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Abstract

This work presents explorations in the microstructure of natural vision systems based on large
scale computer simulations. Similarly to previous work in this area, we compute the functional inner
products of a two-dimensional input signal (image) with a set of two-dimensional Gabor functions
which have been shown to fit the receptive fields of simple cells in the primary visual cortex of
mammals. These inner products are then considered as net inputs to the cortical cells and used to
compute the cell activations as non-linear functions. A previously used model is extended with a
pixel-wise winner-takes-all competition between different Gabor filters which is introduced in order
to model lateral inhibition between cortical cells. The effect of lateral inhibition is qualitatively
estimated by visualization of computed cortical images and quantitatively evaluated by applying
the model to a face recognition problem. Recognition rate of 97% was achieved on a database of
205 face images of 30 persons vs. 94% achieved with a previously used model.

1 Introduction

Large scale computer simulations are nowadays a well established research tool in natural and engi-
neering sciences such as physics, chemistry, astronomy, fluid dynamics, electrical engineering, etc. The
insights in the microstructure of the brain provided by neurophysiological and neurobiological research
together with the progress in mathematical models of artificial neural networks may open new oppor-
tunities for computational science. In the years to come large scale computer simulations may become
an instrument of neuroscience, a task that they successfully fulfill for a number of years in the oth-
er branches of science mentioned above. The chances offered by large scale computer simulations in
this area may even turn unique in certain respects, since in neuroscience the need for non-destructive
exploration methods is at least as high as in the other sciences mentioned.

Neurophysiological research has delivered a number of interesting results which can serve as a
starting point for computational research. It is, for instance, well known that a large amount of
neurons in the primary visual cortex of mammals react strongly to short oriented lines [1,2]. A more
precise study has shown that the receptive fields of such cells can be fitted well by Gabor functions,
differences or derivatives of Gaussians or other similar functions [3-5]. Basing on these results, one
can mimic the function of the primary visual cortex by computing the activation of each individual
simple cell for a given image projected on the retina. This approach, sometimes popularly referred to
as ‘computing cortical filters’, has been the subject of intensive research in the recent years.

The research carried out until now in this area has given rise to a number of open questions.
Among these we consider as most important the question of how the information delivered by the
cortical filters can be effectively used to analyse images and recognize objects. A basic problem we
encounter in our attempts to find an answer to this question is that of how the cortical cells interact
with each other to facilitate structuring and further analysis of information. We propose to consider



the quantities computed by Gabor convolvers as actual cell activations only for impulse (spot) images
at low excitation levels for which the response is substantially linear. For more complex images and
higher excitation levels, the computed quantities should be considered as the net inputs to the cortical
cells. The actual cell activities should be computed as non-linear functions of the net inputs, a process
that has been proven to play a very important role in neural networks. Furthermore, we propose that
the activities thus computed should become the subject of lateral inhibition or excitation, a mechanism
which according to the results of neurobiological research has almost universal validity in natural neural
networks.

A direct confirmation of the correctness of the above sketched approach can be achieved only by
means of neurobiological research that would, for instance, show that the inhibitive cortical intercon-
nections we propose in the following actually exist. It is, however, also possible to verify the plausibility
of the approach by making it a part of a full object recognition system and then comparing how it
scores in comparison with previously used more simple models. For this purpose, we have incorporated
our model in an automatic face recognition system.

Face recognition, a problem that has been considered to be a challenge since the very first days
of computer vision, recently experiences a revival. One of the first approaches to this problem was
based on geometric features, such as size and relative positions of eyes, mouth, nose and chin [7-8].
Another basic technique which has reached a considerable level of sophistication is template matching
[9-11]. Further approaches to face recognition use graph matching [11-12], Karhunen-Loewe expansion
[13], algebraic moments [14], isodensity lines[15], etc. Connectionists approaches to the problem are
described in [11, 16-19]. We refer the reader to [20] for a collection of recent works in this area.

The present work is an extension of our previous work reported in [21-24]. By introducing lateral
inhibition, we succeed to improve the recognition rate of a biologically motivated face recognition system
from 94% to 97% on a database of 205 images of 30 persons.

The rest of the paper is organized as follows: In Section 2 we introduce the reader to two-dimensional
Gabor functions and their relation to natural vision. In Section 3 it is shown how non-linearities and
lateral inhibition are made a part of the model. Section 4 outlines the transition from cortical images to
a representation in a lower-dimension space used for image comparison and database searching. Section
5 presents our results on face recognition. Section 6 is a summary of the work.

