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Preface.
The design of a product is based on the assumption of how it will be used. Conversely,
the product is usually good for only such usage as was assumed during its conception.
In a classical sense, the implicit assumption brings an explicit specification from which
the design is derived. More often than not, the specification is therefore the starting
point of a hopefully structured and well–behaved, but eventually mechanical design ef-
fort. Where the customer tends to learn from the design and mandates to change and/or
augment the specification during the process, the project planning gets invalidated.
Current practice is therefore to fix the specification in advance, for instance by contract.

The interest in Artificial Neural Networks (ANN) is founded on their ability to learn
from examples, as derived from the environment in which the product will operate,
instead of being designed from an hypothesis about the operation. It is commonly
agreed that learning is based on memorization (associating or mapping a set of questions
to their answers) and generalization (the ability to answer new questions about the same
problem). As such, ANNs promise a perfect fit to their intended usage. But circumstan-
tial evidence still does not equal a witness observation. Despite its historic fame, an Ar-
tificial Neural Network will not learn all, let alone under all circumstances. This is prob-
ably the most striking difference with a designed product: there will never be a proof
by construction!
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 Figure 1:  Overview of real–world neural applications.

With the coming of age of neural technology, an impressive number of neural products
have found their way to the market place [88]. Some popular applications are indicated
in figure 1, which position them in the area spanned by computational complexity and
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model correctness. The bars indicate the achieved performance: the patterns within the
bar indicate the widely achieved results, since the white part stands for the best results
in the area. Clearly, none of them achieves a 100% correct functionality. It appears, that
for each application a bottom level of functionality can be reached almost without any
effort. However, to go beyond requires special attention and has therefore spurred a lot
of research to develop new algorithms, to construct alternative architectures, to provide
different settings of input parameters or to preprocess input data.

To achieve a product of ultimate performance, two methods can be devised: (a) its function
is based on a provably correct algorithm, and (b) an effective redundancy is to be incorpo-
rated in the underlying algorithm. As far as ANNs are constructed from analysis of noisy
data, they can entirely be considered as systems of the second type. Because statistics is
concerned with data analysis as well, there is a considerable overlap between the fields of
neural networks and statistics. To analyze learning and generalization of neural networks
from noisy/randomized data, statistical inference can also be used.

Performance enhancement can be created by a kind of majority voting. This principle
suggests that, instead of providing one neural network solution to a problem, a set of
neural networks can be combined to form a neural net system which performs better
than any of the networks on its own [116] [138]. The conclusion made in [112] is that
mere redundancy does not necessarily increase reliability. Empirically it is common
practice to train many different candidate networks to select the winner on basis of pre-
defined criteria. A disadvantage of this method is that training of the losing networks
does not help in a further development. Another weak point is that the criterion for
choosing the best network is usually the performance on a validation set, which can not
guarantee the modeling quality of the underlying data generator. But when the networks
are incomplete versions of the same functionality, the combination might raise the func-
tional correctness to a higher level (Figure 2).
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 Figure 2:  A typical character recognizer (from [28]).
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The committee arrangement generalizes this idea. It can have significantly better pre-
dictions on new data at an acceptable increase of the computational complexity. The
performance of the committee can be much better than the performance of each single
network in isolation. The committee contains a set of a trained networks diversified in
a distinct way. Diversity can appear in the number of hidden neurons, in the kind of net-
work model, in the mixture of networks, in the optimization criteria, in the initial weight
configuration, training parameters in the training samples, etc. The extent to which reli-
ability can be improved by combining neural net solutions depends on the type of diver-
sity, present in the set of nets.

All such techniques assume that the basic neural network is optimally trained. However,
we have noticed that training algorithms are often slow and sometimes unable to con-
verge, even though the underlying techniques often perform very well on other prob-
lems. In other words, even though an ANN can be trained to some functionality, there
appears to be an underlying problem that causes unreliability in learning. This thesis
will therefore be devoted to unravel such circumstances and to contribute ways in which
reliable learning can be achieved. By large, the neural paradigm problem is represented
as a stream of examples (data) and that guides the learning algorithm to adapt the net-
work parameters until the network is “trained” to give the right answers to the posed
questions. Thus the success and the reliability of this training depends to a large extent
on the content and composition of this data stream.

Overall unreliable learning can be considered to result from the interaction between
three factors: network, problem, and algorithm. In an attempt to answer questions like
why and when the learning process will become unreliable and when a systematic fail-
ure can appear, backpropagation (still the algorithm with highest practical significance)
has been used. The restricted class of architectures it is supposed to be used for and the
feedforward architecture allow us to elaborate in more detail on the problem with re-
spect to the chosen architecture and algorithm.

As we found that the conventional focus on network, problem and algorithm leaves
much to be desired, we propose here to base the discussion rather on symmetry, random-
ness (as basic network design principles), and knowledge (the problem to be learned)
as the basic ingredients of the universe of discourse. A high degree of symmetry in the
initially designed network is historically viewed to favor the learning algorithm in pro-
viding an equal chance to move in several directions. However, this has also a draw-
back: the freedom of choice may lead to indecisiveness. Admittedly, randomness may
in turn help the network escape from such a dilemma. But then again, randomness may
wipe away the knowledge; hence a working balance should be found.

Symmetry can be dominant in the beginning of, but also at specific moments during,
learning. Randomness (for instance as stochastic variable in the learning algorithm or
as additional noise at the network input, output or internal parameters ) is then required
to force the presentation of examples to follow alternative itineraries. When the amount
of randomness is not sufficient to counteract symmetry, learning will not be completed:
instead of being adapted to ensure the right mapping between input/output data strings,
the initial parameters will eventually become zero. If the noise (the randomness) of the
system is dominant, learning will also be unsuccessful, because the network will rather
learn the noise than the exemplified knowledge. The fundamental issue of learning is
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therefore the creation of a functional balance between symmetry and randomness di-
rected by the examples (the knowledge).

To bring this idea into tangible borders, the interaction between learning components
is represented in the error surface paradigm. The network will be able to extract the nec-
essary information by adapting itself to map the questions posed to the right answers.
This adaptation is in fact an optimization procedure and is thus equivalent to finding
the minimum energy state on an error landscape. The steps, that the learning algorithm
takes on this landscape, are directed by the presented examples and form a learning tra-
jectory on this surface. Directing this itinerary properly can help to escape some diffi-
culties to pass surface areas, at which the learning algorithm normally spends a lot of
time on or from which it can never escape. For finding an optimal trajectory on the error
surface, the so–called regularisation methods have been used. An alternative effect has
the introduction of extra noise during training. Our objection here is that the task com-
plexity or the convergence accuracy may be changed in an unwanted direction. The in-
vestigation of the statistical long–run effects of example presentation when traveling
on the difficult forms of the global error surface brings us to a constructive algorithm
which helps in escaping them.

Therefore, the work in this thesis takes an alternative route to ensure reliable learning
by focussing on sample diversity [116]. On basis of the instantaneous characteristics of
the current training set we will conclude on learnability, reorder the set if necessary to
establish the best sample sequence and train eventually a single network with success.

In conclusion, this thesis aims to give directions on how learning can be guaranteed so
that its duration will be short and stable and its success unquestionable from the outset.
In this respect, we aim to contribute to move neural technology from the realm of
“Learning by Examples” to “Design by Examples”.

Groningen, march 1999.
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1 Introduction.
For the benefit of the reader we will shortly provide some of the conventions
in neural network technology as will be used in this thesis. From the rich
variety of naming and notation conventions, we introduce our choice though
in the remainder other naming and notation conventions will regularly be
pointed out for the sake of completeness. At the end of this chapter we will
shortly mention the problems to be solved in a general setting and provide
an overview of the thesis.

The explosive development of computing science and technology has made it possible
to enhance (or even substitute) many human intellectual activities by computer pro-
grams. Traditionally the arithmetical manipulation and logical sequence of the human
deduction process is computerized. Over the past decades, intelligent computing ap-
pears as an alternative approach for mimicking human thinking. In addition to methods,
that try to incorporate the logical steps of human thinking, some intelligent techniques
imitate the conclusions, that humans make by experience: the answer to a new question
is based on the similarity with an already seen example. This property makes them in-
dispensable in unexplored areas, where logical analysis can not go far enough to solve
the problem at hand.

From a user’s perspective, the decision–making techniques incorporated in a comput-
ing device are not of importance, if the required answer can be correctly and reliably
obtained. The techniques, which follow the logical development of the events and pro-
cesses, can be implemented by provably correct algorithms with appropriate safe–
guards. Intelligent computations, whose reasoning mechanism is based on similarities
with already seen events, can not give a straightforward proof for the correctness of its
conclusions, as the underlying algorithms do not include such safe–guards.

The correctness and reliability of intelligent computing techniques can not be explained
in general, because of the variety of underlying operational principles and mathemati-
cal methods. Our particular interest will be focused on Artificial Neural Networks
(ANNs), because of their high practical significance. The starting point is the hypothe-
sis that the abnormal learning behavior so often noticed by scientists and practitioners
in the field can be readily explained and therefore remedied by a well–structured design
methodology.

Neural networks are useful in situations where the logical way of decision–making, as
basis for the so–called ’conventional’ methods, does not help. The major distinguishing
feature of the neural method is that the problem to be solved is not modelled in advance.
Instead, the network adapts its parameters to fit the problem, i.e. the network itself be-
comes a model of the problem. Since the available knowledge on what the problem is
represented (encoded) in the set of data pairs, the network models the mapping between
these pairs of data. If the data set gives a good representation of the problem, the net-
work will be a model not only of the available data set, but also of all possible data,
which can be derived by (measured from) the problem. In this sense it can be said that
the network models the internal data generator.
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Another profitable aspect of neural networks is their highly non–linear behavior. Where
mathematical  modeling has for a long time preferred a high degree of linearisation, the
ANN tackles directly the non–linear reality. This also explains why it has been so diffi-
cult to fully explain the ANN operation in mathematical expressions. As further nature
tends to provide irreproducible, noisy and incomplete data, it becomes almost self–evi-
dent to rely on stochastics rather than analytics.

Neural networks are trained, not programmed, and therefore withstand any invasion by
formal proof techniques. In other words, where usually the design creativity is spent on
the construction of the product, any structured design technique for ANNs must take
the internal structure for granted, being a universal computational template, but focuses
on harnassing the interaction with the environment.

To set the scene, we will first introduce the neural network itself. Though still in its in-
fancy as a design discipline in its own right, some universally agreed nomenclature and
early successes can be given. Then we go to some elementary design notions and cite
a number of seemingly unrelated reliability (trustworthiness) problems of ANNs. Last-
ly we make our plea for designed–in quality and introduce our contribution.

1.1 Neural networks.

A neural network is in its most general form a system of connected elementary process-
ing units (PU), that for historical reasons are called neurons. Each neuron is associated
with a real numerical value, which is the state of the neuron. Connections between neu-
rons exist so that the state of one neuron can influence the state of others. The system
operation can be programmed by weighting each connection to set the degree of mutual
influence. Each processing unit performs the following operations: (a) the incoming
signals x are collected after weighting, (b) an offset � is added, and (c) a non–linear
function � is applied to compute the state.
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Figure 1–1: The operation of a single neuron.

A single neuron is depicted in figure 1–1. It shows the stated series of computations
when going from left to right. Creating a network of neurons can be done in numerous
ways, each different architecture for different applications. The system gets a specific
function from the structure and the weight setting: the structure allows for general func-
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tionality, while the weights sets the specific function. In the following these two aspects
of a neural system will be coarsely reviewed.

1.1.1 The network structure.

The neural architecture represents globally and graphically the network function. The
network function (network transfer function, mapping function, or answer of the net-
work are equivalent terms) accomplishes the main task of the network: adapts to asso-
ciate the questions, posed to the network, with their answers. The questions and answers
are terms, borrowed from the human association process. As widely used alternatives
the terms input and output examples are used: to the network are shown examples of
how the problem to be solved behaves; the input example (the stimulus) is shown to-
gether with the adequate reaction to it – the response or the output example. This pro-
cess is performed in the forward pass through the network: the outputs are obtained as
a response of the neural system to the input (question) stimulation. Thus the forward
pass through the network evaluates the equation that expresses the outputs as a function
of the inputs, the network architecture, the nodal transfer, and the parameters so that
during the backward pass the learning algorithm can adapt the connection strengths.
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Figure 1–2: Some ANN structures: a)Layered; b)Feedforward; c)Recurrent.

In figure 1–2 the most frequently used network structures are given. The structure from
figure 1–2a is also called layered: its neurons can not influence neurons in previous lay-
ers. Figure 1–2b represents the feedforward architecture: there are no connections with-
in one layer. The two structures in figure 1–2a and b are nonrecurrent, because there
is not a neuron which influences another neuron and is at the same time influenced by
the same one. The network from figure 1–2c is called recurrent, since two neurons influ-
ence each other.
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y = f(x,w)

Figure 1–3: A multilayer feedforward network.
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For the multilayer feedforward neural network (Figure 1–3) the input vector x and the
scalar output y are connected via the network function f, as described by equation (1–1)

f (x, w) � �(�
i

wji�(����(�
k

wikxk)) (1–1)

where � is the nodal transfer and wmn denote the different weight connections within
the network architecture with indices according to the direction of information trans-
port. The nested structure of the formula represents the steps that the feedforward track
of the learning algorithm has to pass.

The nature of the non–linear neural transfer function has not been specified so far. Basi-
cally it could be anything, from a straight threshold to a complicated expression. As for-
mula (1–1) already indicates, it is even possible to wrap an entire neural network to be
used in another network as a single neuron with a complex transfer [86]. We will refrain
from such and apply only an S–shaped type of transfer, especially a sigmoid function.

