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Abstract

We assess the corner-detection capabilities of a model for end-stopped cells in the visual cortex (F. Heitger, L. Rosenthaler, R. von der
Heydt, E. Peterhans, O. Ku¨bler, Simulation of neural contour mechanisms: from simple to end-stopped cells, Vision Research 32(5) (1992)
963–981). The responses of one of these cells alone cannot account for the percept of a corner. This shortcoming can be greatly alleviated by
a combination over several scales. The resulting corner detection method can deal with high frequency texture, low contrast, and rounded
corners and is competitive in comparison with other corner detectors. Starting from known cortical cell types we hypothesize a color-
sensitive equivalent of simple cells. This allows to extend corner detection to color-sensitive channels. The combination of grey-scale and
color corner-detection yields a biologically plausible model of corner perception and may also be of interest for computer vision applications.
q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Corners are important image features because of their
robustness with respect to changes in perspective or small
distortions. As they are zero-dimensional, they do not pose
an aperture-problem, and thus allow efficient matching for
recognition purposes [1]. It is known that removing the
corners from images can impede human recognition perfor-
mance drastically, while removing much of the edge infor-
mation does not [2].

Robustness and speed of corner matching can be
improved by adding specific feature attributes to the corners
[3]. This makes computationally “expensive” detection
algorithms attractive, because they usually yield a variety
of information beside the corner location. Useful attributes
aresubtended angle, sharpness, size(i.e. the range of scales
where the corner exists), and the distribution of grey-values
or colors in the neighborhood of the corner.

For clarity of the subject we define a corner as follows. A
junction is an image point where one or more line or edge
segments end. Acorneris a junction where one of the angles

between line segments is larger than 1808. Thus, junctions
of the V-, I-, and # -type are corners, while such of Y-, T-,
K-, or X-type are not.

Our method for detecting corners will yield position, sharp-
ness, size and color and grey-scale distribution (contrast). The
subtended angle can be determined a posteriori by following
the line segments that constitute the corner.

Our interest in corner detection is twofold. First, we want
to find robust detection algorithms for technical systems,
which can support model matching algorithms [1] and
second, we want to provide a computational model for
human vision. For the latter, an answer to the question
will be proposed of how the percept of a corner might be
linked to the responses of end-stopped cells.

The approach we are following is the one of a feedfor-
ward neural network, a common view for early visual
processing. We are aware of the fact that not every
perceived corner could be accounted for by this model.
For example, corners of two different objects located close
to each other will disturb the receptive fields that should
give rise to corner detection. A feasible solution to this is
a top-down component that finds the corners relying on the
experience that the recognized objects ought to have corners
there. Such processes go beyond the model we are present-
ing here and are mentioned only to make the limitations of
the proposed model explicit.
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2. Processing in the visual cortex

For the early stages of vision, good functional models are
available. The usual view here is hierarchical processing:
Retinal cells feed their output to the lateral geniculate
nucleus, whose output can be nicely modeled by convolu-
tion with a difference of Gaussians, or Laplacian of Gaus-
sians. Their responses are combined to form orientation
selective simple cells, which in turn feed their output to
complex cells, which constitute the input to end-stopped
cells. The basic operations are only summation of outputs
and simple nonlinearities, so this could be implemented by a
feedforward neural network. See Ref. [4] for an explicit
model of those connections. It must be noted, however,
that in spite of the good functional models this view
provides for static images, it is far from clear (and currently
under debate) that the anatomy works that simply.

2.1. Gabor functions as a model of simple and complex cells

In the visual system, orientation selective edge and line
detectors form the first stage in corner detection. These
detectors are called simple cells and are found in the
primary visual cortex [5]. Various mathematical functions
can be used to model responses of those cells, one of them,
which we will adapt here, are two dimensional Gabor func-
tions [6–8]. The responses of even (line-enhancing) and odd
(edge-enhancing) simple cells are elegantly modeled as the
real and imaginary parts of a Gabor function. In order to
keep the formulae short we will use the following abbrevia-
tions throughout:

c� cosu; s� sinu; ci � cosui ; si � sinui ; �1�
whereu andui denote the preferred orientation of the cells
in question. The formula for the simple cells then becomes:

Ĝs;u�x; y� � exp i
p��
2
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�xc1 ys�
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wheres is related to the width of the receptive field. We are
also using theradius r of the receptive field, assuming that
the receptive field ends where the value drops below 1029.
This yields the relationr � 4:24s:

