
Teaching Machine Learning to Design Students
Bram van der Vlist, Rick Westelaken, Christoph Bartneck, Hu Jun, Rene Ahn, Emilia

Barakova, Frank Delbressine, Loe Feijs

Department of Industrial Design

Eindhoven University of Technology

Den Dolech 2, 5600MB Eindhoven

The Netherlands

[h.f.m.v.d.westelaken; b.j.j.v.d.vlist]@student.tue.nl; [c.bartneck; j.hu; r.m.c.ahn;

e.i.barakova; f.l.m.delbressine; l.m.g.feijs]@tue.nl

Abstract
Machine learning is a key technology to design and create intelligent systems,

products, and related services. Like many other design departments, we are faced with

the challenge to teach machine learning to design students, who often do not have an

inherent affinity towards technology. We successfully used the Embodied Intelligence

method to teach machine learning to our students. By embodying the learning system

into the Lego Mindstorm NXT platform we provide the student with a tangible tool to

understand and interact with a learning system. The resulting behavior of the tangible

machines in combination with the positive associations with the Lego system

motivated all the students. The students with less technology affinity successfully

completed the course, while the students with more technology affinity excelled

towards solving advanced problems. We believe that our experiences may inform and

guide other teachers that intend to teach machine learning, or other computer science

related topics, to design students.

Introduction
The Department of Industrial Design at the Eindhoven University of Technology

prepares students for a new type of engineering discipline: design and creation of

intelligent systems, products, and related services. These systems, products and

services require adapted to the user and thereby provide a new experience. In the

framework of our Masters program, we offer a course that familiarizes students with a

number of powerful conceptual and intellectual tools to understand and create

adaptive behavior at a system level.

System level thinking has had and still has an enormous impact upon the development

of technology. When working at a system level one does not study individual

component behavior, such as Ohm's law for an electrical component; instead one

addresses bigger questions such as the stability of the feedback loops, information

throughput, or learning capacity. The learning objective includes classical control,

reinforcement learning and adaptive control, pattern recognition. The context of Lego

is chosen because it is already an example of a system. The project’s creative goal is

to make a leap forward, extending the scope of the existing system such that adaptive

behavior becomes the central theme.

Like many other design departments, we are facing the challenge of teaching the

mathematical foundation of machine learning to students that are neither

mathematicians nor computer scientists. Most of the students in our department do not

have an inherent affinity towards technology. They do not build up in depth

knowledge of programming or math.

One of the difficulties in teaching machine-learning is that its theory is abstract. The

process and the results of the machine learning are only available inside a computer

program. Design students are used to create and work with artifacts in the real world,

not with mathematical formulas. This abstraction level inhibits their understanding

and makes it difficult for them not only to reproduce relevant knowledge, but also to

apply and extend it.

We therefore created a new teaching method to better support students in their

learning of machine learning. Our new method involves the usage of embodiment

intelligence; transferring the abstract theory into a more hands-on experience. We will

elaborate on the structure of the course, the materials used, and two concrete case

studies. Our method is not limited to machine learning, but can be used to teach many

other aspect of computer science to design students. We believe that our insights may

inspire and guide other teachers to create better courses for their design students.

Structure of the course
The course’s first two weeks are theory oriented. A week during this phase typical

consists of two days of theory at the start, followed by three days of practice with

intermediate moment of contact between students and teachers to discuss their

progress and to answer specific questions. In these two weeks the students work on

very specific methods and principles. During the third and forth week the students are

invited to demonstrate their understanding of the theory through something that they

create. The teachers encourage depth, through additional theory, tools and methods.

We will now provide a more in depth view on the content of the course, but we would

like to emphasize that the method may also be applied to teach different aspects of

computer science. In our specific course, the goal is to teach the principles of

reinforcement learning and supervised learning to design students.

Embodied Intelligence

We selected Q-learning and Neural Networks as basic examples of reinforcement

learning and supervised learning. We embedded this form of intelligence into a real

body: the Lego Mindstorms NXT. Lego Mindstorms is an excellent prototyping

platform (Bartneck & Jun, 2004) for creating embodied intelligence. The platform

features a NXT brick that includes a microprocessor capable of running a Java virtual

machine. It comes packaged with several plug-and-play sensors and actuators and is,

by definition, compatible with the Lego brick system. Prototypes can be built with

click-and-connect ease, which allows students to focus on the implementation of the

software.