More specifically, we will use the logistic and the zero–centered variety: two sigmoid
transfer functions with an exemplary symmetry of which the effects on the overall
learning performance are nicely suited to display the behavior as studied in this thesis.
Their practical importance relies on the fact that the logistic sigmoid has found major
application in digital circuitry, while the zero–centered sigmoid appears foremost in
analog circuitry. The specification of these functions is shown in table 1–1.

Table 1–1: Specification of two sigmoid transfer functions.

Logistic Zero–centered

Output range

First–order
derivative

1
1� e�x

1� e�x

1� e�x

e�x

(1� e�x)2
2
.
e�2x

(1� e�x)2

(0, +1) (–1, +1)

�
� � �.(1� �)

Function   �

�
� � 1

2
.(1� �)2�� � f(�)

1.1.2 Network operation.

The ANNs adapt themselves to map the event–consequence evidences of behavior of
the problem to solve on the known problem areas. In human terms it can be said, that
the network learns the problem. This learning is an optimization process, accomplished
in a lot of the networks by a gradient optimization method. The gradient methods can
be described as a hill–climbing (descending) procedure, which ends by finding an opti-
mum (extreme) state, in which the network models the problem best. At this state it is
expected, that every question from the problem area, presented to the network, will
bring the right reaction (answer) at the output of the network (Figure 1–4).
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Figure 1–4: The neural method is a hill–climbing procedure.

Any optimization problem can be defined by a set of inequalities and a single cost func-
tion. In neural networks, this cost function is usually based on a measure of the differ-
ence between the actual network response and the desired one. Its values define the
landscape in which an extremum must be found. By deliberately adapting the weights
in the network, both responses are brought together, which defines the desired extre-
mum. In other words, a measure of the difference in responses for one or more inputs
is used in an algorithm to let the network learn the desired weight settings: the learning
algorithm.

As learning results from the mutual attraction of actual and desired responses, it will
be based on the feedback principle. In supervised learning this is achieved by an exter-
nal algorithm in which a new weight setting is computed by the supervisor; in unsuper-
vised learning the algorithm is designed into the network structure as an internal com-
petition between adjacent neurons. For this reason the usable network structure for the
two approaches is fundamentally different.

The operation of the network is severely influenced by the relation between the number
of independent parameters in the problem to be learnt (say, the intrinsic dimensionality
of the problem) and the number of independent parameters in the network (say, the di-
mensionality of the proposed solution). A network is said to be underparametrized,
when the dimensionality of the proposed solution is too small to contain the problem;
conversely, the network is overparametrized, when the dimensionality of the problem
to be learnt is much smaller than the capacity of the network. While in the former case,
the network will clearly never be able to learn, in the latter case, the degree of freedom
to learn the problem will usually be counter–productive. It is therefore clear, that a prop-
er parametrization of the network will be somewhat larger than what is required by the
problem but then again not too large. It is a fundamental network design issue to deter-
mine just the right value [79].

The equi–functionality of neurons in the researched networks, their connectivity and
initialization principles, ensures a clear, not predefined start of the optimization pro-
cess. Beside that these features of network design help the optimization to be guided
purely by the problem to solve, they have a negative impact as well, since the gradient
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algorithm may be brought to indecisiveness in its attempt to find a descent direction.
To help the learning process escape from this indecisiveness, an effective randomiza-
tion may be added.

This all adds to well–known problemss while reaching out for a global extremum in the
presence of many local ones. The path is one with many pitfalls, that may easily draw
attention away from the fundamental problem at hand. Nevertheless neural networks
have become reasonably successful, notably in those areas where by other means a
proper problem representation has already been found. Here, the neural network will
provide a reasonable (if not favorable) alternative.

1.1.3 Successful applications.

In the short history of neural networks, a number of impressive applications have been
demonstrated. Though most of the really successful industrial applications have not
been widely publicized, their occurrence has clearly been spurred by the fore–running
toy ones.

The most widely spread story is the truck–backer–upper as demonstrated by Widrow
[111]. Here a truck is controled by a neural network that is trained by examples on how
to back–up a truck. This task is a well–known control problem as it already poses a chal-
lenge to the novice human truck–driver. In the course of time, this experiment has been
repeated several times and has eventually produced the disclosure of an almost trivial
solution [84]. A similarly popular experiment is the balancing pole [63]. Here, a pole
is placed on top of a car and the car is controled to move such that the pole is well–bal-
anced and will never fall. This experiment is already of a more complex nature because
of its dynamics. Even before the first neural experiment has been performed, a closed–
form analytic solution has been found from control theoretical analysis. These two ex-
periments have clearly indicated to the community the attractiveness of using neural
networks to prototype solutions for non–linear control problems and have thus contrib-
uted to further control systems research.

From a different nature is the handling of sensory data on the Challenger engine test–
site [68]. From a series of mishaps it has been concluded that, by classical control, acci-
dents can result from wrong sensor readings. A neural network is then introduced to
monitor the different readings to diagnose the data quality. When a sensor fails, the
trained networks will simply overrule the reading with data that correlates better with
the correctly functioning sensors.

All such applications can be viewed as examples of function approximation, where the
success of learning becomes heavily dependent on the quality of data preparation.
While much theoretical work has been devoted to improvements in neural network
structure and learning algorithm, the practical short–cut proves to be the abundant
usage of preprocessing such that the requirements for further learning become almost
trivial (Figure 1–5). This preparation starts with straight signal shaping, and continues
with feature extraction, often based on data clustering. Thanks to the inspiring work
of Kohonen and von der Malsburg, clustering has evolved to a maturity that allows for
a range of applications (for instance in automotive motor management [70]). One may
be eaily misled to think that proper clustering for feature extraction virtually eliminates
the need for intelligent function approximation. However, a closer inspection shows
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that also Kohonen maps give no guarantee and a number of problems exist that remain
unlearnable. In other words, the step of function approximation remains necessary and
it fundamental problems must still be solved.
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Figure 1–5: The neural processing chain.

1.2 Deriving the neural model.
The ability to learn has been defined in many ways; still there is no agreement to what
the best definition is [74]. Commonly, the term learning is used to describe the process
of solving the imitation problem as posed to the network. If the network should asso-
ciate pairs of events, then the learning process completes when the network is able to
make this association. If the ability of the network to model the underlying data genera-
tor is of higher importance, as in most real–life tasks, the learning process presumes not
only the ability of the network to map the asked questions correctly to answers, but also
to generalize – to give answers to unseen questions from the same example distribution.

Other differences in the definitions correspond to the training approach. The neural ap-
proach identifies learning with optimization of the error function. Drawbacks of this
approach are commonly known and will be listed here for the sake of completeness. The
alternative in model derivation is the direct optimization of the operational network.
Though this solves some older problems, it also introduces some new ones. Hence it
pays to inquire on the fundamental nature of learning problems in a new attempt to solve
rather than to avoid such causes in a structured way.

1.2.1 Formalization of neural learning.

There are two well–established approaches, which formalize the neural learning pro-
cess. The first one represents neural learning as a function approximation task; the sec-
ond takes a Bayesian perspective.

In the first approach, many problems can effectively be modeled as learning an input/
output mapping despite insufficient evidence of what this mapping can be. The map-
ping usually takes the form of some unknown function f  between two spaces X and
Y and is represented by a set of examples or data pairs (x�, y�), which are consistent
with this function. The set of all example pairs that guides the learning algorithm to con-
verge to the real function is called the example or data set Dn.

At this point it is of importance to distinguish between three types of data sets. Next to
the learning set that supplies the examples to actually train the network, there are the
test set and the generalization set. The learn set should allow the network to generalize.
The generalization set will therefore test on the achievement of the generalization. This
is different from the test set, that has the higher aim of verifying the achieved overall
functionality.
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During learning, the data set is traversed several times in an arbitrary order. At succes-
sive intervals the weights are adapted; in on–line processing this happens at every ex-
ample presentation, in batch processing at every set presentation. Learning behavior
will therefore be a function of epoches: the times at which both presentation and adapta-
tion occur.

An elementary function f can be designed into a network using the principle of piece-
wise linear approximation [84]. Assume a network with 1 input, 1 output and H hidden
neurons with sigmoid transfer (Figure 1–6). For such a network the output can be seen
as the sum of the individual contributions of the hidden neurons. A constructive solution
is then possible by a judicious choice of the bias of such hidden neurons such that for
increasing input value x, more hidden neurons become activated. In other words, for
a sigmoid transfer function between –1 and 1, the H hidden neurons will divide the func-
tion value range into segments at size 2�H.

f(x,w)

.

.

.
KI J

oj

Figure 1–6: A one–input, one–output feedforward network.

Lets assume that the input neuron serves merely as a distributor, having connections to
the hidden neurons with designable weight values, while the contributions of the hidden
neurons are simply summed at the output. The output y reads as

 y��
H�1

i�0

�(wi
.
x� wbi) (1–2)

For a change in function input x only one hidden neuron will be in the linear region,
i.e. for each input segment one hidden neuron must be centered at x�� wbi�wi.
Though seemingly elegant, this design method exchanges accuracy for interval. I.e. a
long interval with high accuracy will demand a huge amount of hidden neurons. Further
it can only handle one signal at a time. In the presence of complex signals, these must
first be adequately preprocessed and for each frequency component a separate neural
net is required.

These drawbacks have given rise to a need for learning from examples instead of de-
signing by hypothesis. As described before, the neural method consists of modeling a
problem, presented as a mapping between input and output data streams. On basis of
these examples the learning algorithm tries to converge to the real function. This way
learning from examples is equivalent to interpolating or approximating a multivariate
function from sparse and noisy data [64] [152]. The potential of a network to generalize
from a finite training set to unseen data is one of its most attractive qualities. A 3 – com-
ponent structure of the neural learning process can be considered, aiming to discover
the best approximation to the supervisor’s response from a given set of functions:
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� Selecting input/output pairs �z� � (x�, y�) : �� 1, 2,���, N�, according to an
unknown random distribution P(x, y), where x� and y� belong respectively
to the input and output spaces X and Y.

� Representing the probability distribution P(x, y) � P(x)P(y|x) of the exam-
ples. This representation automatically assumes that there is a functional de-
pendence f between the input and output spaces X and Y (i.e. x and y are
dependent pairs of values).

� Inferring the functional dependence f (x) between the input and output
spaces X and Y, given the knowledge of the example set z�.

Using a probabilistic framework, it has been shown [64] that several different learning
problems, such as classification and regression, are equivalent to the function approxi-
mation task. When viewing learning as a kind of approximation, the problem of learn-
ing a smooth mapping from examples is ill–posed in the sense that the information in
the data is not sufficient to reconstruct uniquely the mapping in regions where data are
not available. In addition, the data are usually noisy. Some a priori information about
the mapping is needed in order to find a unique, physically meaningful, solution. Sever-
al techniques have been developed to embed a priori knowledge in the solution of ill–
posed problems, and most of them have been unified in a general theory, known as regu-
larization theory [64].

Recently the basic ingredients of the design–based approach have re–appeared. Anne-
ma has focused on local linearization and elaborated this concept to the multi–dimen-
sional learning problem [4]. Independently Meijer focused on the local linearization
and proposed a new neuron function that supplied both the current working–point and
the first–order derivative in this working–point [103]. Both approaches present addi-
tional insight in the initialization of a neural network but leave the issue of training un-
touched.

In fact, where Meijer discusses some practical experiments, he touches on some re-
maining questions that in our view are at the heart of the learning problem. We will pres-
ent this as a reliability problem as its occurrence is not guaranteed to the naive network
developer. He/she may simply be lucky, but literature often states exceptions to a well–
behaved learning that are subsequently left out of further analysis. For instance, where
a neural network loses knowledge (unlearning), one is simply advised to stop learning
beforehand. Such by–passes prevent neural technology from industrial acceptance and
must therefore be scrutinized and preferably eliminated.

The other direction is taken in the Bayesian approach, or also called predictive, ap-
proach. Its goal is to find the optimal model of P(y|x). Hereby the approximation of
P(y|x) is done by averaging P(y|x; w) over the posterior distribution for the weights w.
The Bayesian approach requires introduction of so–called hyperparameters � and �.
� materializes the idea of integrating out the unwanted variables, and � controls the
variance of noise. In practice, Bayesian learning takes the following steps. After the hy-
perparameters are initialized, a standard nonlinear optimization procedure minimizes
the total error function. Every few cycles the hyperparameters � and � are re–estimated
after the evaluation of the Hessian matrix and its eigenvector spectrum. This procedure
is repeated for different initial choices of initial weights and network models [19].
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Despite the mathematical elegance, such algorithms are not yet of practical signifi-
cance. Implementation efficiency is one reason but the most important one is the lack
of performance criteria for industrial (i.e. only vaguely understood) problems. There-
fore this thesis returns to the origin of the learning problem and attempts to characterize
the internal anomalies. We have found some simple indications on whether such anom-
alies will be present and we will therefore be able to manipulate the data set on–line
to train the network with conflict–free data untill it has mastered the model to such a
degree that it can handle also the remaining data by itself. This compromises between
simple & straight function approximation and cumbersome off–line data preparation
and is therefore closer to industrial reality.

1.2.2 Computational drawbacks of ANNs.

Our brief introduction of the ANN method puts forward the modeling of a certain prob-
lem by the network as the major task. Compared to the human thinking process, this
model resembles the process of learning, from where its name originates. The underly-
ing design principles and mathematical methods do not allow for a straightforward
proof that the learning process will finish successfully: in its search for the best solution
the gradient algorithm is helped by incorporating effective randomness in an empirical-
ly chosen network architecture. In order to use the ANNs method in practice its proper
and reliable functioning should be ensured. This can be done by exploring the known
potential drawbacks of ANNs, which we are summarizing to:

1. Bad replicability of the results. The stochasticity included in the underlying
algorithms can not guarantee that two experiments are exactly the same. In
strict terms this means, that an experiment can not be reproduced. From a
broader perspective this network property can cause an unreliable operation
of the neural system.