For our simulations, the Gabor functions were slightly
modified such that their integral vanishes and their one-
norm (the integral over the absolute value) is independent
of s . The first is a known property of simple cells, and the
second makes the responses at different scales easy to
compare. The activities of a whole two-dimensional layer
of simple cells are then modeled by convolution of the input
image withGs;u:

The next step in the computational hierarchy arecomplex
cells, which can be modeled by the modulus of the Gabor
function, i.e. each of these cells receives input from an odd
and an even simple cell and the nonlinearities involved are

squares and square roots. A layer of them is modeled by

Cs;u�x; y� � uI p Gs;uu; �3�

whereI denotes the input image.
For computation it suffices to use orientationsu [

�08;1808� sinceCs;u � Cs;u11808: TheC-operator localizes
intensity discontinuities but its output does not carry infor-
mation about their type and polarity.

2.2. End-stopped cells

Cells that respond only to those edges or bars thattermi-
nate within their receptive field have first been found by
Hubel and Wiesel [9]. Two types are distinguished: the
single end-stopped cellsrespond well to line-ends; the
double end-stopped cellsrespond best to very short line-
segments or small spots, circular objects or blobs. A combi-
nation of output responses of complex cells is used as input
for the end-stopped cells. We model them according to
Heitger et al. [10], but our notation is slightly different.
The first attempt at constructing an end-stopped operator
is an approximation of the first derivative of theC-operator
in the direction orthogonal to its preferred one:

Ŝs;u�x; y� � Cs;u�x 1 dss; y 2 dsc�
2Cs;u�x 2 dss; y 1 dsc�:

�4�

The operator which models the receptive field function-
ality of doubleend-stopped cells approximates the second
derivative of theC-operator:

bDs;u�x; y� � Cs;u�x; y�2
1
2
Cs;u�x 1 2dss; y 2 2dsc�

2
1
2
Cs;u�x 2 2dss; y 1 2dsc�: �5�

u [ �0;2p� is the orientation andd a positive constant,
which represents the distance between the excitatory and
inhibitory region of the end-stopped cells relative tos . Its
value is of great importance for the functioning of the
model. If it is too large, the line segment (or edge) will be
eliminated in the middle and two shorter line segments will
remain instead of the end points. Whend is chosen too small
a corner will be detected at the wrong position. We have
found that the choice ofd � 1:79 constitutes a reasonable
compromise.

In order to adjust the parameters of the model we deter-
mined thecorrect locationsof the corners manually in the
test image shown in Fig. 1. Every response of the modeled
end-stopped cells other than at these corners is afalse
responseand must be eliminated by further machinery.
Following Heitger et al. [10] this is done by a tangential
and a radial inhibiting operator, which are defined as
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follows:
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In these definitions, the function�f �$0 is defined to be

equal to 0 where its argument is negative and equal tof
elsewhere. This is a nonlinearity quite commonly used in
neural networks, and the notation follows [10].N is the

number of orientation samples in 1808, which must be
even for technical reasons.ui � �i=N�1808: The symbol
“a\b” stands for the remainder ofa under division byb.
The weighting factorswt and wr are positive constants,
which must be adapted properly in order to suppress all
false responses. The valueswt � 1 andwr � 4 have been
found empirically, and work well for many input images and
all values ofN ands .

The final corner operators on a single scale in a single
direction then are:

Ss;u � ��Ŝs;u�$0 2 g�I t
s 1 I r

s��$0
; �8�

Ds;u � ��D̂s;u�$0 2 g�I t
s 1 I r

s��$0
; �9�

where g is a gain factor, which must be chosen appro-
priately. A reasonable value, found empirically, isg�
2:0:
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Fig. 1. (a) The character P used as input stimulus with manually marked corners; (b) the drift of these corners under variation of the receptive field radius r; and
(c) the strength of these corners with variation ofr.



3. Scale-dependence of end-stopped cells

If an image contains a sharp convex corner, end-stopped
cells will react on all scales. In real-world images the
corners may not be ideal, and therefore the variation of
the response over different scales is important. If the loca-
tion of a corner should shift in an unpredictable way with a
scale change a useful combination would be much harder to
find than if it is relatively stable. We have scrutinized that
relation using simple, artificial stimuli. The upper half of
Fig. 2 shows the expected dependence of the response on the
corner radius. The good results achieved by the proposed
multiscale combination indicates that natural corners
behave similarly. These results cannot hold in full generality
because examples can be constructed where the corner posi-
tion actually must shift when moving across scales. For
example, with a large rounded corner located close to a
small sharp one detection will switch from the sharp one
to the large one at some point when scale is increased
gradually.

