
User-friendly Robot Environment for Creation
of Social Scenarios

Tino Lourens1 and Emilia Barakova2

1 TiViPE
Kanaaldijk ZW 11, Helmond, The Netherlands

tino@tivipe.com
2 Eindhoven University of Technology

P.O. Box 513, Eindhoven, The Netherlands
e.i.barakova@tue.nl

Abstract This paper proposes a user-friendly framework for designing
robot behaviors by users with minimal understanding of programming.
It is a step towards an end-user platform which is meant to be used by
domain specialists for creating social scenarios, i.e. scenarios in which
not high precision of movement is needed but frequent redesign of the
robot behavior is a necessity. We show by a hand shaking experiment
how convincing it is to construct robot behavior in this framework.

1 Introduction

A robot equipped with sensors and actuators is much more than a sensing,
planning, and acting loop, as initially proposed in the 1980s, but merely a set
of real time parallel processes that keeps this natural order of processing. The
control software architecture used for these robots, i.e. the way to put these pieces
together in a functioning system remains a challenging task. The present day
software architectures need to cope with multiple processes running on different
machines, often with different operating systems and hardware. Autonomous
robots have the technical capacity to perform complex behaviors that can be
beneficial to medical therapists, psychologists, designers, and educators. Despite
of the potential of robotics in these areas, too much expertise is required today,
and hence these robots have not yet been wideley used.

Our goal is to overcome this problem by making a programming architecture
that facilitates easy construction of complex behaviors and interaction scenarios.
We address 3 main issues from both technological and user perspectives. The
first main issue is that even the most basic robot competency requires a vast
amount of software. Therefore we developed an architecture that allows a high
degree of re-usability of behaviors on all levels- from simple movement primitives
to behaviors and scenarios. Second, we address the problem of parallel control
over the different robot actuators that can be controlled by simple text-like
commands. Third, since the major potential users of the robots are people with
no or a moderate technical background, the architecture is developed towards an

end-user platform, which implies usage of a graphical programming paradigm.
The robot architecture is developed as a part of TiViPE visual programming
environment, which is a powerful integration tool.

As a particular application we feature training social skills to autistic children
[1,2,3]. In a broader sense, educators, medical therapists, psychologists, scenario
and storyboard designers, and software developers are the potential users of the
architecture. Hence, we need to take a end-user approach towards robot scenario
construction.

Several theories of controlling robots like the subsumption theory of Brooks [4],
or a three layered approach of reaction-control, sequencing, and planning, emerged
[5,6]. A recent development is the ROS open source operating system for robotics
[7]. ROS runtime graph is a peer-to-peer network of processes that are loosely
coupled using the ROS communication infrastructure. ROS is a is a distributed
framework of processes that enables executables to be individually designed and
loosely coupled at runtime, and aims to support multiple textual programming
languages. Yet Another Robot Platform (YARP) also supports building a robot
control system as a collection of programs communicating in a peer-to-peer way,
its main focus is on long-term software development [8,9]. Another platform is
the Open RObot COntrol Software (OROCOS) with focus on thread-safe and
real time aspects between tasks [10]. Orca, initially part of the Orocos project,
is an open-source framework for developing component-based robotic systems.
It provides the means for defining and developing the building-blocks which can
be connected to form arbitrarily complex robotic systems, from single vehicles
to distributed sensor networks [11]. The authors of Orca make a comparison
between seven different robotics software systems [12], but also address a key
issue in robotics that the sheer amount of software necessary for event the most
basic competency is quite large. These factors make software reuse attractive,
i.e., one hopes to integrate existing software modules within a software frame-
work. TiViPE which is a graphical programming environment [13], emphasizes
on the integration of existing software routines from (existing) libraries without
additional programming. TiViPE also covers the aspects of multiple processes
on multiple (embedded) computers, peer-to-peer communication, graphical pro-
gramming, massively parallel (GPU) processing, and multiple operating system
support.

Because of the mentioned reasons, we build further on TiViPE visual pro-
graming environment.From the perspective of the user of such an environment,
our focus will be to create a modular structure of command blocks, as already
present in some simple solutions (Choreagraph) with the possibility to design
new or redesign existing behaviors by a simple textual language used within the
command blocks.