2. Discretization of the gradient procedure. The mathematical proof of the cor-
rectness and convergence of the gradient descent algorithm is based on its con-
tinuity. The algorithm will draw a downhill path until the minimum is reached.
When implemented, the infinitely small continuous steps shall be replaced
with steps of a certain length. The size of the steps in the back–propagation
version of the gradient algorithm is determined by the curvature of the hill–like
surface: the larger the curvature, the larger the steps. This means, that there is
a possibility that the minimum of a valley will be ’jumped’ over.

3. Locality of the gradient methods. A large group of practical networks apply
a gradient–type learning. The locality of gradient methods presumes that the
search for solutions is restricted to the area around the initial search position.
Thus there is a large chance for a suboptimal solution to be found. In other
words the learning algorithm can converge to a suboptimal minimum.

4. Indecisiveness of the gradient calculations. Gradient algorithms work on the
hill–climbing principle. This implies the risk that the learning algorithm can
not select a travel direction when there is not a clear slope in its neighborhood.
The neural networks contain simple units with equivalent functionality, which
work in parallel. The equivalent structure of every processing element, as well
as additional equalities (symmetries) in the neural network or in the problem
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create local flatness. This potential is often underestimated in present–day
theory and practice. Because it has a crucial influence on learning reliability,
this problem will be placed in the focal point of this thesis.

5. Missing information. All the methods that should decide on the response in
an unknown case while having only examples of how the problem performs
in known areas, have the risk to make a wrong prediction. This generalization
is a major issue and requires that missing information must either (a) be explic-
itly banned from the network operation, or (b) defaulted to values of common
knowledge, or (c) tested after learning as a kind of quality evaluation.

6. Order of example presentation. The order in which the examples are present-
ed will have a distinct influence on the function to be learnt. In order to elimi-
nate this dependence, one usually resort to a random example presentation.
This technique has long been fruitfully used. The drawback is evident: when
the order of presentation has a meaning, this meaning will not be learnt. But
also when the presentation order has no meaning, it can occur that certain or-
derings can not be learnt. In other words, as the order of presentation will al-
ways impact the learning of the network, it can not simply be discarded by ran-
domization.

1.2.3 Network optimization.

When learning by error backpropagation is so problematic, one is inclined to search in
other directions. One way is to improve the preparation for learning by making sure that
the example set is guaranteed to give no problems. In the short history of neuro–engi-
neering learning problems have often been attacked by sieving and re–ordering the data
set. This is self–evident in the ANNIE–case, where car driving measurements are used
to train a neural network for steering [113]. Clearly training while driving a straight
track for a long time holds the risk to forget about the curves. Alternatively [110] shows
how the quality of the data set can be enforced by a proper construction of the measure-
ment experiment.

Recently a software tool has been commercially introduced that claims to automate the
process of data preparation with guaranteed learnability [105]. It is based on the cluster-
ing of data so as to reflect the basic characteristics of the examples. Then by selecting
the examples evenly from the clusters, the above discussed imbalance in presentation
order is avoided.

Regretfully it is not clear beforehand what the best input features are and next what the
optimal cluster sampling strategy is. For the “truck–backer–upper” it took from 1989
till 1993 before the right features became known [84]. Further [133] discusses how the
balancing of primitive steering actions can be used to create lawful behavior (e.g. driv-
ing on the right side of the street can be enforced by presenting an overmass of “stay
away from the wall on the left” examples).
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1.3 Creating an intelligent system.

At the root of interest in neural networks lies clearly the need to research biological phe-
nomena in building a plausible model by which experiments can be made that can raise
the understanding of the biological counterpart. In the course of time the neural technol-
ogy matured into an engineering area of its own right. As such, it poses new problems
and/or raises the need to solve existing problems. The drawbacks cited above have all
found dedicated solutions but in the growth towards an engineering discipline a more
generally applicable solution is required.

In the beginning, neural networks were generally viewed as a single computational tem-
plate. All research at that time looked into a single network in isolation. As applications
became en vogue, the neural network was soon viewed as the central element within
an overall system. In other words, the neural network became embedded within an envi-
ronment and was assumed to have an almost autonomous behavior. As a system ele-
ment, the fact that learning was sometimes not achieved became not acceptable.
Instead, the need arose to mature the design and operation of neural networks to the lev-
el of the other system components. Consequently, the before named drawbacks of artifi-
cial neural networks have become not acceptable and therefore we have endeavored to
contribute in this area.

1.3.1 Learning from reactivity.

So far we have seen that a neural network is characterized by two modes of operation:
learning and recall. During the recall phase, data are presented to the network and it
responds with the values to which it has been trained to react with during learning. This
is accomplished by a scrutinuous adaption of the weights by which the relative contribu-
tion of the paths through the network are balanced.  We can therefore built a mental pic-
ture of the neural network as a reactive system (Figure 1–7).
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Figure 1–7: Two neural modes of operation.

In biological terms, this adaptation to the environment is called plasticity [32]. From
a control theoretic point of view, the issue is rather process identification. The operation
of the unknown process is constantly compared with the ANN till both are in agreement.
As process and ANN are computationally different, we impose the requirement that any
operational process must lead to a working model.
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This viewpoint has similarity to what has been researched in the control of such pro-
cesses. Here a range of techniques have been put forward to ensure the stability of the
controled process. It has been found that such stability criteria can be mathematically
formulated. Regretfully, the state–of–the–art in neural engineering has not yet ad-
vanced to a level that such criteria are available. First we have to find the parameters
that influence the stability of the learning process, before such will become feasible.

Still a lot can be learned from control theory. One of the elements is the use of graphical
schemes that provide inside into the nature of the stability problem. To this purpose we
will use the error surface. In line with classical control theory we will have to distinguish
between static and dynamic behavior.

1.3.2 Data or samples?

The original data, i.e. the data as presented to the process, and those, that emanate from
the process, result from an experiment that is bounded by some natural laws. Some of
them are rare, some are hard to reproduce. Henceforth, such sample sets are not by na-
ture fit for learning. As a consequence, a lot of signal processing is required before they
have become presentable.

In a first stage, it may be required to filter the data to get rid of spurious elements such
as noise, but also of other samples that have no bearing on the task to be learned. In gen-
eral, the neural network may be targeted to identify only part of the process and there-
fore the sample set must be cleaned to avoid overparameterization.

In a second stage, it may be required to transform the data to dimensions that are more
fit for learning. Sometimes, a notation in the frequency domain instead of in the time
domain makes the learning easier. It is only here, that we use the term data instead of
“samples” as only now have we arrived at information in a representation that is mean-
ingful for the neural network to be learned.

In a third stage, it may be required to reorder the samples to allow for learning. This
can be handled off–line, but in the context of this thesis we assume the ability to do this
on–line. An input/output pair of samples, presented to the network, gives an example
for the problem at this particular point. This is the reason to call a sample, when present-
ed to the network during training, an example.

1.3.3 This thesis.

There is a long history in neural network research on developing robust learning algo-
rithms. These are always targeted on one or more of the above stated problems. In this
thesis, we take the position that the learning algorithm is not the cause of the problems
and will therefore not give a cure. Instead we will study the internal operation of a learn-
ing network to disclose the fundamental problems for non–learning in any degree. The
rumor that neural networks take a long time to learn can to a large degree be explained
by pure ignorance about the internal system operation. Even when a system converges
during learning it may be involved with so many problems that it simply takes a long
time to finish the assigned job.

As obviously the quality of learning is at stake we will focus in chapter 2 on a universe
of discourse that allows to discuss exactly the problem at hand. To this means we will
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use the error surface: a graphical presentation of the interaction between the network
and the problem to be learned. We will discuss this error surface in terms of design qual-
ity and product reliability. Here, we can identify the complexity of the problem and the
various factors that are involved in getting a neural network that not only learns as de-
sired but also does that every time learning will be attempted.

The use of the error surface is further elaborated in chapter 3, where we introduce inde-
cisiveness in walking around the surface and reproducibility of such walks. It shows a
number of effects that have been noted in literature and have usually led to the creation
of different topologies and/or algorithms. We will rather conclude that such measures
can never provide an overall solution as they do only address part of the problem. There-
fore the remaining discussion will be based on the KRS model, which reflects the inter-
action between knowledge, randomness and symmetry.

In chapter 4 we provide a detailed presentation of the different ways in which symmetry
effects play a conflicting role in the learning of neural networks. The basic phenomenon
is studied by the simple occurrence of symmetry; then more complex situations are dis-
cussed. From this analysis we derive the KRS–ratio: a novel way to monitor the occur-
rence of learning problems from an external view on the network behavior and prepare
for experiments that will illustrate the impact for old and new techniques in the desig-
nated problem areas.

Next, in chapter 5, various ways to sample input patterns for presentation of the network
will be reviewed. Using the above acquired insight on how problems can be easily iden-
tified during learning, we will propose a variation on an existing technique, the active
sampling, to solve the learning reliability problem. Then, some real–world problems
are tackled and it is shown that the mentioned problems do occur in practice, though
they generally go unnoticed. By applying the new technique we will train this network
better and faster than before. This again illustrates that reliable learning of a neural net-
work involves more than improving the learning algorithm.
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2 Learning reliability.
There are many aspects of quality that influence the production process. One
of them is the reliability of the product to perform as intended at all times.
In this chapter we will review what reliability means for a neural
functionality. Reliability shows in fault–tolerance and provides for
generalization. It is achieved by the presence of redundancy and can only be
marked, once learning is completed. The potential trajectories on the error
surface indicate a network sensitivity that underlies fault–tolerance and are
therefore better suited for on–line manipulation. An approach  for reliability
enhancement based on finding a optimal learning trajectory is suggested.

System is a widely used term in everyday’s life, as there are biological, ecological, elec-
trical, financial, social etc. systems. In a technical sense, system is the cover–all name
for an assembly of collaborative parts from a variety of technological origins as a single
complex part. This thesis focuses on artificial neural networks (ANN); especially on
methods to derive and evaluate the quality of designs for neural systems. Neural sys-
tems can be built from either software (SW) or hardware (HW). Though eventually ded-
icated hardware may be used to increase performance, software will often remain the
enabling factor for immediate product innovation. It directly describes the desired func-
tionality on any platform and is therefore a suitable view on system quality. In end ef-
fect, a (neural) system will be a judicious mixture of hardware and software; a number
of the notions and definitions, developed in this chapter, will therefore relate directly
to their origin in hardware and software.

A system has a distinct quality: a fuzzy or hard attribute that quantifies in how far the
product lives up to the expectations. In [31], a very coarse definition for quality is given
as being based on a compromise between specification and realization:

�������� �� ������� �� 	 ������� �� �� ��� �� �������	�� �� 	�����	
�
�������	����� 	�� �����	����� ��	��	����

This is clearly a simplified rendering of a very complex world, as both specification and
realization have many aspects that all come to bear within the single product. As indi-
cated in figure 2–1, quality of design involves capability, usability, performance, instal-
lability, documentation, reliability and stability. On the other hand, manufacturers have
to deal with four related aspects: time to market, cost, repair and maintenance. And they
have to find a balance between all these quality marks with the knowledge that mainte-
nance costs are more than 50% of the total product cost.

Fundamentally we can discern two lines of thought in these lists. Firstly, one has to do
with specification. The quality of the product relates then to the way it will be perceived
by the potential customer; if it is viewed as a better product than others, it has apparently
a higher quality. The second line of thought has to do with the development process:
how does one achieve the specification in terms of maturization, robustness and overall
stability. Some confusion may arise from the fact that this can all be called reliability.
Eventually it will add up to the cost of design and manufacture and we will therefore
use the different meanings of reliability irrespectively.
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Figure 2–1: Different aspects of quality (after [87]).

Reliability has been studied both from a hardware and a software perspective. On first
sight, different notions are used stressing different meaning of the word. For discussing
the reliability of neural networks, a more generalized view must be taken, while allow-
ing for the ever changing balance between hardware and software within a system.

In RADC–TR–85–37 (”Impact of hardware/software on system reli-
ability”, January 85) is written: “The reliability of hardware compo-
nents in Air Force computer systems has improved to a point where soft-
ware reliability is becoming the major factor in determining the overall
system reliability”.

In this chapter, we will first relate coarsely the notions and definitions, as popularized
within hardware and software, to the needs for studying the reliability of artificial neu-
ral networks. Then we pursue in more detail the use of reliability measures for neural
systems to identify the need for learning reliability. We will elaborate on the use of the
error surface for discussing design issues in neuro–engineering and define learning reli-
ability as finding an optimal trajectory on the error surface. Finally we venture some
remarks on methods to enhance the reliability in a well–behaved, structured, manner.

2.1 Reliability in neural learning.
The computational drawbacks from Section 1.2.2 imply that, though a network may
seem to learn certain problems, this learning may still be of poor quality, i.e. the process
never converges or even proves to be off–target. Since learning is the process to change
the network from an initial state to a system solution, the quality of the model (the net-
work) will depend on the quality of the modeling process i.e. of learning. Then terms
as learning quality and learning reliability also need to be defined.

We will start by shortly reviewing the notions and definitions as have been introduced
over time in both the field of hardware and the field of software. Our definitions will
largely be based on the commonalities. This enables us to introduce with slight changes
in interpretation these same notions and definitions for use with neural networks. Then
we will link these areas into a common universe of discourse.
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2.1.1 Notions and definitions.