The deviations of the strongest response from the correct
locations we calldrift, with “correct” meaning correct by
visual inspection. Without explicit knowledge of the correct
location the movement of the response under scale variation
yields an estimate of the drift. For simplicity, we only look
at the maximal response of theSu andDu operators over all
orientations. This means that, for the moment being, we
ignore information about the orientations that make up the
corner and the distinction of corners and line-ends. For
applications, this useful information can, of course, be
retained. The resulting operator is:

Es � max
i�0;…;2N 2 1

�max�Ss;u i
;Ds;u i

��: �10�

In order to extract single pixels as corner points we begin
by thresholding the results ofEs at each scale with a thresh-
old T (Fig. 3) This yields little patches, which we callpoten-
tial corner features(PCF). These patches are thinned out by

taking local maxima, i.e. a point (x,y) becomes amarked
corner(MC) if it is a PCF and its value ofEs is larger than at
the eight neighboring pixels. This means that each PCF must
contain at least one MC, but several are possible.

We used artificial images of corners with subtended
angles varying from 38 to 1508 (corners with larger
subtended angles remain undetected). Fig. 4 shows that
corner detection is reliable and practically independent of
s . Also, the value of theEs operator depends very little on
the angle in the range between 208 and 1208. Thus, the
thresholdT can be chosen independently ofs , and we
have usedT � 5 throughout. The drift varied in the range
of ^3 pixels without any clear relation tos . This is enough
to prohibit the simplest possible combination by a Boolean
operator on the presence of a corner at a given pixel on the
single scales derived from the local maxima ofEs .

The results of the corner operatorEs on a image of a real-
world scene are shown in Fig. 3. That image poses a difficult
test-case for corner detection, it has a background with
many high-frequency features, and some corners are
rounded, vague, or with low contrast. If we take different
scales separately as illustrated in Fig. 3, we obtain many
PCF areas in the background for small scales. The middle
scales still show over 50% falsely detected PCF areas and
fail to detect the corner between the marker and the pencil.
The coarsest scale, which is the most reliable one in terms of
ruling out texture still shows false responses at the round
part of the scissors.

The use of a small scale produces small PCF areas, which
is ideal for corner localization. On the other hand, most of
these PCF areas do not contain a real corner but small details
of the background. With increasing scale the size of the PCF
area increases, too, and the number of PCF areas caused by
the texture decreases. Fig. 3e shows areas at all corner-
points but also a considerable amount of undesired PCF
areas. In the largest scale the areas are large and some
corners are not covered by a PCF area but the undesired
ones are gone. Beside the tradeoff between localization

R.P. Wu¨rtz, T. Lourens / Image and Vision Computing 18 (2000) 531–541534

Fig. 2. (a) Synthetic image with a rounded corner; (b) shows the dependence of the response of theEs operator on the radius (curvature) of the corner for
different values of the receptive field radiusr � 4:24s:



and robustness, this experiment shows that for images
like the one used it is not sufficient to choose one
appropriate scale for corner detection, but several scales
must be taken into account. It should be noted that the
exclusion of the background texture is motivated by the
assumption that corners are located at the end of signif-
icant lines. Clearly, line following is a different
problem, andsomecorners can only be detected by a
high-level perceptual decision. However, we argue that
the combination of different scales yields a better low-
level corner detector than any combination of filtering
and thresholding on a single scale. Fig. 3 illustrates that
there is no single scale at which all corners are
detected. For example, the corner at the top of the
ball-point at the right in the image is covered by a
PCF area in the small and middle scales. The corners
at the top of the left marker appear in the middle and
large scales only, this makes it clear that multiple scales

are not only necessary to obtain all corners but also to
eliminate the PCF areas caused by the texture.

The use of multiple scales also has the advantage that
additional information about the corner can be extracted,
e.g. the corner can be classified as responding to small,
middle, or large scales, or a combination of them. Once
we have combined the operators on multiple scales, this
signaturebecomes an additional attribute of the corners,
which may reduce the complexity of corner matching [3].
Analysis of the robustness of this property will be subject to
future research.