To satisfy this purpose, an incremental approach, that is similar to sticking
Lego R© bricks together, is used. It implies that the modular components serve
as partial scenarios that can be modified by changing the order of usage, by
replacing, or adding of such modules. Using such an approach will enable scenario
designers, educators, and therapists to get full control over the robot.

Scenarios need to be easily adapted for user tests and rapid prototyping, and
should allow for an incremental approach of scenario development. A graphical
language will be used to realize these requirements. We use TiViPE to construct
a robot architecture since it naturally can incorporate most of the aspects de-
scribed in this section. In addition a substantial set of modules for sensory data
processing is available within TiVIPE.

Section 2 describes a robot framework where a textual robot language is
constructed with no more then 4 different control characters and 14 commands.
This language provides full control over an advanced humanoid robot. Section 3
provides the robot sensory part. Most advanced robots provide audio and video
data together with a set of values providing information about individual sensors.
The following section describes how robot commands can be generated using
and describe how the concept of using states is implemented using graphical
components. Section 4 describes the work from the perspective of a user, gaining
easy access to controlling a robot, without the need to have a background in
robotics or software development. The paper ends with a summary and future
work.

2 Robot software framework

The robot software framework includes the commands that interface with the
robot, the language that insures non-conflicting operation of these commands
by parallel actions of the robot and by multiple and conflicting action possibili-
ties, and the visual programming environment that allows easy construction and
visualization of the action stream.

2.1 Textual language

A textual robot language insures that neither in depth knowledge of a robot
hardware is required, nor the behavior designer is confined to a specific robot.
A minimalistic language, such that the robot commands can be executed in a
serial or parallel manner is the best choice. Therefore we choose for a language
structure that resembles adding and multiplying of symbols, where the symbols
are equivalent to behavioral primitives:

(a + b) ∗ c + d ∗ e (1)

Knowing that brackets bind stronger than multiplication, and multiplication has
higher priority over addition, we can construct a powerful language that is in
essence identical to the following statement from the formal logic:

[a | b] & c | d & e (2)

In terms of robots commands, a | b denotes that a and b are executed in parallel,
d & e denotes that d and e are executed subsequently, first d then e, the square
brackets denote the binding order of execution. Commands a, b, c, d, and e are

a)

a

b

d e

c

Time

P
ro

ce
ss

es

b)

Figure 1. a) Graphical representation of 5 commands as given in (2). b) Application
platform - humanoid robot NAO.

individual elementary commands that can be executed on a robot. The graphical
representation of (2) is given in Figure 1a.

These individual commands depend on the abilities of a robot, and might
seem to contain a substantial number of commands that control the robot. How-
ever, even on a multi-functional humanoid robot like NAO, see Figure 1b, only
few commands are needed to gain full control over the robot, as it will be ex-
plained in Section 2.2.

2.2 Robot commands

Humanoid robot NAO can be controlled fully by as little as 7 different com-
mands. However, for the ease of use, in our implementation we use 14 com-
mands: two generic commands, two to enable or disable the LED’s, two audio
commands, and eight commands to get full control over all motors, as illustrated
in Figure 2.

flush ()

wait (duration)ledset (name, value)

ledto (name, value, duration)

say (text[, volume[, language[, personality]]])

play (filename)

move (name, angle, duration[, stiffness])

movem (name, [angle, duration,]+ ...)

stiff ([stiffness, duration, idle,]+ ...)

walk (distance, duration)

walks (distance, duration)

walka (angle, radius, duration)

walkto (x, y, theta)

walkd (x, y, theta, frequency, duration)

Figure 2. Commands that provide full control over a robot.

Generic commands. Two generic commands wait and flush are available
to enable the robot to synchronize its actions. The wait command lets the

robot await (do nothing) for a given duration period. The flush command is
used rarely to remove all the residual processes that are scheduled and not in
execution, yet. While normal commands are appended, the flush command is
executed immediately.

Commands for controlling the LEDs. Activating and disabling the LEDs
is performed with the ledset command, in this case all leds are reached through
a unique name, and can be given a value between 0 (ledoff) and 1 (ledon).
For transition from the current color to a new color the ledto (also known as
ledfade) command is used and a duration in milliseconds is provided to control
the speed of change.

Audio commands. Two powerful audio commands say and play can be
used to accomplish either text to speech conversion or to play an audio signal
from a mp3 player engine.