The reliability of a system can be decreased by various factors, such as incorrect opera-
tion of system components, influence of noise, design shortcomings, or changes in the
environment.  An extensive literature discusses such un–anticipated behavior by distin-
guishing between errors, faults and failures, but these notions require a more precise
definition to let the fine differentiation in meaning be fully understood. We cite the fol-
lowing definitions from [109]:
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For instance, a “production error” indicates that the fabrication of the circuit has not
been flawless, while a “human error” indicates the maleficent influence of a human de-
signer. Errors are concept–oriented.
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For instance, a “stuck–at fault” shows the impact of a production error on the logic be-
havior of a hardware part, while an “operation fault” reveals an embedded mistake in
some software. Faults are developer–oriented.
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Failure refers to what happens when one or more faults get triggered to cause the pro-
gram to operate in another way as intended. Therefore some also specify failure as a
fault–effect. For instance, a “system failure” is caused by a concrete fault, even when
the error message (or rather failure message) is incomprehensible. Failures are custom-
er–oriented.

In other words, we can relate error, fault and failure in the following way:

An error made in product design / development can cause a fault within
the specification / code that produces a failure of the system.

In reliability engineering, this cause–effect relationship re–appears in the different ap-
proaches for qualification: (a) sensitivity, (b) tolerance, and (c) redundancy. In this or-
der, one studies the sensitivity for errors to become faults, the tolerance for faults to be-
come failures and finally the impact of failures to bring down the overall system
performance.
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Figure 2–2: Approaches for reliability estimation.
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In literature, the notions of reliability and fault tolerance are sometimes used inter-
changeably. Fault tolerance is one possible way to estimate reliability, as reflected in
figure 2–2.

2.1.1.1 Sensitivity.
In sensitivity analysis it is investigated what the contribution of a specific fault is on
system failure. It is based on some metric that enumerates under which input conditions
(controlability) an effect can be found on the outputs (observability). A constructive
way to use this metric is called design centering, where the system (component) is de-
signed at a central location with respect to the acceptance conditions.

Clearly, a system will not be equally sensitive to all faults under all state conditions,
while also not all faults are equally probable. So, in the more general setting, faults can
be characterized by an operational profile: the collection of system stimuli that may
excitate the fault, when present.
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Sensitivity analysis assumes that controllability and observability will never be zero,
as this would mark the untestable case. In practice, not all network nodes are testable,
as the information capacity will generally be under–used. An error will only produce
a noticeable effect, when it influences that part of the structure that is actually used to
implement the intended behavior; otherwise, the error will not lead to a fault.

Degradation is the decrease of network functionality due to an error;
not every error will lead to degradation.

2.1.1.2 Tolerance.
Even when an error produces a fault, this does not automatically imply a failure. The
influence can also be masked away by the presence of redundant information: informa-
tion that supports already existing behavior. For instance, the bridging terms in a Bool-
ean expression make the implementation somewhat tolerant to faults. Methods which
perform this task are termed fault tolerance techniques.
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Fault tolerance implies techniques for improving reliability. It is possible for faults to
exist during system operation, while the reliability of the system is not decreased. This
can for instance be due to the potential of the system for self–repair. In coding theory,
one then distinguishes between fault–detecting and fault–repairing codes.

On the other hand, reliability can be diminished not only by faults, but also by that the
system simply does not meet its specification. Hence fault tolerance characterizes how
the system behaves, as faults are introduced in it. A high fault tolerance indicates, that
faults will not affect the system performance a lot.

An important property of a system, related to fault tolerance, is known as graceful deg-
radation. Graceful degradation is the ability of a system to provide useful service in the
presence of faults. Where system quality relates directly to the density of faults, it is
only the combination with the operational profile that results in failure intensity, the
measure for system reliability.
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2.1.1.3 Redundancy.
Degradation can be avoided by judiciously increasing the redundancy within the sys-
tem. Spatial redundancy refers to duplicating the functions of groups of physical com-
ponents, in order to increase the systems computational capacity. An example for per-
forming spatial redundancy is N–modular redundancy technique. Temporal
redundancy involves solving a sub–problem many times, and using the results to
construct some form of average final solution, in which an individual failing part may
go unnoticed.

2.1.2 Neural system reliability.

Over the years the interest in quality measures for neural networks has largely been con-
fined to the enumeration of the information storage capacity. The neural network is
viewed as an associative map so that the operational quality restricts the Hamming dis-
tance between the stored patterns. From an approximate count of the number of patterns
that can be stored follows the maximal affordable Hamming distance. The nature of the
pattern set then shows whether such a Hamming distance provides the required charac-
teristics.

For many neural networks such an associative capacity model does not exist; the best
one can hope for is a worst–case boundary value, which is normally way beyond a real-
istic value. Moreover the associative capacity model is not applicable in a number of
cases, such as in function approximation, classification and prediction. To estimate the
quality and particularly the reliability for these tasks, relevant performance aspects will
be determined first. The methodology for estimating and comparing the performance
aspects will be categorized in accordance with the “classical” reliability scheme. At last
the different methodologies will be compared to motivate the choice of reliability en-
hancement method, used in this thesis.

2.1.2.1 Performance aspects.
Learning reliability can be defined intuitively as the ability of networks to do always
what they are supposed to do. In this sense reliability implies all the quality components
from Def. 2–1: the accuracy of mapping, the success of the convergence and the gener-
alization ability, and adds to them the degree of ensurance, that these factors will be
satisfied when different experiments are done. The Electronic Industries Association
(EIA) defines reliability as [31]:
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This definition concerns the operational device i.e. within the neural network’s para-
digm that concerns the learning network. It implies four important subdefinitions,
which should be fulfilled simultaneously. First, reliability is a probability, i.e. the num-
ber of times an event occurs out of a total number of trials. Mapping of this subdefinition
on the ANN paradigm is unambiguous – it should calculate the probability that a net-
work converges to the desired solution. A practical way to calculate this probability is
to count the number of successful experiments out of all experiments made.

Second, the adequacy implies criteria to be established, that clearly specify, describe
or define what is considered to be an adequate performance. In the neural network para-
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digm there are a number of different criteria, which can define when the performance
is satisfactory. These criteria are called stopping rules, because they indicate the mo-
ment, when the learning process should be stopped. The earliest idea for such a rule is
to stop when the error E becomes small. This rule is useful for many applications, but
can lead to poor generalization. Later on many ad–hoc stopping rules have been
created. The most popular one is to have a validation set and to stop training when the
error measure on the validation set starts to raise.

No matter which of the stopping criteria is used, the goal of the neural learning process
is the achievement of the required mapping accuracy. The potential risk in fulfilling this
adequacy criterion is derived from the locality of gradient algorithms: the gradient algo-
rithm can not reach the minimum value which satisfies the value predefined by the stop-
ping rule accuracy.

The time, or the measure of the period during which a certain degree of performance
can be achieved, is another important reliability factor. Having no information of how
long it can take for the network to converge to the satisfying solution, it is not well de-
fined how to assess the probability (the number of trials), that the goal will be achieved.
This reliability criterion seems to be inapplicable for neural networks, which are known
to have a long convergence time, if they converge at all. In [10] it is shown, that the
convergence time and the probability for convergence are closely related. This property
is not common for every “device” in the sense of the given reliability definition. Be-
cause of that, we suggest for neural networks the term convergence (learning) success
to notify both the probability for an experiment to converge and the convergence to hap-
pen within certain time constraints.

It can be said that the convergence (learning) is successful, when the chosen stopping
criterion is satisfied. The success of convergence (learning) refers to one single experi-
ment. Guaranteeing the convergence of the single experiment presumes that the under-
lying mechanisms are under control and thus every single experiment can be brought
to the desired ending. In this sense ensurance of the learning (convergence) success will
be the basic step towards investigating the reliability and learning quality in general.

The fourth element in the EIA definition for reliability are the operational conditions,
under which a device is expected to function. It implies conditions as humidity, shock,
vibration, etc. We find this aspect of the definition inapplicable for neural networks,
because it does not imply any risks for their performance in the computational sense.
Instead, we will discuss further some specific critical aspects of neural learning.

2.1.2.2 Reliability assessment.
According to [52], there are three well–developed strategies of measuring a neural net-
work’s performance – via fault tolerance, via generalization abilities and via learning
trajectory and speed (Figure 2–3). Respectively, there are methods developed for reli-
ability enhancement, based on this performance metrics. To be in line with the catego-
rization, summarized in section 2.1.1, we attempt to find the correspondence between
the “classical” and the established neural reliability estimation methods. Since fault tol-
erance has a direct correspondence with the scheme, given in figure 2–2, the relation
of the other two reliability estimation methods with the classical framework has to be
explained.

Estimation of reliability via network generalization abilities implies evaluating the per-
formance of the trained network on unseen data sets. In [52], a number of techniques



21

are suggested that improve the generalization performance of the network, among
which are: changing the network parameters, hidden units, hidden layers, used stopping
criteria etc.. Systemizing all these techniques for reliability enhancement makes ob-
vious their relation to the functional redundancy approach from conventional reliability
research. Further we take a more general view on this reliability enhancement method
through the prism of the redundancy approach. Conceptually, neural reliability en-
hancement based on optimized trajectory and speed, is close to sensitivity analysis.
Therefore, neural reliability estimation and enhancement methods can be specified as
shown in figure 2–3.
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Figure 2–3: Approaches for neural reliability estimation.

2.1.3 Fault tolerance in neural networks.

Aspects of fault–tolerance have already been discussed in the previous section to high-
light the differences with classical HW/SW; here we continue with the more neural–
specific aspects. Though the reliability of neural networks is a widely discussed topic,
there is little consensus on how to investigate this area. The three main research lines
have been on (a) resilience to faults, (b) robustness to noisy inputs and (c) equality of
results when relearning. In early literature, the first two lines have often been mixed.
Overall this research aims to qualify reliability by a quantification of the network fault
tolerance [52]. Therefore we will shortly review some of its results before progressing
towards alternative approaches.

Investigating the reliability of neural system through the analysis of its fault tolerance
goes through the following major phases. First, the fault model must be specified, stat-
ing the amount and nature of the faults to which the network may be sensitive. Based
on this model a reliability measure, suitable for assessing the fault tolerance, is estab-
lished next. Following the concept of redundancy, which is substantial for developing
a fault tolerant system, the empirical data for calculating the reliability measure is gath-
ered. This way, the fault tolerance of the network is determined.

2.1.3.1 Fault models.
On any abstraction level in the design space, fault models can be formulated. In coarse
subdivision, one distinguishes between physical faults for electronic circuits, logic
faults for the digital circuits and functional faults for any higher level. It is debatable
whether the latter are not in fact failures. It is also here that models to characterize soft-
ware behavior have been introduced.

Fault models have largely been derived for hardware realization; in [145] this line of
thought is extended for neural networks. Here, we can coarsely discern between neu-
rons, connections and the adaption of weights (Figure 2–4). For connections, the con-
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ventional stuck–at assumption can be used: if the connection is either short–circuited
or broken, unreliable performance can be expected. Neuron faults can largely be seen
as differences in the transfer function: a linear function appears to be a strong limiter.
The adaptation fault will largely be concerned with the effectiveness of training the
weights.
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Figure 2–4: Faults in a neural network.

Next to these, we have to distinguish between static and dynamic faults. Static faults
appear independent of the internal or external timing of the network for the handling
of the examples. Such faults are usually of the stuck–at or the stuck–on type. However,
on a higher level of abstraction static faults can also occur because of value and scope
restrictions. As such, the characteristics of the hardware platform creep in on the soft-
ware level.

Dynamic faults are commonly of the delay–type: different timing characteristics on the
hardware nodes may under circumstances influence the neural behavior. Especially in
analog hardware with stored weights, such a timing effect can occur. On a more abstract
level, timing has also to do with the presentation order of the examples. It is established
that dynamic faults can best be analyzed through the use of benchmark tests, as sug-
gested in [140] and  [145] (Figure 2–5).

Figure 2–5: Some benchmark tests (from [140]).
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2.1.3.2 Failure models
In [16] and [153] one distinguishes between the reliability of a neural network (a) when
operating as associative memory or classification system, (b) when operating as a func-
tion approximator and (c) when the network is used to solve an optimization problem.
In the first case the common technique is to evaluate the sample probability that a pat-
tern will be recalled or classified correctly for various fault levels; this leads to a dedi-
cated failure model.
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Figure 2–6: Classification areas.

In solving classification problems, a continuous threshold function should determine
the belonging of a pattern to a class. The output values are giving an approximate (with
a certain degree of trust) indication whether an answer belongs to one of the available
classes (Figure 2–6). The reliability measure for a classification task should either give
the degree of certainty in the network response to answers (sensitivity), or the uncertain-
ty in the network classification in the right classes (specificity). The difficulty to create
such a measure is that the response of the network can be uncertain not because of the
fault or failure in the network operation, but because of an input, which does not belong
to any of the available classes. Although the measures for reliability and for fault toler-
ance differ in the sense of section 2.1.1, in practice, both types of measures are used
interchangeable [52].
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Figure 2–7: Error–reject curve for a neural network classifier (from [28]).
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Over the wide range of applications, there will be large differences in qualifying such
reliability measures. For instance, for the recognition of license plates false acceptance
cannot be allowed as such will entice correctly classified persons to start law–suits [28].
On the other hand, in the case of automated cleaning of laundry it is false rejection that
will cause problems. Here one rather passes laundry with a last bit of remaining dirt than
to re–wash something that is already clean [143]. By setting a threshold on the error–re-
ject curve (Figure 2–7), this decision whether to have a low error rate with many rejects
or a relatively high error rate with few rejects can be established.