4. Combination of a range of scales

Our analysis of the end-stopped operators on simple
synthetic as well as real-world images has shown that the
extension of the PCF areas is roughly proportional to the
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Fig. 3. The left column shows potential corner features (PCF) using the receptive field radiir � 15; r � 25; andr � 35; the right column the corresponding
marked corners (MC). The corner marks are larger than one pixel for visualization.



receptive field radiusr (or the parameters). If the responses
exist over a variety of scales, the drift is usually smaller than
the width of those areas. Thus, the operation applied for
combining can remain local, there is no need to integrate
different locations. In detail, we have made the following
observations:

1. The outputs of theEs-operators at a corner or line-end
are (almost) identical at all different receptive field sizes.

2. Usually if a corner is detected with a receptive field
radiusr, it is detected also in the “neighboring” receptive
field radiir ^ r 0 (In the simulationsr 0 � 2:5 or 5 are used).

3. TheEs-operators respond well to sharp corners at all differ-
ent scales but they do not respond to rounded corners,
except for larges .

4. The responses of theEs-operator at large scales yield large
spots aspotential corner feature areas.Thesespots cover the
proper locations.

5. TheEs-operators at small scales locate corners very well
but are very sensitive to local changes (high frequency
noise) and therefore less reliable.

After testing several combination methods containing
nonlinearities such as, e.g., powers and various sampling
schemes fors we found that the simpleaverageof Es

over an equidistantly sampled range of scales is sufficient:

Eavg�x; y� � 1
S

XS2 1

i�0

Es01iDs�x; y�; �11�

This is yet another application of a feedforward neural
network, the nonlinearity is introduced by the same thresh-
olding that gives rise to the PCFs on a single scale.

So the final corner operator is achieved by:

1. evaluation ofEavg on the image;
2. thresholding to obtain the PCF areas; and
3. thinning of the PCF areas to obtain single corners.

The quality of this detector is shown in Fig. 5. The para-
meter values for these results have beenN � 8; smin �
1:18; smax� 9:43; andS� 15:

It would be worthwhile to compare the average operator
to the actual mechanism used in human vision. However,
these mechanisms are not known well enough to allow a
comparison. The assumption underlying our model is that
PCF-areas are detected by feedforward neural network
acting on the output of complex cells. From that viewpoint,
the average operator in Eq. (11) followed by thresholding is
only the simplest possible network, which we have verified
to produce reasonable results on real-world images. It
should be noted that even the neuronal wiring of complex
cells is subject of a current debate in neuroscience. The
articles of Alonso and Martinez [11] and Chance et al.
[12] present conflicting evidence in the same journal only
half a year apart.

5. Extension to color channels

The corner detection described so far as well as most
corner detectors from the literature act on grey-level images.
In this section we describe a biologically motivated exten-
sion to color channels.Opponentcolor-sensitive cells are
found at the first levels of processing after the photorecep-
tors. Some of them are orientation selective and have an
elongated area which isexcitedby one color, and one or
two flanks which areinhibited by the opposite color with
color pairs blue–yellow, red–green, or vice versa [13]. In
area V4, color and orientation selective cells have been
found [14].

In the parvo-cellular layer of the visual system of the
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Fig. 4. The relative output of theE-operator at corners with different angles.
TheE-operator with receptive field radiusr � 5 responds best to a corner
with an angle of three degrees, this response is normalized to 100 and all
others are relative to this response. The lines labeled fromr � 5 to r � 40
represent the different receptive field radii of the modeled simple cells. The
receptive field radiusr is equal to 4.24s .



macaque monkey three different types of cells are found
[15]. Two types are called color opponent cells because
they always have an excitatory and an inhibitory color.
The first type of these opponent cells is called thecenter-
surround color-opponent cell. This type is divided into two
groups, one with red-green color opponency and another
one with blue-yellow opponency. The second type of oppo-
nent cells is thecenter-only color-opponent cells, and make
up about ten percent of the four upper geniculate (parvo-
cellular) layers. Cells of the third type, about 15% of the
cells in the parvo-cellular layers, have center-surround
receptive fields and do not show a color preference. Their
receptive field size is about the same as for the first type of
cells, whereas the receptive fields of the second type are
more like those of the achromatic center-surround cells in
the magnocellular pathway, which are about four times
larger than the first and third type [16].