Motor commands. The stiffness of a motor is usually set at the beginning
using the stiff command. A typical setting is for example stiff (1.0, 1000,

0) that sets all motors to maximum (1.0) stiffness in 1 second (1000ms) time.
The movement of a single motor is defined by addressing the motor, and speci-
fying the desired angle of change over a specific time interval. For example move

(HeadYaw, 30.0, 1000) moves the ’head yaw’ motor to an angle of 30 degrees
in one second time. In practice multiple moves for multiple motors are per-
formed through a string-like command [move (HeadYaw, 30.0, 1000) & move

(HeadYaw, -30.0, 1000)] | [move (HeadPitch, 20.0, 700) & move (HeadPitch,

-20.0, 600)]. This command can also be written in a more compact manner
like movem (HeadYaw, 30.0, 1000, -30.0, 1000, HeadPitch, 20.0, 700, -20.0,

600) by using the move multiple elements command.

3 Creating behaviors with incremental complexity

The most simple robot behaviors are sequences of motor commands. Using sen-
sory information requires specific design choices that bring another degree of
complexity. Meta commands can combine behavioral sequences that are used
often in a certain order. It may imply usage of states requires to meet a con-
dition, before another behavioral t sequence can be started. Hybrid commands
bring yet different practical concerns. The main design choices for each level of
complexity is discussed in the upcoming subsections.

3.1 Using sensory information

Using sensory information is crucial for constructing reactive or more complex
autonomous behaviors. However, it requires issues as how to construct parallel
behaviors that have different cycle (or update) speeds. Moreover, there is a huge
difference between the capacity of a robot to perceive (read sensory information)
and act behaviors - the behavioral capacity is around two orders of magnitude
smaller than the sensory capacity.

Behavior such as letting the robot walk requires already a sensory input, for
instance, it needs to be sure that it is standing. In case the robot is lying down
it first needs to get up. In order to decide which command to execute we need
to get sensory information first.

To do so, a ’RobotSense’ module is constructed in a way that it reads out
all relevant sensory information from an a-priori known robot at a fixed, cyclic
update speed, which is set by the user. Reading sensory information from a robot
usually is a relatively trivial task, however, sensory information is obtained at
different frequencies. Images in common can be obtained at a maximum rate
of 30 frames per second, while internal data can be obtained at higher rates,
for instance at 10 or 20 milliseconds rather than the 33 for video. Latter might
form a bottleneck on bandwidth which might in turn lead to latency and a lower
frame rate. Hence, audio, video and single valued information are decoupled, as
illustrated in Figure 3.

a)

GenerateCommandSendCommand

RobotCommand Shared Memory
Robot busy Flagready: False

start:True

RobotReady

String

RobotSense

RobotVideo

GenerateCommand(s)

Boolean
String

2D data

1D data

b)

Figure 3. a) Global processes and flows of a command generator and a robot module
robot. b) TiViPE implementation of a) using a NAO robot and automated getting up
before walking (in a circle).

A robot needs several seconds to get up, while less is needed for reading
out sensory information. To avoid generating commands that the robot is not
able to complete in time, a moderator process, called ’SendCommand’ (see also
Figure 3) is introduced. This process sends a command to the robot if all former
commands are accomplished.

This so-called ’RobotCommand’ (for NAO it is NaoRobot) processes the
given commands. Switches to busy mode until it is ready signalling the ’read-
Boolean’ module that its ready to receive.

This concept makes continuous sensing, and providing the latest command
string on this basis possible without the need of specific knowledge on robot
sensing or commanding. Hence, the focus is shifting to scenario’s on basis of
textual commands that are driven by internal information gathered over time
and sensory data, hence one can focus on the ’GenerateCommands’ type of
modules.

3.2 Hybrid command structure

The textual robot language used provides an architectural advantage that the
output of every command module is a string. Most of these modules will have a
string as input as well, making it very easy to connect these modules. Since the
language gives solely the option to connect new commands in a serial or parallel
way string command generation is straight forward. It means that command
generation becomes merely a choice of selecting a sequence of commands. The
graphical tool allows multiple state sequences, combined with regular commands
like ’Say’, ’Wait’, or its generic command ’GenerateCommand’ that converge to
a single string using the ’Serial’ or ’Parallel’ commands.

The graphical tool allows for merging modules to a single one, to get a layered
abstraction for commands and command groups. On the other hand it is also
possible to open and edit the compound structure of a merged module. The focus
in the near future will be on the construction of these robot command modules
on different levels of abstraction. Due to the modular concept of this approach
an incremental abstraction and refinement of robot behavior will be constructed.