Traditionally, machine learning (Bishop, 2006) is demonstrated through a computer

program that does not only have to perform the learning, but which also has to

simulate the environment on which the input for the learning model is based. By using

an embodiment, such as the NXT, the sensory input does not longer need to be

simulated. The learning program receives its input directly through the attached

sensors that react to the stimuli that are already available in the real world (Nehmzow,

2003). The learning system could, for example, try to learn from the light sensor that

is mounted on the bottom of a robotic car. The goal of such a learning program would

be to learn how to follow a black line on the ground. The real world can offer a

richness that would be difficult to simulate. In addition, the embodiment allowed the

students to easily explore the influence of the various variables. This simplified and

enriched the process of understanding the meaning of variables in an algorithm,

seeing the results in behavior change of the embodiment.

Participants

The participants of our course are all industrial design master students, which can be

classified into two types. The first group consists of students that have a certain

affinity with technology. These students like to explore, what are for them, new

technological principles. They have a good understanding about a wide range of

technologies and their applications. They also have considerable programming skills,

with JAVA as solid basis. This group of students is usually the smaller of the two

groups and teaching them machine learning is easier. They might even be satisfied

with the traditional non-embodied method, but using the Lego NXT platform

considerably increases their motivation.

The second group of students can be described as students that do not have an

inherent affinity with technology. They have a limited understanding of technological

principles and master programming only up to a basic level. Teaching these students

machine learning is the true challenge.

It still needs to be acknowledged that students of either type are not mathematicians

or computer scientists. These students are used to the creative creation of artifacts and

not to formulas and logarithms. The teaching method needs to adapt to these

characteristics.

Material
For an embodied intelligence course software and equipment is necessary. While the

software is available for free, the hardware does require a certain budget. The basic

Lego Mindstorms Education NXT set is currently available for 285 Euro. Our

practical experience shows that one set can be shared by a maximum of two students.

We will now discuss the required hardware and software in more detail.

Hardware

The NXT brick is part of the Lego Mindstorms set. The NXT is an embedded system

with a plastic casing compatible with the Lego brick system. This way it can easily be

integrated into a Lego construction that may also contain the sensors and actuators

(Gasperi, Hurbain, & Hurbain, 2007). Lego saves a lot of time in constructing

mechanical components compared to other methods. An educational version is

available that includes the useful rechargeable battery, a power supply and a storage

box. The NXT specifications are:

• Atmel 32-bit ARM main processor (256 Kb flash, 64 Kb RAM, 48 MHz)

• Atmel 8-bit AVR Co-processor (4 Kb flash, 512 Byte RAM, 8 MHz)

• Bluetooth wireless communication (CSR BlueCoreTM 4 v2.0 +EDR System)

• USB 2.0 communication (Full speed port 12 Mbit/s)

• 4 input ports: 6-wire interface supporting both digital and analog interface

• 1 high speed port, IEC 61158 Type 4/EN 50170 compliant

• 3 output ports: 6-wire interface supporting input from encoders

• Display: 100 x 64 pixel LCD black & white graphical display

• Loudspeaker: Sound output channel with 8-bit resolution (Supporting a

sample rate of 2-16 KHz)

• 4 button user-interface

• Power source: 6 AA batteries or rechargeable Lithium-Ion battery.

Lego has developed a number of sensors and actuators as part of the Lego

Mindstorms set. All these sensors are compatible with the Lego brick system. The

basic Lego NXT Education set contains the following sensors and actuators:

• Touch sensor – detects when it is being pressed by something and when it is

released again.

• Sound sensor – detects both decibels [dB] and adjusted decibel [dBA].

• Light sensor – reads the light intensity in a room and measure the light

intensity of colored surfaces.

• Ultrasonic sensor – measure distances from 0 to 255 centimeters with a

precision of +/- 3 cm.

• Servo motor with build in rotation sensor.

As result of the success of the Lego Mindstorms, other companies developed

additional sensors and actuators. Some of these companies, such as HiTechnic

Products and Mindsensors.com, provide sensors for the NXT platform such as IR

Link Sensor, Gyro Sensor, IR Seeker Sensor, Compass Sensor, Color Sensor,

Acceleration / Tilt Sensor, Magnetic Compass, and Pneumatic Pressure Sensor. In

addition to the Lego NXT set, a standard computer is needed to write the programs.