The opponent-color theory uses the above three types
of cells and combines the outputs from red, green, and
blue (R,G,B) cones into an achromatic channel (black
and white) and two chromatic channels (red–green) and
(blue–yellow). The fourth type of color-opponent cells
are the double-opponent cells, first discovered in the
goldfish [17,18]. Such cells are also found in the cortex
of the monkey but not in the lateral geniculate nucleus
[15]. They have excitatory and inhibitory regions for
each of the two colors they are sensitive to. Double
opponent cells are found in the cortical upper-layer
cells in so-calledblobs. Within the blobs of the maca-
que, Livingstone and Hubel found three types of double
opponent cells, known as red–green, yellow–blue, and

black–white double opponent cells. The most common
double-opponent cell has red–green color opponency
[13,34]. It seems likely that cells in the blobs project
to cells around the blobs, a few of which are specific
for both color and orientation [13,19]. In all species
that have been studied, double opponent cells are
found one stage higher than opponent cells and are
probably formed by convergence of the opponent
color cells [19].

In this paper we use color images in the (r, g, b)-
format as provided by a color video camera for input
and ignore all subtleties about variations in spectral
sensitivity of the real photoreceptors. That is, the
grey-scale imageI from the first sections is replaced
by the triple (I r, I g, I b). The first transformation is calcu-
lating the remaining channels yellow and grey-scale
(achromatic):

I y � 1
2
�I r 1 Ig�; �12�

I a � 1
3
�I r 1 Ig 1 Ib�: �13�

Then the color images are transformed into the achro-
matic (upper indexa), the red–green and the blue–yellow
channel. For simplicity of the model we assume that the M-
and P-pathway have similar properties and that the relative
outputs of the cones is similar to the (r, g, b) triple. In the P-
pathwaydouble opponent color sensitive simple cellscan be
obtained in a similar way as the simple cells. Their receptive
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Fig. 5. Corners detected by the detectorEavg, which combines end-stopped responses from a range of scales, in a variety of natural images.



field properties are modeled by:

G e;i
s;u � I e p Gs;u 2 I i p Gs;u; �14�

where the variables (e, i) stand for one of the four pairs (r, g),
(g, r), (y, b), and (b, y).

Proceeding in the same way as in Section 2 we obtain the
following operator for the double opponent color sensitive
complex cell (analogous to Eq. (3)):

C e;i
s;u�x; y� � uG e;i

s;uu �15�
Consequently, the following double opponent color

operators are constructed:S e;i
s;u; D

e;i
s;u; E

e;i
s ; Ee;i

avg; which
are the color-sensitive equivalents of the end-stopped cells
and corner detectors, respectively.

The percept of a corner is not confined to a single chan-
nel, rather corners from any channel are accepted. To model
this, we finally combine corner detectors from all channels

by:

Eall�x; y� � Ea
avg�x; y�1 Er;g

avg�x; y�1 Eg;r
avg�x; y�

1 Eb;y
avg�x; y�1 Ey;b

avg�x; y�: �16�
In Fig. 6 the detected corners are illustrated by using the

MC-operator, for better visualization we illustrated only the
corners in color. The door is blue, the handle is shiny, and the
background has a grayish texture. Fig. 6e shows that the
combination of all five channels is necessary to find all
corners (Fig. 6f). Combining corners at multiple scales can
cause a local maximum in a channel to disappear in the
combination of channels and vice versa a local maximum
can appear due to summing the responses of different chan-
nels which are not in one of the single channels.

The use of color is not primarily intended to improve tech-
nical corner detection. Of course, it is possible to construct
images that have corners only in the color channels but not in
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Fig. 6. Corners detected in the color image of a blue door with a shiny knob: (a)–(d) show the results in the (red, green), (green, red), (blue, yellow), and
(yellow, blue) channels, respectively; (e) the results in the achromatic channel; and (f) corners detected by combining all five channels with theEall-operator.



the intensity channel. Given the observation that those are read-
ily detected by a human observerand the hypothesis that a
bottom-up process is responsible for corner detection we
would expect that similar machinery be present in the color
channels.

6. Discussion

We have analyzed properties of the model for end-
stopped cells proposed in Ref. [10]. In order to link the
responses of these cells with the percept of a corner we
have proposed to use the pointwise average of their
responses over a range of scales.

Furthermore, by hypothesizing a new kind of color-sensi-
tive cells with receptive field properties similar to simple
cells we have extended corner detection to color channels.

Fig. 6 shows an example where only the combination of
achromatic and color channels can reveal all corners.

We have compared the single-scale corner detection with
five standard corner detection operators, namely the ones from
[20–24]. On single scales their performance was worse than
Es (Fig. 7), which may be expected given the higher computa-
tional cost of the latter. The scale problems we have discussed
apply to all of these corner detectors. The same holds for the
optimalcorner detector developed in [25]. We were not aware
of the existence of that detector by the time we made the
experiments,and therefore it isnot included in the comparison.
On the other hand, the optimality of image processing opera-
tors depends on the applicability of the underlying feature
model, which is violated frequently in real-world images.