4 Example of social behavior creation - user point of
view.

In the previous sections a framework for parallel robot control with text-like
commands has been given. Although simple from a technical point of view, the
creation of robot behaviors has where a user solely needs to select graphical
blocks and connect them such that they provide the right sensory or state in-
formation and generate a text string to command the robot. In case such a
graphical block does not exist, the user needs to develop a routine call that eval-
uates relevant sensory information and generates a command string as described
in Figure 2, keeping in mind that multiple commands can be placed between
square brackets ([]), and are either separated by a | for parallel or a & for serial
execution. Users are able to compound within TiVIPE a set of these blocks to a
single block without additional programming.

The created framework allows a scenario designer to decide what blocks are
needed and in collaboration with a developer to construct a set of useful graphical
components of more complex robot behaviors or scenarios. When these blocks
are available the users solely need to connect some of these modules, eventually
these modules might have internal parameters that can be modified.

A student designer was used as a test person to see how the social scenario
creation that includes robot implementation will be accomplished. He chose to
make a hand shaking behavior between a robot and a child. He first got ac-
quainted with the TiViPE and the robot embodiment. Subsequently, he explored
the degrees of movement of the different joints of the robot, and got acquainted
with the starting and end angles of joint movements. In parallel he did study
on human motion organization - how each movement that is a part of a hand
shaking interaction behavior is constructed and organized. For this purpose the

student filmed different test persons performing the handshaking interaction and
concluded that most of them would approach the partner, have a brief glance to
the meeting points of the hands, and perform the handshaking.

To capture a realistic human movement, he used the following sequence of
actions: (1)The usage of markers: markers were used to stick on actors arm; (2);
The usage of coordinate: a 3-dimensional coordinate was been put to calculate
the directions of each movement; (3) The usage of stick model: the stick model
would also be used in this recording process, all human bodies of actors ware
replaced by stick model; (4) The observation: the observation was taken by both
video camera and monitor. The observation was mainly aimed to observe some
other small changes during the hand shaking process, such as head movements,
eye movements and body movements.

Based on this preparatory work, the handshake behavior was created within
an hour. The handshake behavior contains 8 serial movem commands the third
and fourth are as follows:

movem(RShoulderPitch, 33, 200, 33, 800, 32, 200,

RElbowRoll, 38, 200, 35, 600, 36, 200, 35, 200,

HeadPitch, 20, 800,

HeadYaw, -25, 800)

&

movem(RShoulderPitch, 33, 200, 33, 600, 30, 400,

RElbowRoll, 36, 200, 36, 200, 35, 200, 32, 400, 33, 200,

RHand, 57, 400, 20, 600,

HeadPitch, 15, 600, 0, 600,

HeadYaw, -20, 600, -10, 600)

When completed, a user test of handshaking behavior was made in Maria el-
ementary school in Helmond, The Netherlands. The children could naturally
understand and perform the handshaking behavior without further guidance.
Figure 4 shows some images from the user testing. Figure 4a shows the view
from a side camera. Figure 4b and 4c depicts 2 snapshot views of the robot
during handshaking interaction.

a) b) c)

Figure 4. a) Child shaking hand with robot. b-c) View from robot perspective.

5 Summary and Future Work

A key issue in robotics is that the amount of software necessary for even the
most basic competency is quite large. Framework TiViPE has been extended
with robotics library to substantially reduce the amount of coding necessary to
control a robot.

The robot control platform is aimed to develop to an end-user platform.
So far, a user-friendly architecture has been developed, which makes possible
non-specialists to co-develop useful behaviors together with a person with some
knowledge in programming. The future user of the robots is often not a program-
mer or a person with keen interest in robotics, hence we need to provide easy
to use building blocks for these users to provide full control over a robot. This
is done by providing ready graphical components for sensing the internal values
of a robot as well as video and auditory modules. Further a single component
is used to command the robot. No more than a single module for commanding
a robot is required since a textual robotics language has been introduced with
an a-priori known list of commands. This yields a simple but powerful language
to gain full control over a robot. In this framework constructing scenario’s has
become an interplay between reading out sensory information and based upon
this information generating a command string to control a robot. Creating these
blocks have become entirely trivial, and in that respect we have shifted the
complexity to creating scenario’s where numerous blocks are involved.

