-
plify these two-dimensional Gaussians we multiply with a factor 2πσ and obtain aGcσ(r)
which is identical with (A.15) and

Gsσ(r) =
1

m2e�
r2

2σ2m2 ; (A.22)

wherer =
p

x2+y2. Equation (A.19) changes, since log
�
m2
�
= 2logm, it will be multiplied

by a factor
p

2 and becomes:

n= 2σ
s

logm

1� 1
m2

: (A.23)

Equation (A.21) changes into:

d =

s
log(m2ε)(1�m2)

2logm
: (A.24)
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Figure A.4: a) The relation betweenmandd in the two-dimensional case. Note again thatd is at least
three. This means that only a ratio between center and surround can be realized where the surround
radius is at least three times larger than the center radius.b) The relation betweenm andd in the
two-dimensional case.

A.3.4 Minima of the Mexican-hat function based on DOGs

By construction the maximum in the Mexican-hat is at the origin (r = 0). But in Figure A.2
one can see that the minimum value of the Mexican-hat seems to be constant independent
of the ratio between center and surround. Let us calculate the derivative of the Mexican-hat
function to check if the location of the minimum is indeed independent of the ratio between
center and surround.

The minimum of the one-dimensional Mexican-hat is at:

d
dr

Mcsσ(r) = 0 (A.25)
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� f(A:19) andr � 0g
r = n

p
3: (A.26)

This proofs hat the minimum is center surround ratio independent. In the two-dimensional
case the minimum of the Mexican-hat is atr = n

p
2.
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σ;θ, seeEs

σ;θ, seeEs
σ

M : : : : : : : : : : : : : : : : : : : : : : : : : :seeNσ
P: : : : : : : : : : : : : : : : : : : : : : : : : : :seePσ
simple

anti-symmetrical: : : : : : : : : :seeSa
σ;θ

symmetrical: : : : : : : : : : : : : :seeSs
σ;θ

retina: : : : : : : : : : : : : : : : : : : : : : : : : : : : 9–11
retinex theory: : : : : : : : : : : : : : : : : : : : : :108
rod : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
rotation: : : : : : : : : : : : : : : : : : : : : : : : : 55–57

S
scale: : : : : : : : : : : : : : : : : : : : : : : : : : : : :4, 29
scale space: : : : : : : : : : : : : : : : : : : : : : : : : 29

linear : : : : : : : : : : : : : : : : : : : : : : : : : : 29
non-linear: : : : : : : : : : : : : : : : : : : : : : 31

segment: : : : : : : : : : : : : : : : : : : : : : : : : : : :96
Sa

σ;θ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :26
Ss

σ;θ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :26
standard corner operator: : : : : : : : : : 81–84

DET : : : : : : : : : : : : : : : : : : : : : : : : : : : 62
Diff : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65
Kitchen Rosenfeld: : : : : : : : : : : : : : :64
Plessey: : : : : : : : : : : : : : : : : : : : : : : : :64

striate cortex: : : seeprimary visual cortex
SC e;i

σ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :113

T
trichromacy: : : : : : : : : : : : : : : : : : : : : : : 108
tristimulus: : : : : : : : : : : : : : : : : : : : : : : : :110

V
vertex: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :96
visual area V1: : seeprimary visual cortex
visual area V2: : : : : : : : : : : : : : : : : : : : : : 13



164 Index

visual area V3: : : : : : : : : : : : : : : : : : : : : : 13
visual area V4: : : : : : : : : : : : : : : : : : : : : : 13
visual area V5: : : : : : : : : : : : : : : : : : : : : : 13



Samenvatting

Dit proefschrift beschrijft onderzoek aan objectherkenning door kunstmatige visuele sys-
temen. Op het eerste gezicht lijkt het construeren van een dergelijk systeem een triviaal
probleem: immers, deze vaardigheid beheersen wij mensen zodanig goed dat ze als van-
zelfsprekend wordt gezien. Toch is het menselijke visuele systeem superieur als het wordt
vergeleken met de huidige kunstmatige visuele systemen, dit ondanks jarenlang onderzoek
door vele wetenschappers.

Bij de meeste kunstmatige visuele systemen worden initieel beelden opgenomen met be-
hulp van een camera (soms ook wel eens het electronische oog genoemd). Zo’n beeld be-
staat uit een twee-dimensionaal rooster van beeldpunten (pixels), waarbij elk beeldpunt een
bepaalde kleur bevat die wordt gerepresenteerd door een getal. Daarentegen bevat het biolo-
gische oog een rooster van lichtgevoelige cellen, het netvlies. Elke cel zet lichtinformatie om
in electrische informatie, hetgeen in een getal uit te drukken is, en kan in dit opzicht worden
vergeleken met een beeldpunt.