Conversely, a continuous measure of the deviation from the desired function is more
appropriate for function approximation tasks [33] [137]. A similar approach is used in
[122] to evaluate the outcome of a neural network when solving an optimization prob-
lem. The experiments in this thesis concern mainly with function approximation prob-
lems. This is the reason that a special place is devoted to the reliability of feedforward
neural networks during the learning phase.

The task of assuring reliability in continuous function approximation appears frequent-
ly in domains of control systems and function approximation. [137] proposes a measure
and compares the reliability of different networks with respect to their fault tolerance
when performing a function approximation task. The authors take two aspects into ac-
count. The first one is finding a reasonable approximation error measure. The second
is to formulate a suitable faulting method. Measuring fault tolerance is then equivalent
to applying the faulting method and observing the effect on the measured error.

2.1.3.3 Suitability of reliability analysis.
Because of the massively parallel architecture and the distributed storage of the infor-
mation between the computational elements, an intrinsic fault tolerance have been
claimed for neural networks at its re–birth in the mid 80’s. An extensive research in fault
tolerance challenges this claim [24] [52] [114] [137] [153]. The main conclusion is, that
neural networks have the potential to be fault tolerant, but the learning algorithm used
(such as backpropagation) does not always generate the right weight configuration for
it. Correspondingly, fault tolerance can not be assumed, but should be posed as a prob-
lem to solve.

The impacts of faults is different during the operational phases of learning and recall
[33]. During learning, the network can be trained to be admissible to faults: a degree
of embedded redundancy may be activated to compensate for the missing functionality.
However, once the network is trained, the operation will have a similar vulnerability
as in conventional electronic systems. The study of network tolerance during learning
can be based on a suitable selection of the potential fault models by sensitivity analysis
[145]. We will point out later that this is only part of the reliability problem. The use
of fault tolerance as a stepping stone precludes to take other effects on reliability into
account.

2.2 Reliability as optimal trajectory.
In section 2.1 several aspects of the reliability of the neural networks have been consid-
ered: (a) the ability to learn the underlying mapping with given accuracy; (b) the poten-
tial of the learning process to converge and the convergence duration to be kept within
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reasonable borders; (c) the probability of a new experiment to have a guaranteed suc-
cess; (d) the guarantee for network performance on unseen examples (generalization
capability).

In search for an unified approach to the posed problems a successful development of
the learning process on a single experiment will be thought of. The accuracy required
to claim, that the learning process has been successful and that the ability of the network
to reach success in every experiment (i. e. the reliability and generalization of learning)
will be fulfilled if the mechanisms to bring a single experiment to the desired ending
are understood and ensured.

The success of neural learning affirms the ability of a designed neural system to model
a certain problem. Correspondingly, the learning success factors can be divided natural-
ly in two groups: factors concerning the neural system (architecture, initialization and
algorithm) and factors concerning the problem definition and representation. An useful
abstraction, which connects these two groups of learning factors, is the error landscape,
which gives the overall difference between the network response on the current exam-
ple question and the right answer.

If the problem is represented only by question–response coupled data, then the learning
process is directed by the data, i.e. neural learning is a data–driven task. To represent
the steps taken to solve this data–driven task it is enough to draw its trajectory on the
error surface. The error surface abstraction is used for both: to understand better the in-
fluence of learning factors on the learning success and to explain how learning prog-
resses in time.

2.2.1 The error landscape paradigm.

The error landscape paradigm is attractive for the following analysis, because it natural-
ly combines the network and the problem factors of the learning process. Also, it gives
a clear idea of how the different factors can be represented graphically, and thus helps
imagining how the different learning factors will influence the learning process – the
landscape relief or the itinerary on it. As said before, the features of the network and
the problem learning factors determine the learning quality. Correspondingly, the
graphical presentability of the error landscape is expected to give a deeper insight of
how the learning quality can be achieved.

The error surface is usually thought of as containing hills, plateaus, basins, and valleys.
Going downhill should find the lowest point of the error surface, which in the neural
literature is known as the global minimum. In the ideal case this is a point on the error
surface with zero energy for every example from the training set. In practice, a good
enough solution is found – a point with low average error �av. In an attempt to explain
how the error surface depends on the different neural factors, the last can be divided into
factors, which form directly the relief of the error surface, and factors, which choose
the travel trajectory.

The training error for a particular network depends (a) on the inputs x, outputs, y, which
form the problem representation and (b) on the network parameters w and architecture
f – i. e. on the network. The learning error surface minimum is expected to be also a
good minimum of the generalization error – the real measure of the performance of the
neural model.
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2.2.1.1 Reliable learning trajectory.
The previous approaches are estimating the reliability of a neural system on basis of the
observable effects of the learning process. They search for structures and parametrisa-
tion for which it is most probable to give good results. A third reliability estimation
method analyses how the learning process progresses. As shown in Section 1.2, the ob-
jective in training is the minimization of the difference between the given answers by
the network and the actual answers to the asked questions. For every training example
this difference is represented as a training error. The overall difference forms the error
surface.

The development of the training process can be expressed as a path along the surface,
called trajectory, which will lead to its optimal (minimal) point. Every point of this tra-
jectory is uniquely defined by the network parameters (weights), and the learning para-
methers (learning rate and momentum). The reliability analysis method, based on the
learning trajectory, analyses the shift weight vector across the error surface. The corre-
sponding reliability enhancement techniques attempt to adapt the weights in an effi-
cient manner.

Since this method gives insights on the learning process itself, it aims to improve the
learned solution, i.e. trajectory and the rate at which the result is achieved. In contrast
to the other reviewed reliability enhancement methods, the one of assessing the quality
of the learning trajectory and speed bases its results on understanding the intrinsic prop-
erties of the training process. Correspondingly, only this method can give a good insight
on how to improve the network performance on–line, i.e. when the training problem
becomes apparent.

There are many known techniques which attempt to ensure an optimal learning trajecto-
ry. The simplest method to find a better trajectory is simply to restart the training pro-
cess and hope for the best. The developed techniques for finding a best trajectory belong
to one of the following areas:

� Local adaptation rates. The idea behind this group of techniques is that if the
weight detects a different error surface area with different gradients around
the current error surface position, the new adaptation rate should be applied.
This way every weight has a corresponding adaptation rate, depending on the
local shape of the error surface. Local adaptation of the weights is often
based on heuristics.

� Second–order methods. This group of methods use the second–order features
of the error surface. The path towards the optimum solution is searched by
considering both the curvature as well as the gradient at a certain point. The
curvature of the error surface is evaluated by calculating the Hessian matrix
and assuming that the surface is locally quadratic. Computationally, this is
a very expensive step, even for a small problems. Application of this method
in its purest form is practically impossible for real–life applications.

� Regularization methods. Globally said, this group of methods aims to
smooth a very curvacious error surface areas and to introduce a higher curva-
ture in very flat areas by introducing an extra term in the optimization crite-
ria. This way they change the task of learning. These techniques are founded
on the assumption that the new task (the new error surface) has an optimum
at the same point as the original one.
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� Conjugate direction methods. These methods calculate a set of N orthogonal
directions in N–dimensional space. The search, made in every of these direc-
tions, is linear. If the surface is locally quadratic, N line minimizations will
find the minimum point. Although the assumption that the surface is locally
quadratic is not always correct, the conjugate gradient techniques are re-
ported to give good results in a number of applications. The difficult point
in the conjugate gradient techniques is finding the N orthogonal directions.
There is a large variety of algorithms for finding the orthogonal directions;
however, they are problem–specific and imply restart heuristics to find a
solution.

Globally speaking, reliability estimation based on the learning trajectory has its weak
points. The major one is that it is difficult to give definitions about the quality of a learn-
ing trajectory and the speed of learning, since the neural optimization process is per-
formed by a data–driven randomized algorithm. The intuitive method for measuring the
quality of the learning trajectory is by the time interval in which convergence to an ac-
ceptable solution is reached, i.e. by the length of its trajectory. A widely used realization
of this method is by counting the number of epochs taken by the network to converge
to a given solution.

The reliability estimation approaches as reviewed so far consider different aspects of
the neural operation. The fault tolerance approach refers to the resistance of the neural
method to malfunction of one or more network components. The functional redundancy
approaches study how the diversification in sort of the neural system will influence its
performance. Finally the learning trajectory approach analyses the reliability perfor-
mance in every learning case. There are reliability enhancement techniques, related to
every of these approaches.

2.2.1.2 Influences on neural reliability.
Quality of learning is understood as the accuracy, operational time, reliability and gen-
eralization ability of a given system when learning a certain problem, if theoretically
this system can learn the problem. Thus the learning quality depends as much on the
network (the system carrying out the learning process) as on the problem to be learned.
Here, the network and the problem components, which influence directly the learning
process, will be substantiated and their impact will be shown.

Directly related to the structural aspects of a neural network are the well–known three-
some: network architecture, learning algorithm and parameters initialization. These
factors provide for the principle outlook of the error surface.

� The network architecture includes neurons, activation functions, layers and
their interconnectivity. The backpropagation algorithm, considered in most
of the further described experiments, is applied most often on the feedfor-
ward architecture with hidden layers. A too small number of neurons in a hid-
den layer restricts the network capacity such that the problem can not be
grasped. Too much hidden neurons brings the network to take more, often
ill–defined, data relations into account or even to memorization. This not
only slows down the operation but also leads to deteriorated generalization.
In the next chapter this topic will be discussed in more detail.

� The learning algorithm. The gradient algorithms, widely used in the training
of neural networks, have the problem of locality of search – they perform
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minimization in the local landscape, where they are positioned. In a global
view the optimality of their performance can not be guaranteed.

� The initial network parameters is a summary term for initial weights and
biases configuration, initial learning rate and learning history (momentum)
parameters. Since the gradient training algorithms have local action, the
state from which they begin is of importance. In cases where prior informa-
tion is available, it should be used to choose the initial parameters of the net-
work. Lee [97] claims that a wrong choice of initial parameters is the reason
for premature saturation phenomena. Although in the next chapters a better
description of this phenomena will be given, this main conclusion is valid
to a large extent.

The influence of the different training sequences on the error surface stems from the
training set content and from the presentation procedure. Different training sets and/or
different presentation procedures will affect the quality of the eventual neural system.

� The training set content contains information on the signal (problem to
learn), the way of sampling (uniform or with higher sample density of the
difficult areas). The impact of problem representation w.r.t. the improved
quality of learning is a widely discussed subject in this thesis.

� The training set presentation will be elaborated on in terms of a crucial learn-
ing quality factor. The most common observations are that for improving the
speed of convergence the training examples should be presented in a random
order, and after every epoch a new randomization should be done . The train-
ing efficiency can be improved by applying different ways of example pre-
sentation [10] [14] [43] [39] [40] [80]. This subject will be widely discussed
in this thesis.

2.2.1.3 Correspondence with learning factors.

As explained before, the problem to learn and the system that performs learning inter-
sect in the error surface paradigm. Further on, the correspondence between error surface
and learning success will be explained for passive and active learning schemes. Active
and passive learning are terms reflecting not so much the learning process in general,
but rather the way of pattern selection and its contributions to the learning success.

The factors that condition the learning success are either elements of the neural system
or of the problem to learn. The error surface paradigm connects these two sides in a nat-
ural way. Even more, it gives a better understanding of their influence on the learning
success. Within the framework of error surfaces the learning success factors can be clas-
sified in two other groups (see figure 2–8):

� static factors, which form the relief of the error surface. To this group belong
network architecture, initial state of the network, and training set content.

� dynamic factors, which direct the itinerary on it. This group implies the
learning algorithm and the training set presentation.
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Figure 2–8: Classification of the neural components w.r.t. network dynamics.

The passive learning scheme is characterized by a training set with constant content of
N input–output pairs �z� � (x�, y�) : �� 1, 2,���N�. The difference between the net-
work response and the actual knowledge is determined by the error function. For the
�–th training example the error function is:

e(z�, w) � y�� f (x�, w) (2–1)

The instantaneous squared error in the case of one output neuron is:

�(z�) � 1�2e2(z�, w) (2–2)

The weights of the network are adjusted to minimize the total sum of the squared error
between the actual and desired mapping at the example points. The total sum of squared
error criterion is obtained by summing �(z�) over all N training patterns and is denoted
byEtot.

Etot � 1
2
�N
��1

�(z�) � 1
2
�N
��1

[y�� f (x�, w)] 2 (2–3)

The normalization of the total training error Etot over the number of patterns makes pos-
sible the results of training different signals to be compared and is by far the most com-
mon choice of optimization criterion:

E � 1
N
�N
��1

[y�� f (x�)]2 (2–4)

From equation (2–4) it can be concluded, that the error function depends on the training
patterns, the network parameters, and the network function. Designing a particular net-
work fixes the network function. Defining the problem to learn is done by choosing a
training set z�. If the training set is fixed, as the passive learning scheme suggests, the
training error is a function of the network parameters only. Varying the network parame-
ters with fixed training set (the network function is always fixed) gives all possible val-
ues of the network output. Correspondingly the error function defined for all possible
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parameters values forms the error surface. The number of parameters defines the di-
mensionality of this surface.

The error surface is multi–dimensional. It is practically impossible to be plotted for di-
mensions higher than 3 (i.e. the network with more than two weights). For most practi-
cally used networks this is a large restriction. Instead of the error surface itself, a two–di-
mensional subspace of it can be plotted successfully. Selecting a pair of weights to be
varied, all the others are kept fixed.

Every training set defines its own error surface (Figure 2–9). While the training set con-
tent defines the relief of the error surface, the way of pattern presentation draws the tra-
jectory of learning process, beginning from one arbitrarily chosen, defined by the initial
parameters, position.

