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Abstract. This paper applies dynamic neural fields model [1I23I7] to
multimodal interaction of sensory cues obtained from a mobile robot,
and shows the impact of different temporal aspects of the integration
to the precision of movements. We speculate that temporally uncoordi-
nated sensory integration might be a reason for the poor motor skills of
patients with autism. Accordingly, we make a simulation of orientation
behavior and suggest that the results can be generalized for grasping and
other movements that are performed in three dimensional space. Our ex-
periments show that impact of temporal aspects of sensory integration
on the precision of movement are concordant with behavioral studies
of sensory integration dysfunction and of autism. Our simulation and
the robot experiment may suggest ideas for understanding and training
the motor skills of patients with sensory integration dysfunction, and
autistic patients in particular, and are aimed to help design of games for
behavioral training of autistic children.

1 Introduction

Movement disturbance symptoms in individuals with autism have not been con-
sidered as an important symptom for a long time. During the last decade, Leary
and Hill [T7] have offered a radical perspective on this subject. After thorough
analysis of the bibliography on movement impairments in autism they argue that
motor disorder symptoms may have a significant impact on the core character-
istics of autism.

Imprecise grasping, or other motor or executive dysfunctions, observed by
autistic patients are caused by a disturbance in a dynamic mechanism that
involves multisensory processing and integration. Therefore we investigate how
the dynamic aspects of integration of multisensory input influences forming of
coherent percept, planning, and coordination of action.

Temporal multisensory integration has previously been discussed in the con-
text of autism in [4IT3], in attempts to revile and simulate the underlying bio-
logical mechanism of interaction in [I0JT1] and in the robotics setting in [2I25],
and implicitly in many other robotics studies.
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Proper modeling of the temporal integration mechanism requires a dynamic
neural model. The main stream connectionist methods, like self-organizing or
supervised feed-forward networks and Hopfield type recurrent networks produce
static outputs, because their internal dynamics lacks feedback loops and their
input space is static. Therefore they are suitable for modeling static behaviors.
We are interested in a neural system that can spontaneously exhibit several
dynamic behaviors, derived by the interaction between changing input and com-
plex inner dynamics. However, for the sake of controllability and computational
expense, we choose the model with least complexity needed. Schoner and col-
leagues [23125/8] have adapted the dynamic neural field model of Amari [I] for
controlling mobile robots and robot-manipulators. It produces smooth behav-
ioral trajectories satisfying more than one external variable. In this model the
attractor is a fixed point, but continuous attractor is approximated in sequential
steps. The system goes from one attractor to the other through input-dependent
variations. More complex dynamic models that have continuous attractors may
suffer high computational expense.

This paper is organized as follows. Section 2 discusses the method for sensory
integration used, the experiment design, and the results of a computer simu-
lation. In Section 3, the results of robot simulation are shown. Discussion is
offered in Section 4. Last, but not least, we acknowledge the people who have
contributed to this work.

2 Temporal Multisensory Integration

2.1 Dynamic Neural Field Model for Multisensory Integration

The dynamic neural fields (DNF) model has been proposed as a simplified math-
ematical model for neural processing [Il7]. The main characteristics of this model
are its inherent properties for stimulus enhancement, cooperative, and competi-
tive interactions within and across stimuli-response representations.

Recently Erlhagen and Schoener [§] formalized the extension of the theoretical
model to dynamic field theory of motor programming, explaining the way it was
and could be used for robotics and behavioral modeling applications. Before and
since, DNF model has been used in robotics for navigation and manipulation of
objects [9I25[T4], for multimodal integration [22] and imitation [2I]. Applications
feature biologically convincing methods that can optimize more than one behav-
ioral goal, contradicting sensory information, or sensory-motor task that requires
common representation. For instance, Iossifidis and Steinhage [I4] applied the
dynamic neural fields to control the end-effector’s position of a redundant robot
arm. Two problems were solved by this implementation: smooth end-effector
trajectory is generated and obstacles are avoided. Faubel and Schoener [9] use
dynamic neural fields to represent the low-level features of the object such as
color, shape, and size. The fast object recognition achieved is beneficial for an
interaction with a human user. Thelen et al. [26] have modeled the dynamics of
the movement planning by integrating the visual input and motor memory to
generate the decision for the direction of reaching.
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The mathematical description of the DNF model incorporates the formation
of patterns of excitation, their interaction, and their response to input stimuli.
The basic equation of one dimensional homogeneous field of lateral-inhibition
can be represented in the following way:

T@u(ax, t)

) = () + /w(m — ) flu(y)]dt + b + s(z, 1) (1)

where

— 7 is the time constant for dynamics of a neuron

— x and y is the located positions of neurons

— u is the average membrane potential of neurons located a position x at time t
— h is the resting potential

— s(x,t) is the input stimulation level at position x at time t.