2 Gabor functions and natural vision

The basic two-dimensional Gabor function we use in our computer simulations has the following form:
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By means of translations parameterized by a pair (£,7), delations parameterized by an integer
number j and rotations parameterized by an angle ¢, one gets the following family of two-dimensional
Gabor functions (¢ and 7 have the same domain as « and y, respectively):
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Fig.1 shows the real and imaginary parts of one such function. The oscillations of g; ,(x — &,y — ) are
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due to the harmonic wave factor e with a wavelength
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and a wavevector (spatial frequency) of orientation ¢ and magnitude
kj = ol (4)
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The Gaussian factor e~ (#" 44" causes the function 9j,0(x =&, y—n) to be negligible for [z — | > A;.
The choice of taking the scaling factor in the form o? (j € Z) corresponds to equidistant sampling

of a logarithmic wavelength /frequency scale that corresponds to the logarithmic dispersion of spatial
frequencies found by neurophysiological research [3, 4].
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Figure 1: Real (a) and imaginary (b) part of a Gabor function.

The functional inner products of a two-dimensional signal (image) s(x,y) with a Gabor function
il =&y —n)
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may be considered as the amount of a harmonic wave with wavelength A; and wavevector orientation ¢
in a surrounding of linear size A; centered on a point with coordinates (£, 7). In this way, equation (5)
represents local spectral analysis which is embedded in global spatial coordinates (£, 7). The coefficient
%azj in front of the exponent in (2) is a normalization factor which is chosen in such a way that for
an input signal s(z,y) = e
one, [5,6(&, m)| = 1.

In the following we use (5) as the basis of our approach of mimicing the function of the primary
visual cortex, assuming that the values §; ,(€, n) delivered for the various values of the parameters j, ¢, ¢
and 7 correspond to the net inputs to individual cortical cells when the visual system is presented an
image s(z,y). Note that the computed quantities §; (£, n) comprise more data than the original image
s(xz,y). This is in contrast with traditional approaches to computer vision where the amount of data
is reduced at each stage of a hierarchical image analysis process. At present, one cannot say how this
data expansion is used to effectively recognize an object. What one is certain about is that this data
expansion is actually carried out in the brain as confirmed by the fact that the visual information is
transferred from the retina to the primary visual cortex via 10° fibers of the optic nerve but in the
primary visual cortex it is encoded by 10% — 10? simple cells (100-1000 times expansion at cortical
level [25]). We propose to simulate this expansion on a computer, make hypotheses about the further
processing stages and evaluate the plausibility of a model by applying it to an object recognition problem.

ira’e’ with magnitude one the quantity computed in (5) has also magnitude

3 Non-linearity and lateral inhibition

Note that the quantities §; ,(&,n) computed in (5) depend lineraly on the input image s(z,y) and are
complex. Because of the latter fact, there has been critique against Gabor functions, since the relevance
of using separately the real and complex parts has been confirmed by neurophysiological data until now
only in twelve cases of pairs of neighbouring cortical cells [6]. For the present we circumvent this
controversy and introduce non-linearity by considering the quantities (5) as net inputs to the cortical
cells whereby the activity a; ,(&, 1) of a cell with receptive field centered on a point with coordinates



¢ and 1 and characterized by main wavelength A; and wavevector orientation ¢ is determined as the
magnitude of the complex quantity $; ,(£,n) computed in (5):
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For fixed j and ¢ and variable £ and n, a; ,(§,n) is a two-dimensional non-negative function to be
referred to as a cortical image. Fig.2 shows a few computed cortical images which were obtained for fixed
j (j = =3, A_3 = 6 pixels for @ = v/2) and different wavevector orientations ¢ (¢; = i7/8,i=0...7)
when a white triangle on a black background was taken as an input image (top-left
image in Fig.2). Note that the differences between the computed cortical images are not
large. In particular, the same edge is enhanced in more than one cortical image (see
e.g. the horizontal edge in the first, second and last cortical images). This seems to
be in contrast with psychological and neurophysiological experiments that confirm high
orientational sensitivity of the visual system of mammals.

Figure 3: Schematical representation of a cortical cells whose receptive fields are centered on the same point

of the visual field.

The not very good results achieved in this way made us think about introducing a mechanism
which would improve the orientational sensitivity of the method. We propose to solve the problem
by a winner-takes-all competition between all quantities a; ,(&,n) with the same values of £,  and j
but with different values of ¢. This corresponds to inhibitive interconnections between the respective
cortical cells. This decision is in part biologically motivated, since it is known from neurophysiological
research that in the primary visual cortex of mammals the simple cells are organized in columns and
are strongly interconnected [2]. Fig.3 shows schematically one such column of cells with receptive fields
centered on point (£, n) of the visual field. The cells with the same size of the receptive field (same
J) are represented as lying in the same cylindrical cross section of the column. The cells in one such
cross section correspond to different wavevector orientations (different ¢) and we introduce inhibitive
interconnections among these cells. Of course, Fig.3 is only an illustration and the actual arrangement
of cells corresponding to different values j and ¢ in one column does not have to follow this scheme.
The winner-takes-all competition can be modelled in the following way

ajp(&m) = aj ,(&n) if aj (€, n) =mar{a;4(&n) | ¥ ¢} (7)

aj (&) =0 if aj,(&m) < max{a;4(&,n) | V o} (8)
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Figure 4: Cortical images computed with the involvement of lateral inhibition.

whereby the quantities @; (€, n) should be considered as the new cortical cell activities after the com-
petition i1s completed. Fig.4 shows the cortical images which correspond to these new quantities. This
scheme obviously better discriminates among different orientations. Note that each edge line is en-
hanced in a different cortical image so that the processing can be interpreted as decomposition of a
geometric object into edge lines. In this way, the computation of cortical filters delivers more structured
information than a traditional edge detector such as a Laplacian operator.