The programs are then uploaded to the NXT using either USB or Bluetooth.

Software

Three software components are necessary for this course. All of them are available for

free and they replace the original Lego software. Lego’s own software development

tool is targeted to children and hence does not offer the flexibility and extendibility

required for a university course. An extensive tutorial on how to install the

components is available at:

http://www.bartneck.de/work/education/masterClassLego/javaInstallNXT/. We will

now describe the components in detail.

Java is a platform independent, object-oriented programming language

(http://www.sun.com/java/). The language derives much of its syntax from C and C++

but has a simpler object model and fewer low-level facilities. Java applications are

typically compiled to bytecode, which can run on any Java virtual machine (JVM)

regardless of computer architecture. It is a popular language for embedded systems,

such as micro controllers and mobile phones and also the Lego NXT is able to

execute Java programs.

It is advisable to use an integrated development environment (IDE) to write Java

programs. Eclipse is the powerful and widely used IDE that offers excellent support

for Java and the Lego NXT. Eclipse itself is written in Java and its installation is

particularly easy.

To enable the Lego NXT to execute Java programs, its original firmware needs to be

replaced with the open source leJOS firmware (Solorzano, 2002). The old firmware

can be reinstalled at any point. Conveniently, leJOS includes a Java Virtual Machine

so that no further software installations on the NXT are necessary to execute Java

programs. The leJOS Java library is an extension to the standard Java and enables

Java programs to use the platform specific features of the NXT, such as sensors and

actuators.

The Java Object Oriented Neural Engine (Joone) is an application that allows users to

build, test and train neural networks (http://www.joone.org). It features a convenient

graphical user interface. Neural networks trained with Joone can be exported and

called from any external Java program. It can therefore easily be integrated into more

general Java programs, such as Java programs for the Lego NXT.

Case Study 1: Reinforcement Learning with the
Crawler
During one week, the students mounted the NXT brick on wheels and gave it an arm

with two Lego NXT electronic motors, creating the crawler (see Figure 1). This

crawler has wheels (not driven) to freely move forward and backward. In order to

move itself, the crawler can only use its arm, which has two joints under motor

control. The Crawler has sensors to measure the position of the joints of the arm and

also one distance sensor which “sees” the distance from a wall or another reference

object. The NXT brick was programmed in Java to execute the reinforcement learning

algorithm (Q-learning). It is positive rewarded if it moves forward and negative

rewarded if it moves backwards. It explores its possibilities and learns how it should

move to accumulate a maximal reward. The Crawler starts from seemingly random

movements, but after a few minutes really finding a kind of rhythm how to move the

arm and efficiently move forward.

[figure]

Figure 1: The Crawler

We will now discuss the Q-learning theory in more detail to enable the reader to form

a better judgment of the difficulty that the students were able to overcome during one

week by our teaching method. Q-learning is a common and well known reinforcement

learning algorithm (Sutton & Barto, 1998). This method of machine learning is based

on the principle of rewarding (Watkins, 1989). When a machine performs an action in

a certain state it can get a positive reward, negative reward (punishment) or no

reward. This depends on the design and goal of the machine. This way, the machine

builds up an action-value table. The Q-learning logarithm works by using an action-

value function that gives the expected value of taking a given action in a given state.

This happens by following a certain policy. This policy describes if the machine

should exploit its knowledge and chose the actions that lead to the biggest reward or

that it should explore new actions in certain states to discover better ways to retrieve

even more rewards later on.

The strength of Q-learning is that it will adapt to its environment without knowing it

and without that it is programmed. Q-learning, as well as other reinforcement learning

principles, works because it tries to optimize a given reward. Q-learning requires a

finite set of environment states, a fixed set of actions, and a reward function:

()

1

0

*

1 1

'

'

() : () [0,1]

(,) 1

(,) | ,

(,) max (,)

(,) (,) max (,) (,)

if arg max (, ')
()

(,)

1 if arg max (, ')
()

s s

k

t k t t

k

t t t t t t t t
a

a

a

s s

s a

Q s a s s a a

Q s a Q s a

Q s a Q s a r Q s a Q s a

a Q s a
s

s a

a Q s a
s

+ +

=

+ +

=

= = =

=

+ +

=

+ =

ò

ò
ò

A

A

A

A

We write ò for the exploration factor, for discounting factor, for learning factor,

 for policy (ò-greedy), s for state, a for action, t for (discrete) time, ()sA for action

set, Q(s,a) for expected return in state s after action a, under current policy, Q*(s,a)

for expected return in state s after action a, under optimal policy, and for

expectation.