Het is duidelijk dat de moeilijkheid bij een kunstmatig visueel systeem niet zozeer bij
het creëren van het beeld zit maar veel meer bij het interpreteren van zo’n beeld. Immers
een voorwerp wordt onder verschillende kijkhoeken, belichtingen of gedeeltelijk verborgen
achter een ander voorwerp toch nog steeds als hetzelfde voorwerp herkend. De mens is in
staat om zeer snel en met grote nauwkeurigheid een beeld te interpreteren. Het ligt daarom
voor de hand om biologische visuele systemen nader te analyseren en de daarbij ontdekte
principes te gebruiken binnen de kunstmatige visuele systemen.

Het menselijke visuele systeem heeft begrensde mogelijkheden met betrekking tot het op-
slaan van objecten. Objecten zullen daarom op een compacte en snel toegankelijke manier
moeten worden opgeslagen. Hoe deze representatie er uit ziet is voor een groot deel onbe-
kend. Het is aannemelijk dat, bij het zien van een voorwerp, er bepaalde kenmerken uit dit
voorwerp worden gehaald en dat deze kenmerken worden vergeleken met de kenmerken van
opgeslagen (geleerde) voorwerpen. Het vergelijken van deze kenmerken noemen we “mat-
ching” en het vinden van vergelijkbare kenmerken “herkenning”.

Het herkennen van objecten binnen visuele systemen kan globaal worden opgedeeld in
een aantal fasen:

1. het construeren van een beeld,

2. het benadrukken van kenmerken (bijvoorbeeld intensiteitsranden, hoekpunten of
een kleur) in dit beeld,

3. het extraheren van deze kenmerken uit het beeld (met de benadrukte kenmerken)
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4. en het detecteren van verschillende combinaties van kenmerken die verschillende
objecten representeren.

Het in dit proefschrift ontwikkelde model wordt opgebouwd volgens bovenstaande punten.
In fase 2 maken we gebruik van de voorwaartse stroom van informatie in het biologische

visuele systeem. We simuleren de respons van cellen in het biologische systeem op zoda-
nige manier dat het resultaat van een groep cellen de invoer vormt voor een volgende groep
cellen en gebruiken hierbij de “building block” architectuur die door Hubel en Wiesel werd
geı̈ntroduceerd. Het biologische visuele systeem is dermate complex dat slechts de eerste
fase en een deel van de tweede fase bekend zijn. Het eerste deel van het model is dan ook
beperkt tot datgene wat bekend is door middel van metingen van neurofysiologen.

In de laatste 40 jaar is er veel onderzoek gedaan naar de visuele systemen van katten en
apen, met name aan het oog en de visuele cortex. Dit is goed te verklaren doordat zowel het
oog als de visuele cortex zich bijna aan de oppervlakte bevinden en daardoor gemakkelijk
van buitenaf te bereiken zijn. De visuele informatie gaat via het oog naar de LGN (nucleus
corporis geniculati lateralis) om zijn weg te vervolgen naar de visuele cortex, die aan de ach-
terkant van het hoofd is gelocaliseerd. Daarna gaat de informatiestroom naar dieper gelegen
lagen in de hersenen.

Een zeker type cellen die in het netvlies wordt gevonden reageert als een kleine lichtvlek
als stimulus wordt aangeboden (vgl. een zwart beeld met een witte cirkel). De respons neemt
toe naarmate de vlek groter wordt totdat een zekere omvang bereikt is, daarna neemt de res-
pons af. Deze cellen staan dan ook bekend als cellen met “center-surround” eigenschappen.

In de visuele cortex vonden neurofysiologen groepen cellen die zeer goed reageren op
randen met een bepaalde ori¨entatie, terwijl andere groepen cellen alleen reageren op hoek-
punten. Hubel en Wiesel noemden de verschillende, in complexiteit toenemende, groepen
cellen “simpel”, “complex” en “hypercomplex”. De building block architectuur gaat uit van
de voorwaartse stroom van informatie. Binnen deze architectuur leveren een aantal center-
surround cellen op een rechte lijn met een zekere orientatie de invoer voor de simpele (rand-
gevoelige) cellen. Een combinatie van deze cellen levert de invoer voor de complexe (rand-
gevoelige) cellen die vervolgens op hun beurt weer de invoer leveren voor de hypercomplexe
(hoekpuntgevoelige) cellen. In het model zijn complexe en hypercomplexe cellen volgens
de building block architectuur opgenomen. Met deze architectuur leggen we ons de beper-
king op dat de informatiestroom geen terugkoppeling bevat. Uit onderzoek is gebleken dat
er wel degelijk een terugwaartse stroom van informatie plaatsvindt, maar dat is binnen dit
proefschrift buiten beschouwing gelaten. De resultaten van de gemodelleerde hoekpuntge-
voelige cellen zijn vergeleken met een aantal hoekpunt-detectoren die gebruikelijk zijn in de
beeldbewerking. Het blijkt dat de gemodelleerde hoekpuntgevoelige cellen betere resultaten
geven dan deze hoekpunt-detectoren, zeker als ze op meerdere schalen wordt toegepast.