4 Application to object recognition

In order to quantitatively evaluate the plausibility of the above presented model, we make it a part
of an object recognition system. Since we have no hints from neorophysiological research about how
cortical images are used in the process of object recognition, we have to make hypothesis about the
further representation and processing of visual information. For this purpose we introduce the following
quantities:

Ajp = /fw,w(&n)dﬁdn, JEZ el0,m). 9)

Each of them represents the cumulative activity of all cells with the same wavevector orientation
¢ and main spatial frequency 7a’, independently of their positions (¢,7) in the visual field. Our
naive premise is that cells doing similar things (in this case cells with identical receptive fields but
responsible for different areas of the visual field) might contribute in a similar way to cell activities
computed at higher stages. Each of the quantities (9) might, for instance, correspond to the activity
of a corresponding higher abstraction level cell that receives activating stimuli from all lower level cells
with the same receptive field form, size and orientation. We have to admit that we are not aware of
neurobiological evidence that would confirm this hypothesis. Computing the quantities 4; , according
to (9) might however make sense for one reason: they are not sensitive to the particular position of an
object in the visual field, a property which we refer to as translational invartance. Let us now represent
two images s(x,y) and s'(x,y) by the respective sets of quantities A; , and A} (j € Z,¢ € [0, 7))
according to (9) and define the dissimilarity of the two images as follows

Ds,s' = Z | AJW - A},w | : (10)
%

The above defined dissimilarity is a non-negative quantity. It is zero for two identical images and
for any two images which differ only by a translation. The relations (5-10) are the basis of our approach
to automatic face recognition. The quantities (9), to be referred to in the following as the descriptors,
are computed for all images in a database and for each new input image. The descriptor set of an input
image 1s then used for a best match search in the database to find the prestored image for which the
dissimilarity (10) is minimal.

5 Results of face recognition experiments

We applied the above developed approach to a database of 205 different face images of 30 persons.
Details on the database can be found in [21,23]. The images are of size 500 x 400 pixels and this



discretization applies also for the computed cortical images. Such images are computed for the following
discrete values of the Gabor convolver parameters j = —1,-2,...,—8; ¢, = ix/8, i =0,1,...,7. The
basic scaling factor « is taken to be v = /2. This choice of a and the range of the parameter j allow
for covering a wavelength domain that ranges from 2.8 to 32 pixels with logarithmic dispersion of the
main wavelengths of the respective Gabor functions (see (3)).

Note that for fixed j and ¢ and variable £ and 7, §; ,(£,7) in (5) can be computed as convolution
of the signal s(z,y) with a Gabor function g; ,(z,y). We use this fact for the efficient computation of
these quantities using a fast Fourier transform (FFT) algorithm. In spite of the computational efficiency
of this algorithm, the convolution computation is quite intensive and comprises more than 99% of the
used computing time. After computing a cortical image a; (£, n) for a given input image s(z, y), it is
reduced to a single number 4; , according to (9). In this way 64 numbers (descriptors) are computed
for each input image (one number for each of the 64 basic Gabor functions) and only this information
is used to represent the image for database searching.

To obtain statistics on the recognition rate, we applied the above approach to all images in the
database, considering each image in turn as an input image and the rest as prestored images. Only
the best match was used to determine whether the search was successful (delivering an image of the
same person) or not (delivering an image of another person). For 198 out of 205 images the search
was successful as illustrated by Fig.5. The model failed in 7 cases, four of which are given in Fig.6.
This gives a recognition rate of approximately 97% which as far as the error rate is concerned is an
improvement by a factor of two compared to our previously used approach which did not include lateral

inhibition [21-23].

U

Figure 5: Examples of successful matches: each image in the first row is a test (input) image for which best

match search is done in the rest of the image database; the images in the second row are the respective best
matches returned by the system.

6 Summary

In this paper we have demonstrated how computer simulations can be used to explore the mechanisms
of natural vision. The biological relevance of our model is based on the use of Gabor functions that
fit the receptive fields of the overwhelming number of simple cells in the primary visual cortex of
mammals. In the rest of its part, our approach is an attempt to guess what might be happening in the
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Figure 6: Examples of failure of the model: the best matches (second row) correspond to different persons.

further form analysis structures of the visual cortex. For this part, we have no neurophysiological and
neurobiological data to build on and, therefore, we rely only on general principles such as non-linearity,
lateral inhibition and translational invariance. In spite of a number of shortcomings of the model, we
achieve a recognition rate of 97% on a relatively large image database. Further work on the model
which is in progress will be reported elsewhere [26].
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