An interesting for us feature of the model is that it possesses dynamical prop-
erties useful for multisensory and sensory-motor integration. We suggest that
the dynamical characteristics of the model can be exploited for investigating the
temporal aspects of multimodal integration. The temporal window for integra-
tion is shown to have an impact on the multisensory interaction, so we investigate
the possibilities for its adaptation within the neural field model and its impact
on the computational outcomes. The presentation of the sensory cues within
the DNF model is in the form of Gaussian distributions. We tune the variance
of these distributions according to the experimental findings, and experiment
with the delay in the presentation of each cue in accordance with the realistic
times of sensory processing of different modalities, and of course, following the
restrictions of the experimental platform.

2.2 Experimental Setting

We intend to test the temporal aspects of multimodal interaction by grasping.
Since at present we have available only a mobile robot the experiments are
restricted to a two-dimensional task of reaching a target. Based on earlier findings
[2] two complementary sensory cues are sufficient and necessary for reaching, as
well as for precision grip of the robot. An example for complementary sensory
cues are proprioception and vision. In this application, the proprioceptive or self-
motion information is the angular deviation of the head direction of the robot
from the initial position. Vision data are used for spotting the landmark or goal
direction.

The heading direction is defined by the output potential that is generated
after the integration of both cues. The robot will typically find a compromise
between target direction and free of obstacles space. The DNF model would sup-
ply a smooth solution of this problem, once the model parameters are tuned for
the particular application. For tuning of the parameters a computer simulation
is used. One of the reasons to choose for the dynamic neural fields model for
sensory interaction is that it uses a window of time to combine all sensory stim-
uli and make a decision accordingly. Experimental studies of sensory integration
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propose that there is a window of time during which the stimuli are integrated
for producing a perception of a unitary sensory event [I2[T9BIT6I20/24]. We in-
tended to vary the size of the temporal window of the dynamic neural field model
to find out whether there is an optimal window for integration for the particular
sensory cues. Since the window of integration corresponds most closely to the
time constant of the neural field model, its change will produce a linear depen-
dence. At this stage we did not found a reason to change it to more complex
(nonlinear) function: Instead, the window is defined by the necessary processing
time for the visual and the proprioceptive cues and from the guidelines from
experimental studies.

Our hypothesis is that the delay in activation caused by each of the sensory
cues may cause or contribute to imprecise motor behavior. With the following
experiment we are going to test the impact of the delay in the activation caused
by each of the sensory modalities. We experiment with different delay intervals.

Each cue was delayed with different time interval when a goal finding task
was performed. In figure[I] are shown the response times for movement direction.
The visual cue delay causes longer response time.
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Fig. 1. The time to generate the output potential when each cue is delayed

To get further information on the delay effect of each cue, the experiment of
changing heading direction for three successive steps was carried out.

Several tests with a simulated robot that performs target following task were
made. In each test the target was moved so that the heading direction of the
robot changes with different angles. FigureRldepicts trajectories with a change of
the heading direction correspondingly with 5 - 15 - 25 and 15 - 30 - 50 degrees.
Figure 2ltop shows the output potential of the second trajectory, and Figure
Blbottom shows the two trajectories in polar coordinates. Polar coordinates rep-
resentation was chosen, because it corresponds to the actual movement of the
robot, from its egocentric perspective. Several experiments were made to com-
pare the effect of changing heading direction by different change of the heading
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direction when there was no delay, when there was a delay in the proprioceptive
cue, and when there was a delay in the visual cue. Delay of the proprioceptive
cue has less effect for generating the new heading direction in all experiments.
The experiments differed in the sharpness of change in the heading direction,
when both cues have the same period of delay, and the neural field parameters
are constant for both cues.

Time step 100'\‘\ -
[x 50ms] _ I /’\"g’ \50

30
Heading direction [deg]

90

==== changing heading directions: 5, 15, 25 degrees
== changing heading directions: 15, 30, 50 degrees

Fig. 2. Top:The output potential with HD changing with 15 - 30 - 50 degrees, bot-
tom: the trajectories of the robot in polar coordinates with heading direction changing
correspondingly with 5 - 15 - 25 , and 15 - 30 - 50 degrees

Experimental data from [27] show that although this is true in general the
precision of movements is determined differently by the visual and proprioceptive
cues for depth and azimuth motion. Proprioceptive cue is more precise when
the depth (distant goal) is targeted, and vision is more accurate in proximal
(moment to moment) movements. To simulate this effect, the weight parameters
of the neural field model were tuned to correspond to the variances for movement
accuracy as found by Van Beers at al. [27]. Figure[3shows the change of heading
direction of the robot with tuned weight parameters of the neural field model
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Fig. 3. Heading direction of the robot with and without delay by changing the target
direction from 0 to 15 to 30 to 50 degrees. The 3 lines depict the change of heading
direction by sensory integration without delays in the cues, and with delay with 15
steps of each cue.

in the cases of no delay, delay of the visual cue, and delay of the proprioceptive
cue. Since this result is in consensus with the experimental studies [27I1513], we
intend to use it for grasping behaviors in robot for training of autistic children.