Alle hierboven genoemde celtypen zijn achromatisch, d.w.z. niet gevoelig voor kleur. Uit
neurofysiologisch onderzoek blijkt dat het veel moeilijker is om kleurgevoelige cellen te sti-
muleren, waarschijnlijk doordat ze een veel complexere functionaliteit hebben. Wel blijkt
dat kleurgevoelige cellen goed reageren op een bepaalde kleur terwijl in dezelfde cel de res-
pons wordt onderdrukt als een andere kleur als stimulus wordt aangeboden. Deze eigenschap
wordt kleuropponentie genoemd. Er zijn twee soorten kleuropponentcellen, de ene heeft rode
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en groene, en de andere blauwe en gele kleuropponenten. Het blijkt dat de combinatie van
deze twee soorten tezamen met de achromatische cellen voldoende is om elke kleur te repre-
senteren.

Binnen de kleuropponentcellen zijn diverse soorten te onderscheiden. E´en van deze soor-
ten is de center-surround kleuropponentcel. Daarnaast zijn er nog cellen die reageren op een
kleur in het centrum, maar buiten het centrum drukt diezelfde kleur de respons. Deze cel
heeft nog een andere kleur die de respons drukt in het centrum maar weer sterk reageert bui-
ten dit centrum. Deze center-surround cellen staan bekent als dubbel kleuropponent cellen.
Naast deze cellen zijn er ook nog kleuropponent cellen gevonden die orientatiegevoelig zijn.
Over cellen die kleurgevoelig zijn en reageren op hoekpunten is tot nu toe nog niets bekend.
De functionaliteit van zulke cellen kan aannemelijk worden gemaakt door de buiding block
architectuur toe te passen op kleurgevoelige cellen. Alle genoemde bekende functionaliteiten
van kleurgevoelige cellen tezamen met de hypothetische kleur- ´en hoekpuntgevoelige cellen
zijn opgenomen in het model. Al deze gemodelleerde kleurgevoelige cellen worden tot de
tweede fase gerekend.

Overigens worden niet alle groepen cellen gebruikt in het model. Een voorbeeld hiervan
zijn de cellen die gevoelig zijn voor beweging. Deze zijn niet opgenomen in het model omdat
alleen met statische beelden wordt gewerkt.

In dieper liggende lagen in de hersenen wordt de informatie afkomstig van bovenge-
noemde cellen verwerkt. Een object wordt gerepresenteerd als een verzameling van ken-
merken die op een bepaalde manier aan elkaar gerelateerd zijn. Hoe deze representaties er in
een biologisch systeem uitzien is onbekend. Omdat vele cellen in de visuele cortex gevoelig
zijn voor randen en hoeken is het waarschijnlijk dat deze kenmerken een rol zullen spelen in
de representatie van een object. Binnen de wiskunde en informatica staat een zekere repre-
sentatie van hoeken en randen (kanten) bekend als een graaf. Deze representatie zal dan ook
in het model worden gebruikt, mede omdat de nodige eigenschappen en algorithmen over
grafen bekend zijn.

Aleer deze representatie kan worden gebruikt dienen eerst de in het beeld benadrukte
aspekten (zoals randen en hoekpunten) te worden gelocaliseerd en ge¨extraheerd. In het model
is een mechanisme opgenomen dat, uitgaande van de gevonden hoekpunten, randen probeert
te extraheren. Op deze manier wordt een graaf gecre¨eerd.

Nadat uit een kleurenbeeld een verzameling kenmerken is gehaald die wordt gerepresen-
teerd als een graaf, kunnen bestaande objecten (ook als graaf gerepresenteerd) met delen van
de graaf worden vergeleken. Deze techniek staat bekend als het matchen van grafen. Het
vinden van objecten in deze representatie is zeer rekenintensief (NP-volledig), en daarom
zijn er kenmerken aan de hoekpunten toegevoegd die de snelheid van het matchen versnel-
len. Deze kenmerken zijn zo gekozen dat ze de translatie, rotatie en schaal invariantie van de
graaf behouden. Het matching proces wordt door deze kenmerken zodanig versneld dat ze
praktisch toepasbaar en bovendien ook nog fouttolerant is.