Case Study 2: Voice Command using supervised
learning
The students applied their knowledge of neural networks, which is one flavor of

supervised learning, to implement a simple speech recognition application. It took

them one week to explore the operational principles of a basic neural network and to

use this knowledge to design the application. For this application the Lego NXT

Sound Sensor and the NXT brick were used to get the desired speech input. The Lego

sound sensor is an envelope detector that measures the change in volume (amplitude

of the sound signal) over time and not a real microphone. However, the envelope was

sufficient input to build a recognition application that could distinguish between the

words “Biertje” (beer) and “Champagne” (Champaign) by recognizing the difference

in the word’s envelopes.

The NXT with help of its microphone recorded the words into sound samples that

were then transferred via a Bluetooth connection to the computer. To make sure that

the recognition was base on the difference in volume over time and not on the

duration of the word, the length of both sound samples was equalized during the pre-

processing. The sound samples were fed as input to the neural network that was

created using Joone. The resulting output was then communicated back to the NXT

that printed the results on its screen.

During the last two weeks of the course, the students were encouraged to create an

extension pack for the Lego Mindstorms NXT set. These extension packs should

empower other users in the Lego community to easily extend their Lego inventions

far beyond what is possible with standard Lego. Two students decided to extend the

neural network application that was build in the previous week.

The goal was to implement the neural network inside the NXT, so that it would no

longer rely on a PC for its operation. Several possibilities were available to implement

the neural network inside of the NXT brick. One option would have been to try to fit

Joone inside the NXT brick. Although this would have been the most versatile

solution, it would have moved the focus away from an understanding of neural

networks towards a more in depth knowledge of the Java language. Therefore the

students decided to build their own neural network from scratch inside the NXT. This

allowed them to gain a better understanding of the formulas that describe a neural

network and an in depth understanding of how to transform these formulas into Java

code.

However, the NXT does not provide a user friendly graphical user interface (GUI)

that would enable users to easily manage the recorded audio samples and the training

process. The students therefore decided to create the Neural Network Manager

software (see Figure 2) for the computer that performs the training of the neural

network.

[figure]

Figure 2: Screenshot of the Neural Network Manager

Training the neural network on the NXT would in principle be possible as well, but of

course at a much lower speed and only with an unfriendly user interface due to

limitations of the NXT. It only has a small screen and four buttons to communicate

with the user. A second reason for the preference of conducting the neural network

training software is that the network itself is unlikely to stand by itself. Most likely, it

would be integrated into other software. This software needs to be created on the

computer anyway and hence there was little reason to renounce the use of a computer.

Once the neural network is trained, it can be transferred back to the NXT. It can then

be used as a standalone application or as a part in another program. The students were

able to take advantage of their previous design education to create a highly useable

GUI for the software. Hopefully, this will encourage other Lego users to take

advantage of their software.

Neural Network Theory

We would like to conclude this case study by providing a short introduction to neural

networks. This may allow readers that are not yet familiar with it to evaluate how

much progress the students were able to make within three weeks.

Pattern recognition in general aims to classify data patterns extracted from raw data

[1]. This is a very powerful tool to recognize classes of patterns where the raw data

shows small variation or when the exact features are not known. In many cases this

can be done by using statistical information about the patterns or linear mathematical

functions. When the data becomes more complex as well as the segmentation of the

different patterns, neural networks are very suitable to perform pattern recognition

tasks (Haykin, 1999).

Neural networks in, for example, human brains consist of neurons connected trough

synapses forming a complex network. Artificial neural networks feature layers of

neurons. A simple neural network at least has an input layer with neurons, an output

layer with neurons and at least one hidden layer. All the neurons in a layer are

interconnected trough synapses to the next layer of neurons. Every neuron is

connected to every neuron in the next layer (full synapses).