−2

0

2
−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

Weight W Bias B

S
um

 S
qu

ar
ed

 E
rr

or

Error Surface

−2

0

2
−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

7

8

9

Weight W Bias B

S
um

 S
qu

ar
ed

 E
rr

or

Error Surface

Figure 2–9: Error surfaces, formed by applying different training sets to the
same network.

It should be noted, that the actual error surface, or also called generalization surface
is unknown, since the problem to be learned is represented by the number of examples,
which presumably give sufficient information about the actual problem by modeling
the underlying generator of data. Since the actual data distribution (X, Y) is unknown,
the generalization error can not be determined. Instead, it should be estimated from the
training set. The defined error function is the simplest adaptation of the generalization
error criterion to error criterion for a finite training set of N examples.

Insufficient information on some areas of a problem creates a difference between the
learning and the generalization surfaces as well. To make this statement more clear, let
us remember which factors form an error relief: the network architecture, the initial pa-
rameters and the training set contents. In practice, every problem is partly undefined:
there are areas of the problem for which there is no information available. If these areas
are defined, new data should be generated. Additional or different data will form a dif-
ferent error relief. This relief will correspond to the generalization error surface. In gen-
eral, it can be said that the generalization error surface is smoother than the learning
error surface. At the same time it may have more relief forms than the learning error
surface, if some of the problem features are not represented in the available examples.

This is the reason why every training set representing the same problem will have its
own learning error surface. It is assumed, that if the training set has the same unknown
distribution as the actual unknown distribution of the problem, the minimum of the
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learning error surface will be approximately equal to the minimum of the actual (gener-
alization) error surface. The last elaborations make it easy to understand the difference
between active and passive error surfaces.

Active learning concerns not the internal mechanisms of the learning process, but the
way the learning problem is presented to the network. There are two groups of methods:
the first one defines the strategy of pattern presentation, and the second – the selection
of the best training set from all available examples. By both methods the training set
is presented in a specific manner and it is not necessarily of a constant content and distri-
butedness.

Mapping these concepts on the error surface paradigm, a substantial difference can be
noted. By active sampling the error surface changes continuously, since the training set
changes. Consequently, when beginning with an easy subset, the gradient dynamic ap-
plied in a first error surface easily and rapidly leads close to a minimum of the surface,
which places the network’s weights in a good configuration to learn the second subset.
This is repeated at each stage, until the end of the learning. In contrast, active selection
presumes a non–changing surface, because the content of the training set is constant.
Here a lot of attention is paid to the formation of the learning trajectory.

2.2.2 Different views on the error relief.

The error surface relief has been investigated by many researchers to reach a better un-
derstanding of neural operation. The work in [71] [81] is of special interest here. The
book of Minski and Papert [104] reports that “getting trapped” in a local minimum is
rarely a practical problem for backpropagation learning. Investigations on simple prob-
lems (XOR problem) [71] [98] also conclude, that local minima are not as common as
thought in the beginning of the neural research. [8] has considered the learning in lay-
ered feedforward networks with linear neurons trained with backpropagation. The main
result of this work is that the error surface has only one minimum, corresponding to the
orthogonal projection onto the subspace spanned by the first principal eigen–vectors
of a covariance matrix associated with the training patterns. All other critical points of
the error surface are saddle points. This result can not be translated directly into net-
works with non–linear neurons. [81] proves that for the multilayer perceptrons with
non–linear neurons the error surface is quite harsh – with a staircase appearance. The
surface tends to have a large amount of flatness as well as extreme steepness, but with
little variation in between. When the number of training samples is small, there is often
a 1–to–1 correspondence between individual training samples and the steps in the sur-
face. If the number of the training samples is increased, the surface becomes smoother.

Each flat spot looks like a minimum, i.e. the gradient in this area is very small. In addi-
tion, these flat spots may expand until infinity, which makes application of learning al-
gorithms based on line search erroneous. Therefore alternative optimization techniques
such as the conjugate gradient method have been proposed for traversing entrapment
regions like plateaus and saddles. With this type of surface, a gradient search moves
very slowly along these flat parts. Simulated annealing is designed to escape local mini-
ma, and to make it easier to avoid entrapments that are not due to a local minimum, since
there is no need for annealing in the latter case. Other learning algorithms like stochastic
gradient descent [47] can escape the entrapment when not caused by the local minima.
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For a general type neural network the error function is a highly non–linear function of
the weights. All the minima of this complex error function satisfy �E� 0, where �E
is the gradient of the error function in the weight space.

There are many theoretical models of the formed error surface. A high–order polyno-
mial and a spline model requires a large number of parameters to describe the error sur-
face, when the dimension of the weight space is large. Good insight into the optimiza-
tion, that takes place in neural learning, is provided by the quadratic model of the error
surface; moreover the quadratic model requires a reasonable number of parameters. If
the dimension of the weight space is p, then the number of parameters for a local qua-
dratic model description is p� p(p� 1)�2.

The quadratic approximation of the error surface is based on the assumption, that the
error surface is approximately quadratic in the vicinity of a minimum. Therefore, the
locally quadratic Taylor expansion, widely used in numerical analysis, can be applied
[58]. In the neighborhood of a local minimum w*of the training error E(w), the quadrat-
ic Taylor expansion can be described in the following way:

E(w) � E(w*)� 1
2

(w� w*)TH(w� w*) (2–5)

where H is the Hessian matrix. While evaluating at w*  the expanded training error has
no linear term, because �E� 0. This representation creates a new coordinate system
with the eigen–vectors of the Hessian for the axes. In the new coordinate system the
contours of constant E are ellipses, centered at the origin. The axes of the ellipses are
aligned with the axes of the coordinate system, and the length of these axes are inversely
proportional to the square roots of the eigen–vectors. The Hessian H is usually un-
known, since the exact location of the minimum w* is not known. However, there are
ways to approximate H, based on the gradients of the errors, calculated during training.

2.2.2.1 Learning process is a trajectory.
Lets summarize once more, that neural networks relate two data streams: the input and
the output stream. The goal of neural learning is not to memorize this correspondence
(mapping), but to model it: if unseen input patterns are presented, the network output
should provide the value of the corresponding output variable. For regression problems
the distribution of the output variables, conditioned on the input variables, should be
modeled. In classification problems the posterior probability of the class membership
should be modeled, conditioned again on the input variables.

The proper neural training must model the underlying generator so that the best possible
computation of the target value y corresponds to the newly presented input value x. A
problem can be described as a relation between a set of independent (input) variables
and one or more dependent (output) variables. If the only definition of a problem is giv-
en by measurements of external behavior, its learning is determined by examples. Such
a modeling of a problem is called data–driven. In other words a data–driven model is
any model with parameters, determined by data.

Obviously the operation of neural networks is driven by a stream of data. A logical way
to represent the steps taken to solve this data–driven task is by drawing its trajectory
on the error surface. Since most often the training examples are represented in a random
manner, the arbitrary local steps will be taken on this surface. This is one of the difficul-
ties to ensure a reliable learning trajectory.
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The error surface contains hills, plateaus, basins, and valleys. Downhill gradients aim
to find the lowest point on the error surface i.e. the global minimum. Theoretically this
is a point with zero energy for every example from the training set. In practice, merely
an acceptable solution is found – a point with low average error E. The gradient algo-
rithm draws the itinerary from the randomly chosen initial point on the error surface to
a reachable minimum in the neighborhood. This itinerary goes through different surface
relief forms.

Some of the relief forms are easy to pass; at others the gradient algorithm can’t take a
downhill step comfortably. The latter group of areas are generally called stationary
areas, where the learning algorithm is entrapped. They are characterized either by the
negligible value or a negative change of the error �E. The stationary areas can be of
several types. In figure 2–10 all the possibilities are shown.
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Figure 2–10: Examples of stationary areas.

Global and local minima (the areas A and D) are stable stationary points: there does not
exist a non–ascending trajectory, which connects these points with a lower energy area
[71] and consequently the gradient type algorithm can not escape them without external
help. An interesting question is how to distinguish global minimum from local stable
minima, if both have negative gradients of the error surfaces in every direction (for ev-
ery parameter). The answer is that the global minimum contains points with acceptable
low energy for every individual pattern, and local stable (or acceptably low) minima
for the training set as a whole i.e. for E.

There are unstable stationary (metastable) points as well (the area B), where learning
algorithm spends some time but has a large chance to escape from. Examples are val-
leys, plateaus, flat maxima, or in other words, areas which are flat at least in one direc-
tion. The flatness gives negligible or null change of the training error and therefore the
learning algorithm does not progress to the global minima.

It is difficult for the gradient algorithm to distinguish between unstable stationary points
and flat stable minima (B and D). If �E equals zero there is some flatness of the error
surface, i.e. an existence of at least two equi–potent points, thus of symmetry of a cer-
tain kind [11]. In addition, the instantaneous error � and the average error E are both
non–zero.
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2.2.2.2 Effects of randomness.
Some local minima (representing stable stationary areas) can be escaped due to the ran-
domness of the learning algorithm if the minima are shallow. The unstable stationary
areas are not an unsolvable problem for the gradient neural learning. They can entrap
the learning algorithm for a time and even hinder its further progress. There are many
cases, when learning process never escapes from such a flat area [10]. The gradient al-
gorithm can be trapped indefinitely in such an unstable minimum, because of the inde-
cisiveness of the gradient algorithm on the flat landscape. Additional symmetries, like
those of the training examples and the parameter distributions, can make such an algo-
rithm to oscillate endlessly in this flat areas.

Neural optimization is performed by randomized algorithms. This has a two–fold im-
pact on reliability performance. The motivation of including randomness as a design
principle is to improve the algorithm performance, thus indirectly to enhance reliabil-
ity. The negative effect of introduced stochasticity is, that neural experiments can not
be reproduced: every single run draws a learning trajectory with different shape and
length.

A number of randomizations are made during learning, that aim to improve the neural
performance. For instance, the initial values of network parameters are chosen random-
ly in order not to direct learning beforehand. The inventors of the backpropagation algo-
rithm have suggested that not only the network parameters but also the training exam-
ples should be supplied at random [129]. In addition some authors have suggested to
add noise to the inputs of to the neural network for better learning performance [78].

Firstly, the random choice of the initial parameters (weights, biases) within a small in-
terval ensures an arbitrary start of the training algorithm. This can have a positive im-
pact on the learning process if the initial start is near an acceptable minimum. In parallel
computations (which all the neural networks support) there are certain but pre–deter-
mined number of possible solutions. Different solutions correspond to equivalent and
repeating parts of the error landscape in the multidimensional space. This causes a re-
peatedly moving of the network state from one to another subspace of the multidimen-
sional error space.

This phase of the learning process is known as a symmetrical phase [131], characterized
by indecisiveness of the learning algorithm. A manner for breaking this symmetry in
the neural operation should be found by establishing the itinerary to a specific solution.
A properly chosen strategy can find a way of rapidly isolating a possible solution in the
beginning of the learning process i.e. choosing the subspace on the error landscape in
which the fastest solution trajectory can be drawn. This subject will be discussed in later
sections together with indecisiveness in the gradient calculations and with permutation-
al symmetry.

Secondly, during learning, random example presentation has a major impact on form-
ing the itinerary, especially when the difficult–to–pass flat areas or shallow local mini-
ma of the learning algorithm are met. The example randomness ensures that even if two
experiments start from the same place, they never have the same itinerary. In other
words, two experiments will never be the same. They differ in the length of the learning
phase, of the learning stages they pass etc. This subject will be discussed in detail in
section 4 in which different randomizations are analyzed.
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2.2.2.3 Distributed representation.
To every network can be associated a measure of its capacity – the amount of informa-
tion, which can be encoded in it. Correspondingly, the problem to be learned has a cer-
tain complexity. If the capacity of a network is able to incorporate the complexity of
a problem, it can be said in general terms that the network is able to learn the problem.

Neural networks consist of many equi–functional elements. There is not a direct corre-
spondence between items of information, learned by the network and elements of the
network. The information is distributed between storage elements – weights and neu-
rons. There is not a simple measure to predict how many storage elements are necessary
to encode an information item. In this sense every separate storage element is unimpor-
tant: if removed during training usually networks still succeed in fulfilling their goals.
Because of that, neural networks are said to have an inherent fault tolerance.

If too many storage elements are removed during training or due to design faults, there
exists the possibility that the capacity of the network is insufficient to incorporate the
complexity of the problem to solve. In practice there are conditions which push the net-
work to diminish the distributedness of its representation. This happens, for instance,
when the storage elements are brought into a state where they are not functioning prop-
erly. In such cases the network looses its distributedness i.e. its effective capacity. Di-
minishing the distributedness of neural representation thus has a direct impact on its
reliability.

2.3 Reliability enhancement.
In this section the two mostly used reliability enhancement approaches will be dis-
cussed first. The brief analysis of these approaches is a basis for development of a new
reliability enhancement method that overcomes some drawbacks of the existing meth-
ods. The ability for generalization of neural networks is their most important feature.
The performance measure, evaluating this aspect of the neural network operation, is
based on counting the degree of achievement of the posed network goal on unseen data.

Improving the generalization performance of the network is underlying idea behind all
the reliability enhancement methods. The first basic approach for achieving the ulti-
mate goal of reliable neural learning is by exploring variations of networks and select-
ing the best of them: the functional redundancy approach.

The second approach takes a close look over the features of the error landscape. The
variety of methods, as discussed in 2.2.1.1, attempt to control the learning process de-
velopment. Mostly used among them are the second order methods and a variety of reg-
ularization methods. In the following only the regularization methods will be elabo-
rated on, since they give a fair idea about the possibilities to improve the learning
trajectory. In this thesis an alternative approach for reliability enhancement is taken
which is developed in the last subsection.