After combining scales with the average operator, the
Plessey feature point operator [24] scored best and yielded
results comparable to our operator. All other operators were
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Fig. 7. Thresholded results of the outputs at a single scale of different operators: (a)–(e) the PCF areas obtained with the Diff-operator, DET-operator, Kitchen–
Rosenfeld operator, Plessey feature point operator, and Plessey–operator, respectively. The outputs of the operators are thresholded at 100, 2, 3,15, and 0.4.
The parameters used are:m � 1; ands � 3 for the Gaussian kernel; and (f) The result of our operator atr � 25; thresholded atT � 5:



weaker in the sense that they detected too many texture
details or strong contrast differences rather than corners.
This shows that our approach yields not only a model for
corner perception but also a competitive corner detector for
computer vision (see Fig. 8 for the results of the different
detectors). We have tried to choose good parameter sets for
all of the operators, but are not sure if we have found opti-
mal ones in each case. The results from Fig. 8 at least
suggest that other corner detectors require different methods
of combination over scales thanEs .

The crucial prerequisite for applying the corner detector
proposedhere isasmalldrift, i.e. thedisplacementofadetected
corner under variation of the detector scale must be smaller
than the corresponding variation of the PCF area. For edge
detectors, the equivalent of drift has been studied extensively
using edge models in Ref. [26] and in Ref. [27]. A comparable

theoretical analysis to our knowledge does not exist for corner
detection. On the other hand, we have deliberately avoided
using a corner model, because of the known limitations of
such model assumptions. Instead we have explored a
“synthetic” approach, which uses known facts from biological
vision, relying on the assumption that living systems have
mechanisms to develop feature detectors optimally suited to
the images they have to process. Nevertheless, we agree that
further theoretical analysis of the proposed detector is neces-
sary, although complicated by the form of the Gabor functions
and even more by the nonlinearities throughout the processing
path. Lately, an attempt has been made to understand better the
nonlinearity in the formationof complex cells, i.e. the modulus
of a Gabor-filtered image [28], but a complete analytical
treatment of the endstopped cell model underlying our corner
detector currently seems out of reach.
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Fig. 8. Marked corners at multiple scales (combined with the avg-operator) of different standard operators: (a)–(e) the marked corners obtained with the Diff-
operator, DET-operator, Kitchen–Rosenfeld operator, Plessey feature point operator, and Plessey-operator, respectively. The outputs of the operators are
thresholded at 5.104, 200, 25, 106, and 0.005. The outputs of the Diff- and Kitchen–Rosenfeld operators are thresholded at the extrema and the outputs of other
operators are thresholded at positive values. The parameters used are:m � 1; and linearly increasing receptive fields ranging fromr � 5 to r � 40 with a step
size of 2.5; and (f) the result of our operator.



The reliability of the proposed corner detection method
has made it possible to use it for the construction of a
symbolic representation of objects as edge graphs. We are
currently testing the applicability of this data format. First
promising results have been published in Ref. [1].

The methods employed here and the underlying philosophy
bear some resemblance to the concept ofscale space[29]. For
a recent overview of scale space techniques for the detection
of corners and other features see Ref. [30]. The major differ-
ence between (Gaussian) scale space and the use of Gabor
filters is the explicit representation of local orientation in the
latter. The Gabor transform derives a four dimensional repre-
sentation (two spatial plus two frequency coordinates or,
alternatively, scale and orientation) of the image. This repre-
sentation, sometimes calledphase space, may be viewed as an
extension of the original scale space concept by the extra
orientation coordinate, at least if both scales and orientations
are sampled densely, which is usually avoided due to the
computational effort required. What is lacking is the elegant
and analytically fruitful method of moving along the scale
coordinate by means of a differential equation.

A major drawback of the Gabor phase space approach is
the multitude of convolution operations, which makes it
expensive in terms of computing time. Analysis of a 512×
512 pixel color image takes about 30 min on a Pentium I
with 233 MHz and 256 MB RAM under Linux. Most of this
time is spent for the convolution with 360 Gabor functions
(15 scales, 8 orientations and 3 color channels). Given the
broad usability of the Gabor transform (see, e.g. Refs. [31–
33]) it can be expected that it will soon be available in
hardware. Given such a front end technical applications of
this approach will be no problem. Also, closer analysis may
allow to reduce the number of Gabor scales required.
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