So far the framework has been tested by design students and professionals
that have created behaviors within TiVIPE [14,1] and image analysis for robot
control [15,16]. Our future focus will be on scenario’s and a layered component
infrastructure, here the essence is to compound a set of blocks into meaningful
partial sub-scenario’s. Compounding itself is done without any addition program-
ming with graphical programming environment TiViPE. Hence, once these sub-
scenarios are created it will be easy for users to combine several sub-scenarios.
For the particular application we are working on, we envision that therapists can
do this to create training scenarios for autistic children. The scopes of application
of such a generic framework, however, extends from exact control to applications
in behavioral robotics and social robotics where issues of uncertainties need to
be addressed.

Acknowledgments

We gratefully acknowledge the support of WikiTherapist project by the Innovation-
Oriented Research Programme ’Integrated Product Creation and Realization
(IOP IPCR)’ of the Netherlands Ministry of Economic Affairs.

We also thank Ph.D. students, J. Gillesen and S. Boere, both supported by
the WikiTherapist project, for developing novel robot behavior modules within
TiViPE.

References

1. E. I. Barakova, T. Lourens, Expressing and interpreting emotional movements in
social games with robots, Personal and Ubiquitous Computing 14 (5) (2010) 457–
467.

2. E. I. Barakova, J. Gillessen, L. Feijs, Social training of autistic children with in-
teractive intelligent agents, Jounal of Integrative Neuroscience 8 (1) (2009) 23–34.

3. E. I. Barakova, W. Chonnaparamutt, Timing sensory integration for robot simula-
tion of autistic behavior, IEEE Robotics and Automation Magazine 16 (3) (2009)
51–58.

4. R. Brooks, A robust layered control system for a mobile robot, IEEE Journal of
Robotics and Automation 2 (1) (1986) 14–23.

5. R. J. Firby, Adaptive execution in complex dynamic worlds, Ph.D. thesis, Yale
University (1989).

6. E. Gat, Three-layer architectures, in: Artificial intelligence and mobile robots: case
studies of successful robot systems, MIT Press, Cambridge, MA, USA, 1998, pp.
195–210.

7. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, Ros: an open-source robot operating system, in: ICRA Workshop on
Open Source Software, 2009.

8. G. Metta, P. Fitzpatrick, L. Natale, Yarp: Yet another robot platform, Interna-
tional Journal of Advanced Robotic Systems 3 (1) (2006) 43–48.

9. P. Fitzpatrick, G. Metta, L. Natale, Towards long-lived robot genes, Robotics and
Autonomous Systems 56 (1) (2007) 29–45.

10. P. Soetens, A software framework for real-time and distributed robot and machine
control, Ph.D. thesis, Department of Mechanical Engineering, Katholieke Univer-
siteit Leuven, Belgium (May 2006).

11. A. Brooks, T. Kaupp, A. Makarenko, S. Williams, A. Oreback, Software Engineer-
ing for Experimental Robotics, Springer Tracts in Advanced Robotics, 2007, Ch.
Orca: a component model and repository, pp. 231–251.

12. A.Makarenko, A.Brooks, T.Kaupp, On the benefits of making robotic software
frameworks thin, in: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2007), 2007.

13. T. Lourens, Tivipe –tino’s visual programming environment, in: The 28th Annual
International Computer Software & Applications Conference, IEEE COMPSAC
2004, 2004, pp. 10–15.

14. T. Lourens, R. van Berkel, E. I. Barakova, Communicating emotions and mental
states to robots in a real time parallel framework using laban movement analysis,
Robotics and Autonomous Systemsdoi:doi:10.1016/j.robot.2010.08.006.

15. T. Lourens, E. I. Barakova, My sparring partner is a humanoid robot –a parallel
framework for improving social skills by imitation, in: J. R. Álvarez (Ed.), IWINAC
2009, no. 5602 in Lecture Notes in Computer Science, Springer-verlag, Santiago de
Compostella, Spain, 2009, pp. 344–352.

16. T. Lourens, E. I. Barakova, Retrieving emotion from motion analysis: In a real time
parallel framework for robots, in: C. S. Leung, M. Lee, J. H. Chan (Eds.), ICONIP
2009, no. 5864, Part II in Lecture Notes in Computer Science, Springer-verlag,
Bangkok, Thailand, 2009, pp. 430–438.