2.3.1 Functional redundancy for enhanced generalization.

As stated before, the learning process can be represented as function approximation.
From this point of view, learning of a smooth mapping from examples is an ill–defined
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problem. In other words the information in the data is not enough to reconstruct the
mapping uniquely in regions with missing data. Generalization in neural networks is
based on the assumption, that the basic characteristics (extrema, saddle points, or in oth-
er words, the significant curvatures) are uniquely defined from the examples and that
therefore the intermittent subfunctions are smooth or at least considerably less curved:
small changes in the input parameters determine correspondingly small changes in the
output. This makes the test on generalization the ultimate correctness proof on the qual-
ity of the example set and the learning reliability.

This metric for neural performance estimation supports a number of techniques for reli-
ability enhancement. As defined in [52], there are three categories of techniques, re-
lated to generalization improvement:

� pre–training parameter adjustment. This category contains algorithms for im-
proving the generalization ability by changing adaptation rates, number of
hidden units, number of hidden layers.

� in–training complexity constraints. These techniques attempt to prevent the
training data from overfitting (Growing).

� post–training destructive algorithms. Such measures aim to remove unneces-
sary units or weights (Pruning).

All this methods are finally introducing a variation in the training experiment as a whole
and do not search for improvements within the learning process. For taking a more gen-
eral view on this approach for reliability estimation and systemizing the investigation
of all the possible variations, which will improve the generalization performance, the
functional redundancy approach [116] [138] is suggested.

2.3.1.1 Generalization diversity and committees.
Even small changes in the network initialization, parametrization or structure can result
in that the network will generalize very differently. There is an enormous amount of
literature which discusses the impact of different diversifications. The first quantitative
approach to generalization is made by [49]. The most systematic study of the diversity
phenomena is made by [117] by using different statistical measures of generalization
differences. It considers both generalization diversity within a set of nets, and between
sets of nets. The study has an empirical nature: many experiments have been performed
with a variety of differences. Later on a statistical measure has been applied to evaluate
which kind of diversity gives the best results.

[117] is a good theoretical attempt for systematic study of neural reliability via func-
tional redundancy. The engineering practice has proved useful for practical multiver-
sion programing methods, namely the committee and the ensemble method. Intuitively,
there are two possible ways to find the best network for every problem: (a) to train the
variety of networks and to choose the best one, or (b) to investigate which kind of vari-
ety can bring the better results.

A manner to put the first way into practice is by training many networks and to compare
the results. This direct form of the committee approach is computationally very expen-
sive, and the training of the networks, which are not considered as good solutions, is
a pure loss of computational effort. The test for goodness of a network is usually its per-
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formance on the validation set. This can not be the optimal criterion for evaluation of
the network performance, because the validation set represents only a small part of the
problem.

The refined version of this approach suggests a combination of networks to be trained
in a committee [118] [119]. The committee contains a set of networks, which can differ
in several ways: the number of hidden units, the kind of network models, the mixture
of networks, the optimization criteria, the initial weight configuration, the training pa-
rameters, the training samples. The simple committee involves averaging the predic-
tions of the individual networks. More sophisticated methods require an additional gat-
ing network to decide which of the committee networks should determine the output.

The performance of the committee can be much better than the performance of each
single net, taken in isolation. As natural data tend to be noisy, unreproducable and in-
complete, a committee network houses a set of data representations, each being likely
to occur in actual practice. Instead of recalling from a single compromised representa-
tion, a selection from the ensemble is made. Once trained, the committee can therefore
have a much better performance on unseen data at the expense of a small increase of
the computational complexity.

The success of ensemble averaging in neural networks is due to the presence of many
local minima, and thus, even with the same training set, different local minima are
found when starting from different initial conditions. The idea for the committee ap-
proach can be found in statistical models for regression and classification. The different
local minima lead to independent predictors, and thus their average reduce the variance.

2.3.1.2 Voting network.
The other approach [116] [138] is based on N–version programming, which aims to im-
prove the reliability of the software programs by using a different kind of redundancy.
Developed independently of the committee approach, the N–version programming sug-
gests basically the same: alternative versions of software programs to be developed and
executed together. After being executed in parallel, they are either checked for agree-
ment before proceeding, or passed to the voter, which determines the output.

The goal of such a voting network is not to smooth away the natural variation but to
remove the outliers that may burden each different network. As neural networks are
well–known to be almost perfect and each individual network has its own quirks, taking
a vote over a diversity of networks is judged to equalize the judgement.

It is therefore of interest to  investigate into which kind of diversity gives the best results.
In [116] the diversities in the training parameters, initial weight configurations, network
architecture,  training samples, and contrasting methods is researched. It concludes that
the training set diversity has a bigger effect than the diversity in the initial parameters.

In this thesis, during the logical development of the suggested approach, the best way
to improve the network performance is found to be the one with reordering or resam-
pling of the training set. From the point of view of reliability estimation by functional
redundancy, it improves the network performance by training set variation. The proof,
made by [116], that the variability of the training set brings the best results for neural
reliability enhancement with respect to the other variation techniques encourages us
that the chosen way can bring the optimal solution.

The similarity of the work, done in this thesis, to the described N–version and ensemble
methods is, that we use different training sets from the same signal to investigate the



38

network performance. Instead of training a lot of networks and choosing the best of
them, the optimal performance of the single network is obtained by changing the train-
ing set content or order of its components during learning. In this way, our approach is
a reliability enhancement method, based on the momental condition of the training pro-
cess. By substantiating the possible difficulties, which the learning process can meet
on its way to a successful ending, and analyzing their appearance on the network instan-
taneous behavior, the change in the example presentation order is performed. Our work
combines elements of Active sampling methods, Ensemble methods and Sensitivity
analysis.

2.3.2 Regularization methods for reliability enhancement.
An alternative approach towards improved learnability and therefore enhanced reliabil-
ity of the training process are the methods that analyze the shape of the error surface.
As elaborated so far, the reliability of neural networks is not an intrinsic property. The
highly symmetrical architecture and initialization will often cause the learning algo-
rithm to be stuck in one or the other static part of the error surface. If this static part is
a non–satisfactory minimum, high plateau or saddle, the learning performance and
duration can differ significantly from the optimal or the median performance result. To
increase the reliability of the network, the optimization strategy should be changed.
There are two basic manners of doing that:

� deterministic, which includes changes in the learning algorithm, network pa-
rametrization,  learning strategies, and

� stochastic, which in general includes noise injection in the different parts of
the network [3].

The most widely used deterministic methods analyze the second–order derivatives of
the local error surface. They give an information about the curvature around this local
point by calculating the second–order derivative of the error function with respect to
all the parameters. This information will undoubtedly help the learning algorithm to
make a decision at which direction to go. The calculation of the second derivatives is
a costly computation, which is made after the assumption, that the error surface is local-
ly quadratic. In our further work we would  like to avoid this two drawbacks. This is
the reason not to elaborate further on on the second–order methods.

Widely used techniques for stochastical and deterministic reliability enhancement are
the regularization methods. Regularization in neural networks [123] [150] has two posi-
tive impacts. Firstly, it remedies numerical problems in the training process by smooth-
ing the error surface and by introducing additional curvature in low (possibly zero) cur-
vature regions. Secondly, the regularization is a tool for reducing the variance by
introducing extra bias [62].

The basic idea of regularization is to stabilize the solution of some auxiliary non–nega-
tive functional that embeds a priori information, and thereby to turn an ill–posed prob-
lem to a well–posed one [123]. More specifically, this can be done by adding a penalty
term to the objective function of training. This can be done in the following way. Con-
sider again the feedforward neural network as a parametrized non–linear mapping from
the a–dimensional input space x � (x1, x2, ���xa) to a b–dimensional output space
y � (y1, y2, ���yb). Without loss of generality the output space can be considered as 1–di-
mensional. The approximation function is represented as F(x).
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Tikhonov suggests in his regularization theory that the function F is determined by
minimizing a cost functional �(F). This functional involves two terms:

� the standard error term, corresponding to the error function as defined already
in equation (2–4) and due to the examples in the training set:

Estand� 1�N�
N

��1

(y�� F(x�))2 (2–6)

� the regularization or penalty term, depending on the geometric properties of
the approximation function F(x) and denoted by:

Ereg(F) � 1�2�PF�2 (2–7)

where the operator P contains a priori information about the solution.

The success of the regularization approach depends on the form of the penalty term, and
on how well the penalty term corresponds to the underlying relation. The weakness of
this method is that the type of regularization depends on the problem to be solved. Often
it is not clear what kind of regularization can be used for a particular problem.

In the category of deterministic approaches, the simplest intuitive regularization meth-
ods are weight decay [77], and weight elimination [156]. In these approaches the penal-
ty term presents an intuitive measure of the size of the network.

Adding a regularization term Ereg to the cost function, which can in its simplest way be
a weight magnitude, is known as a weight decay technique.

Etot� Estand� Ereg� Estand� ��
i

(wi
2) (2–8)

where � is a parameter, controlling the weight decay rate. The second term has the ef-
fect of reducing large weights. It has been found empirically that a regulizer of this form
can lead to significant improvements in network generalization (Hinton [77]).

The idea of increasing the stochasticity in the learning process in order to achieve a bet-
ter learning performance is not new. Reed [125] and Bishop [20] assume that training
with input noise converges to a kind of average of a stochastic error function. On basis
of a Taylor expansion of the expected error function, they concluded that training with
input noise is equivalent to a form of regularization.

Matsuoka [102] and Holmstrom[78] have contributed to this subject as well. In [3] the
objective function is derived, that is minimized by the backpropagation training with
input noise. After careful analysis of this objective function he contradicts Reed [125]
Matsuoka [102] and Bishop [20]. An [3] concludes that even in a weak noise limit, train-
ing with input noise is not equivalent to a regularization method. The difference lies in
the noise–induced term in the objective function, that depends on the fitting residuals.
This component of the cost function has not been noticed by Reed [125] and Matsuoka
[102]. Bishop has concluded, that this term vanishes at the end of training, which is true
only for an infinite training set. In this case noise injection is really equivalent to a regu-
larization.  An [3] concludes, that the importance of this term is comparable to that of
the regularization term. It has the same effect as regularization (inputting of noise has
a smoothing effect on the network function), but according to the author [3] this smooth-
ing operates fundamentally different from smoothing by regularization.
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The main contributions of noise injection to the neural reliability are shown to be the
enhanced generalization ability and fault tolerance. As it will be shown in further chap-
ters, input noise injection can contribute in obtaining a shorter learning trajectory.

2.3.3 Adaptable learning trajectory.

The considerations about the shape of the error surface, elaborated on in the previous
section are to be summarized in search for a better trajectory of the learning algorithm.
As the described learning drawbacks suggest, the main obstacles for reliable learning
are the following tendencies of the gradient algorithm:

� difficulties by escaping the initial symmetrical phase, which was shown to be
a shallow valley, symmetrically positioned between the subspaces of the mul-
tidimensional  vector space;

� getting stuck in a high energy valley or flat plateau after the initial symmetri-
cal phase is broken;

� difficulties to find a satisfactory low point, when the solution is close to the
optimal, i.e. in the third (tuning) stage of learning.

Giving an universal prescription of how exactly to overcome all these hurdles on the
way of the training algorithm is not an easy task for algorithms with a random nature
and for an ill–posed problems, as neural networks are expected to solve. Although it
is not possible to give the way of solving every reliability problem in terms of an optimal
trajectory, the following reasoning will suggest basic principles, that can be followed.

In the previous section, regularization and noise injection are presented as well–estab-
lished techniques for optimizing the successful learning of particular groups of prob-
lems. Explained in terms of the error surface, the regularization method as well as the
noise injection methods improve the behavior of the learning algorithm in areas of the
error surface with very low curvature, where the optimization process progresses very
slowly and in the areas with very high curvature, where smoothing of the error surface
is advisable. Similarly the method, which will be suggested, is also directed to deal with
these two difficult types of areas of the error surface. The strong point of this method
is that it does not change the definition of the problem, as the noise injection techniques
do, nor is it based on adding an extra terms to the cost function, i.e. changing the opti-
mization goal, as all the regularization methods suggest. Both, regularization and noise
injection, are thus problem (problem area) specific, which we attempted to avoid in this
work.

Problem dependence is a know drawback of all the second–order training algorithms
as well. Additionally, the second–order methods have increased level of computational
expenses, which can hamper enormously a real–life task. The drawback of increased
computational expenses is intrinsic to the functional redundancy methods as well.

Our goal is to develop a reliability enhancement method which insures success of the
training process by redirecting the learning trajectory if necessary. This redirection
should be based  on a criterion, which does not require the heavy computations, since
it should have a practical relevance.  Development of such a methods requires an under-
standing of the mechanisms, which guide the learning trajectory as well as the potential
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training problems, expressed as a features of the error surface. Furthermore, we would
like to keep our reliability improvement method simple to perform and as little depen-
dent on the training task as possible. To find such a solution, unified view on the possible
learning difficulties should be build first.

The expected trade–off of such a method is that it will have lower precision and for sure
will not solve an arbitrary training problem. It can force to suboptimal solutions as well.

In search for a better trajectory on the global error surface, the following reasoning on
the path taken by the learning algorithm will be made. The learning algorithm chooses
steps with lengths, determined by the current error signal, and direction, posed by the
projection of the weight vector on the multidimensional error surface. For a very simple
network with two weights, choosing the gradient direction is illustrated in figure 2–11.
From this figure it is obvious, that the gradient direction is a vector sum of the gradients
with respect to the two network parameters.

w2

w

w(t)

1

Figure 2–11: Defining the gradient direction for the two weights network

The error function can have substantially different curvatures along the different direc-
tions [20] (Figure 2–12a). The constant error values form ellipses, whose axes differ a
lot, so that the error surface has the shape of a valley. For most points of the error surface
the local negative Hessian vector ��E does not point towards the minimum of the er-
ror function. Thus, the successive steps of gradient descent oscillate across the valley
and the minimum of the valley is reached very slowly. The behavior of the learning al-
gorithm is directed by the way of example presentation, which is most often random.