3 Robot Experiment

For the robot simulation an e-puck robot was used. The e-puck is a two-wheel mo-
bile robot that was originally developed at Swiss Federal Institute of

Fig. 4. The example path of the robot in an unstructured environment is shown in the
sequence of pictures from left to right and top to bottom
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Fig. 5. Trajectories with target directions of: top - 30 and 60 degrees, bottom - 135
and 165 degrees, used to validate the model on a physical robot

Technology (EPFL) [6]. The robot is equipped with dsPIC processor. It is
equipped with infrared sensors (IRs) that were used to derive the information
about the turning angle of the robot. The free from obstacle space determined
the possible direction of the robot for the next moment to moment movement.
Vision was used to determine the target direction of the robot.

The experiment was divided into two parts: model validation and the hypoth-
esis testing. We need to validate the model on the real robot because the DNF
model parameters might differ by computer simulation and robot experiment.

3.1 Model Verification

To validate the model a task of searching for a randomly changing target was
designed. The polygon shaped arena contained several objects that served as ob-
stacles (figure ). The heading direction was detected with respect to the initial
position of the robot: the zero degree direction was chosen to be at the positive
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Fig. 6. Robot trajectories from sample experiment with no delay, delay of the IR cue,
and delay of the visual cue

x-axis and the angle was measured counterclockwise. The target position was
randomly changed each time after the time window for integration has passed.

The target searching task was chosen to not only set up the right values of
each parameter of the neural field model, but also to test the sensors and the
low-level control of the robot.

Based on the initial parameter values from the simulation,the robot found
target and avoided the obstacles after few trials. Figure @ shows an example
robot path while performing this task.

The results from a sample test are depicted in Figure

These results show movement with no added delay for the sensory cues. The
time window was defined to be 550ms, since the sensory processing for this
robot and control program is that large at present. The model is quite robust
because e-puck can find any target direction. Moreover, the results in each target
direction are similar.

The influence of each sensory cue on the output potential is tested after the
experimental scenario was simplified by using only one obstacle in the arena,
as shown in Figure [0l With this simplification the influence of any artifact on
the outcome of the experiment is excluded. Without delay in the sensory cues,
the robot can avoid the obstacle and reach the target direction in (right upper
corner in Figure [G]).

When the delay was added to the infrared sensor or to the visual input, the
robot took different trajectories. Depending on the distance of the obstacle and
the speed of the robot, changing the delays had different effects on it. Figure
shows three sample trajectories of the robot: without delay, with delay of the IR,
sensory cue, and with delay of the visual cue, respectively.

The delay of IR cue resulted in a collision between the robot and the obsta-
cle. When the visual cue was delayed, e-puck started to move in arbitrary free
direction until the visual input was received, without hitting to the obstacle.
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4 Discussion

We investigated different temporal aspects of multisensory integration on the
motor behavior of a robot, namely the effect of the size of the integration win-
dow and the delay of different sensory cues. DNF model was used to guide the
robot movements, because it contains two parameters which, as we have shown,
can simulate the effects of both temporal parameters: the influence of the in-
teraction window and the delay in the sensory cues. The interaction window
simulates the time for relaxation of system dynamics to the next fixed point, i.e.
it isolates moment to moment multisensory integration. Using this property, we
can delay each of the sensory cues and keep the integration within the span of
the behavioral window.

The results show that delay of the proprioceptive cue has less effect on close
interactions, while visual cue will have less impact on distant target finding.

The DNF model requires a certain time to generate output potential. When
there were three successive changing directions the outputs were different when
adding the same period of delay to each cue, single cue per trial. Implementing
the model on physical robot showed that sensory integration with DNF model
provides realistic behavior except for the length of the sensory integration win-
dow that has to be tuned according to the restrictions of processing capacity
of this robot. The DNF model insures human-like decision making and smooth
motion when different external stimuli are present. However, the unreliable sen-
sory information can result in totally different behavioral solutions when the
robot started from the same starting point in the same arena. Unrepeatable
behavior may be caused by detection failure of the sensors or imprecise tuning
of the parameters of the DNF model. The infrared sensors of e-puck robot are
sometimes too sensitive to detect the obstacles in the environment, or sometimes
they cannot detect anything when the robot stays too close to the obstacle. This
results either in robot departing from the natural path or in a collision with an
obstacle. To fulfill our ambition of simulating the sensory integration process by
autistic people, we would need a more advanced platform, and we are in process
of purchasing such. However, the obtained results with the current restrictions
are very promising.

Our initial hypothesis was that a bad timing in sensory integration causes
poor motor performance in children with autism. Masterton and Biederman [I§]
have shown that children with autism relied on proprioceptive feedback over vi-
sual feedback to modulate goal-directed motor actions, including reaching and
placing objects under conditions that required adaptation to the displacement of
a visual field by prisms. This finding might be indicative of a perceptual deficit
resulting in poor visual control and visual sequential processing [I§]. Leary and
Hill [T7] argued that motor deficits of autism can be not peripheral, but central
to the development of children with autism and to have significant impact on
the development of higher cognitive atypical behaviors that include unusual sen-
sory or motor behaviors, in addition to social and communicative differences. We
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alm to extend our integration model to robot simulation of behavior of typically
developing and autistic individuals, and use it for behavioral training of autistic
children.
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