The synapses function as a weight factor and the neurons function as a mathematical

function. Input can be fed into the neural network and is multiplied by the weight

factors of the synapses. Neurons in the next layer apply a mathematical function, for

example a sigmoid function to the sum of all the input values multiplied by their

weight factor. This process repeats until the output neurons get a value. The output

will return values that represent a specific pattern, at least when the weight factors are

correct:

1

1

1

m

i ij

i

j
x w

O

e =

=

+

where,

output value of neuron

neurons in previous layer

value of neuron

weight factor of the synapse between neuron and neuron

j

i

ij

O j

m

x i

w i j

=

=

=

=

A common way to train a neural network is by means of backward propagation. Back

propagation is a supervised learning method which means that a set of input values

coupled to desired output are used to train the network. The back propagation

algorithm calculates the errors signal by comparing the actual output with the desired

output. It then uses the error signal to update the weights. This iterative process is

repeated until the actual output approximates the desired output, the network is then

trained:

() ()1j j j j jt O O O= , where,

error signal for neuron

desired output

O actual output

j

j

j

j

t

=

=

=

()1j j j k kj

k

O O w= , where,

error signal for neuron

actual output

error of (output) neuron

weight factor of synapse between neuron and

j

j

k

kj

j

O

k

w j k

=

=

=

=

(1) ()ij ij j iw t w t O+ = + , where,

(1) new weight for synapse between neuron and

() current weight for synapse between neuron and

learning rate

error signal on output

input signal of synapse

ij

ij

j

w t i j

w t i j

Oi

+ =

=

=

=

=

Conclusions
We described the embodied intelligence method to teach machine learning to design

students. By using a tangible embodiment as a platform for machine learning, the

environment of the machine learning program does not need to simulated. But more

importantly, the embodiment provides the student with a tangible tool to understand

and interact with a learning system. Lego Mindstorms NXT is a good platform for this

embodiment. The Lego system allows the students to quickly build a machine and

thereby enables students to focus on the machine learning. In addition Lego NXT,

provides a Java Virtual machine on which students can execute Java programs. Java is

a widely used object-oriented programming language. The combination of the Lego

construction system with the ease of Java on the NXT is a very low hurdle that even

students that do not have an affinity toward technology can overcome.

Many of the students played with Lego during their childhood. This positively loaded

memory might have lowered inner barriers that technophobic students might have

build up. It might have allowed them to approach the course with a more open attitude

and thereby increased the opportunity for learning. A second factor that might have

had positive influence on the students is the behavior of the robots. The Crawler robot

demonstrates that even simple learning behavior embodied in Lego has the power to

create affection and empathy with human observers. This might have further

motivated the students to experiment with the machine-learning program.

But the embodied intelligence method does not only offer advantages for less

technophile students, but it also offers enough room for advanced development.

Within only three days certain students were able to build and use neural networks.

They then continued to build their own neural network program from scratch,

utilizing on the theory they learned in the preceding week. In the end, they were able

to create a neural network software that is user friendly enough for the general Lego

enthusiast. As an example application, they build a voice command system, which

enables the Lego NXT to operate as a stand alone voice controlled device. Again, we

have to emphasize that these were neither computer science students nor

mathematicians. These were design students that normally create artifacts.

Only by enabling design students to understand, use and develop machine-learning

systems, we can ensure that they will be able to create truly intelligent systems,

products, and related services. The embodied intelligence teaching method can help

achieving this goal and our experiences suggest that it has the potential to

significantly help students that do not have an inhering affinity towards technology.

References
Bartneck, C., & Jun, H. (2004). Rapid Prototyping for Interactive Robots. Paper

presented at the 8th Conference on Intelligent Autonomous Systems (IAS-8),

Amsterdam.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York:

Springer.

Gasperi, M., Hurbain, P., & Hurbain, I. (2007). Extreme NXT: Extending the LEGO

MINDSTORMS NXT to the Next Level. Berkeley: Apress.

Haykin, S. S. (1999). Neural networks : a comprehensive foundation (2nd ed.). Upper

Saddle River, N.J.: Prentice Hall.

Nehmzow, U. (2003). Mobile robotics : a practical introduction (2nd ed.). London ;

New York: Springer.

Solorzano, J. (2002). LeJos. from http://lejos.sourceforge.net/

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning : an introduction.

Cambridge, Mass.: MIT Press.

Watkins, C. (1989). Learning from Delayed Rewards. Unpublished PhD Thesis,

Cambridge University, Cambridge.