�� �� � 
����	���� �� � ����������	� 	���� �	�	


Figure 2–12: Gradient descent on two peculiar error surface areas.
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2.3.3.1 Criteria for reliability estimation.

The selection of an appropriate error measure depends on the kind of the problem, that
the network should solve. For many tasks this involves learning a continuous function,
as most of the experiments in this thesis investigate. It is shown by [137] that the root
mean square error (RMS error) is a good choice for a reliability measure by continuous
tasks.

�rms� 1
N
�N
��1

[y(x�)� f (x�)] 2� (2–9)

The authors of [137] consider the problem, inherent for the RMS criteria, that the differ-
ence in the scales of the signal to be learned are not encountered by it. Therefore they
propose the normalized measure of the approximation quality, which they call AQ.

AQ�
fRMS

fRMS� �RMS
(2–10)

where fRMS is the RMS value of the function to be learned. The so–defined AQ–measure
is dimensionless, bounded between 0 and 1, as 1 corresponds to no error, and 0 – to infi-
nite error. [137] uses a fault tolerance investigation method, based on randomly discon-
necting two processing elements at every experiment. When increasing the number of
allowable faults, the fault tolerance grows in a combinatorial fashion.

Describing the learning process as an itinerary on the error surface makes it possible
to define its quality through the learning trajectory. A simple method of determining
the quality of a learning scheme according to its trajectory is to measure the rate, for
which it reaches the point of convergence to an acceptable solution. This widely used
measure for a learning quality is usually determined in terms of number of epochs until
a satisfactory solution is reached. Enhancing the reliability implies that the quality of
the learning trajectory should be taken care of. This implies first, that the training dura-
tion should be decreased, to insure that the training will be performed in the desired time
borders, and second that the improved learning duration can always be achieved. There
are several important issues, which need to be taken into account.

Learning trajectories can converge very slow or not at all because they get stuck in a
stationary areas. Increasing the learning speed should find a way to shorten the time
spent in these areas. Furthermore, the improved learning results should be repeatable.
Besides on the learning method the repeatability depends on the random factors, which
influence the formation of the learning trajectory. The network parameters are chosen
randomly, which define the starting position on the error surface and the presentation
order of the training examples, which direct the trajectory further on. To encounter the
influence of the random factors, every training experiment will be repeated many times.
The conclusions over the quality of the learning trajectory will be made on the basis of
statistical characteristics of many experiments.

Let the network output be denoted by f (x). During the learning phase, the network
should learn to approximate a dependence y(x) on a set of N examples
y(x�) : �� 1, 2,���N. The distance between the desired dependence y(x�) and the one
actually learned by the network function f (x�) is given by the cost:
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[y(x�)� f (x�, w)]2 (2–11)

It is obvious that this cost function is equivalent to the error function, as defined in the
previous chapter. Correspondingly, the learning success and reliability can be defined
through the error function.

As discussed in the section 2.1.2.1, the appropriate stopping criteria should judge the
learning reliability in terms of adequacy of the solution. If the learning process does not
succeed to find a solution in a reasonable time which meets the accuracy criteria posed,
it is classified as a fault, although the solution in some cases is close to the satisfactory.
The convenient network performance criteria in terms of learning trajectory is to reach
the point in the error surface, which has a magnitude below certain value.

Selecting the starting position of the learning process within a small range will give a
more stable learning duration. Choosing the initial weights from a larger range will lead
to a larger variance of the convergence time, but it can speed up learning, since the larg-
er weight values will prevent the learning algorithm from spending time in the initial
symmetrical  phase. The choice made for further analysis is for the small initial weight
values range. The small range of the initial parameters ensures more stable learning
duration and gives a better theoretical  foundation for convergence analysis.

The last evaluation point of the learning quality is which of the averaging measures
must be used for interpreting the outcome from the subsequent experiments. The repre-
sentative number of  experiments, that allows for a statistically meaningful statement,
needs to be determined for an adequate average performance.

A good measure for comparison of the learning reliability in terms of probability to con-
verge to a proper solution is just to count the successful trials. The percentage of suc-
cessfully converging experiments puts grounds for comparison between the different
pattern selection strategies.

Defining the learning reliability in terms of time – the period during which a certain de-
gree of performance can be achieved, two measures will be given – the average conver-
gence time and its variation. It is well–known from signal processing literature that the
median value is far more resistant than the mean, when the inputs are noisy or faulty.
Therefore the median training time and its variance will give a good estimate of the
quality of the average achieved trajectory with an arbitrary learning method.

To evaluate the quality of a particular experiment, in [122] the average cost–value of
a random guess is suggested. This criterion is constructed to imply the answers on the
following questions: How good is the solution with respect to the global optimum or
the best known answer; how does the performance change with the problem size; what
is the performance of the network on two different tasks, i.e. are there easy and difficult
problems to solve. The authors define a solution quality q, by mapping the optimal cost
value copt,  the average cost value cave, and the current result of an experiment cave onto
a normalized quality scale.

q� cave� c
cave� copt

(2–12)

The solution has value q� 1, if c� copt and quality q� 0, if c� cave.
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2.3.3.2 Towards an optimal learning trajectory.
In this thesis only neural reliability during the learning phase will be considered. As our
interest is directed to find out how a satisfactory convergence can be achieved in a rea-
sonable time, only the reliability during training can be of interest, since only then the
neural system is being adapted.

A logical conclusion of this short review of reliability methods is that the performance
of a neural operation can be estimated and studied by all of them, but its enhancement
needs a deeper understanding of the training process itself. This is the reason to direct
our attempts for reliability enhancement towards finding an optimal learning trajectory.
As discussed in 2.2.1.1, the main performance enhancement techniques, which the
learning trajectory method supports, have a number of major drawbacks. They either
require heavy computations, practically impossible to be made for a real–life task, or
use heuristics to find a solution, or make assumptions on the shape of the error surface
which is not always satisfied, or change the problem definition, or combine few of these
drawbacks [47].

In our analysis we take an alternative view on the learning success: the learning depends
more on what the network has to learn than on its structure, parametrization and opti-
mization method. We are investigating learnable and not learnable, easy and difficult
tasks. Since the same network is able to find the internal structure of one task and fails
(or performs unreliably) a task with a similar complexity and structure, we assume that
the manner of presentation of this task to the network has a crucial impact on its reliable
performance. The error surface paradigm is very useful for understanding the internal
mechanisms of problem presentation, since it naturally combines the network and the
task (the learning problem).

In our approach heavy computations of the second–order characteristics of the error sur-
face are avoided, as this is unpractical for the current state of computational technology.
Instead, the error surface abstraction is considered as containing a static part – the relief
obtained when the overall difference between the actual and obtained network output
is drawn – and the dynamic part – the steps which the training algorithm takes on it.

The most often encountered reasons for slowing down or getting stuck in the learning
process are either flatness of the error relief in at least one direction or areas with a high
curvature: local minima and valleys. Since learning trajectories are defined to a large
extent by the training examples, we suggest that all the peculiar areas on the error sur-
face can be avoided by finding a proper itinerary of the learning process through the
ordering of the training examples in a way that surmount the error surface difficulties.
This point of view supports the idea that the simple backpropagation algorithm, by far
the most often used in neural computations, can successfully cope with most of the
learning reliability problems.
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3 Symmetry and indecision.
The computational drawbacks which may prohibit the success of neural
learning have been listed in Section 1.2.2. Each drawback can be related to
a corresponding error surface. In order to provide for an alternative to the
visualisation of the error relief form, one has to analyse in more depth the
notion of symmetry. It shows that symmetry has a number of (dis–)
advantages. Sometimes symmetry is required to allow for a mathematical
closed–form description, but most of the times it simply creates the “Qual der
Wahl”. This eventually leads us to formulate learning as an evolvable
interaction between knowledge, randomness and symmetry.

According to the previous chapter, the major hurdle in achieving high learning reliabil-
ity lies in the indecisiveness of the learning algorithm. The initial indecisiveness stems
from neural design principles: the network is build symmetrically to allow for an arbi-
trary direction taken by the learning algorithm. Solutions can be found in any direction,
since the error surface consists of many repeating parts. We refer to this characteristic
of the error landscape as repeatedness. Another kind of indecisiveness sets in at later
stages of learning, when already captured knowledge makes new information to have
hardly any influence. This can occur when the error landscape has a local flatness.

Our view on the error relief is that it contains mainly flat and steep areas, as shown
theoretically by other researchers [81]. The flatness may be in the shape of a plateau
or as a kind of saddle point. In both cases the learning algorithm and the stochasticity,
introduced in the learning process, can not traverse these areas easily. The indecisive-
ness of the learning system corresponds to different kinds of symmetries in it and will
be discussed in this chapter.

The terms repeatedness and flatness are often used interchangeably in conjunction with
the term symmetry. It is necessary to explain what is meant by symmetry. The following
definition gives the geometrical sense of the term:

�������� ��� �
��� ����� �����	�� ��� ���� �� ��	���� �	���� �� ���
�������� �� �	�� �� 
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This first definition directly relates the repeatedness of the error surface relief in the
different subspaces with the symmetry of the error hyperspace. Contemporary physics
gives a more general definition of the symmetry [158]:

�������	� �� ����� �� ��������	� �� ��� �� �������� ��	� ��� �	� �� �� �� ��
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This second definition explains why the terms ’repeatedness’ and ’symmetry’ can be
interchanged.  The equi–functionality of the neural network in response to different
stimuli can be represented as equi–potential points on the error surface. When such
equi–potential  points come close together, they form a flat area.

To give a more practical sense to this definition, symmetry can be defined in terms of
the three linear transformations T in the n–dimensional Euclidian space En: reflection,
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rotation and translation. A subset S of En is symmetric with respect to a linear trans-
formation T if T(S) � S.

In the following a number of aspects of the symmetry problem will be treated in order
to create a higher–level point of view. The first section focuses on the aspects that are
designed into the network at the start of learning. Subsequently, attention moves to-
wards symmetry aspects that occur later in the learning process. Then, we attempt to
close the gap by showing the environment influences the occurrence of symmetry prob-
lems. Lastly, we provisionally introduce the KRS classification scheme to support fur-
ther thinking on the nature of learning disabilities.

3.1 Initial symmetry.
Initial symmetry is introduced to the network during the architectural design process.
This symmetry gives freedom to the learning algorithm to draw its path in every direc-
tion. All the symmetries built prior to the network operation will be named network
symmetries. The network symmetries result from the choice of network architecture
and transfer function as well as from the specific settings of its initial values (weights
and biases, scaling intervals of the example strings).

Firstly, the symmetry in the network architecture and transfer function, will be dis-
cussed. Since the architecture and transfer of the network determine its structure, these
symmetries can be called structural symmetries. Later on, the symmetries caused by
the initialization of the network will be summarized. As mentioned earlier, here are
meant not only the starting values of weights and biases but also the scaling intervals
for the examples. Usually all the initialization intervals are symmetrical around the ori-
gin, which affects the performance symmetry.

3.1.1 Structural symmetries.

The structural symmetries will be illustrated by using the fully connected multilayer
perceptron (MLP). In MLP the structural symmetries are caused by the existence of the
so–called coherent transformations: transformations that do not change the network
functionality. On closer inspection, a coherent transformation can be either a permuta-
tion or a sign inversion and therefore induces a large number of functionally equivalent
networks.

3.1.1.1 Permutation transformation.
In the standard feedforward topology, neurons from the same layer are prior to learning
invariant with respect to their position within the layer (Figure 3–1). This group invaria-
nce allows to permute all the connections of a neuron (inputs and outputs) with those
of another neuron in the same layer without changing the network function.

f (x, w) � �(�
k

wk,k�1�(�
k�1

wk�1,k�2�(����(�
j

wjixi)���)) (3–1)

Equation (3–1) represents the response of a multilayer perceptron with one output as
shown at figure 3–1. If two neurons from the same layer are interchanged, the network
output will be the same, because the change affects only the ordering of the elements
under the sum sign.
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Figure 3–1: The neurons in a fully–connected topology are group–invariant.

3.1.1.2 Sign transformation.
Another transformation with coherence properties can be defined on the nature of the
individual neural transfer function. These are based on the network function invariance
caused by neural symmetry properties: odd and even.

�
������� � ���	��� � � 	���������
�� ��
� �(x) �� �(� x)�

The zero–centered sigmoid has odd symmetry (Figure 3–2a). A transformation, that in-
verses the sign of all input and output connections of a neuron with odd symmetry, does
not change the network transfer function. It is proved that this symmetry is valid to a
wide range of activation functions [1], i.e. for any infinitely differentiable function �,
satisfying �(0)� 0,   ��(0)� 0 and ���(0)� 0 and so forth. For the logistic sigmoid
holds likewise �(x) � b� �(� x).

�
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� �(x) � �(� x)�

The standard Gaussian function has even symmetry (Figure 3–2b). A transformation,
that inverses the sign of all input connections of a neuron with even symmetry, does not
change the network transfer function. It is proved that this symmetry is valid to a wide
range of activation functions [1], i.e. for any infinitely differentiable function �, satisfy-
ing �(0)� 0,   ��(0)� 0 and ���(0)� 0 and so forth. By radial–basis transfer func-
tions holds the the following: ��(0)� 0, ���(0)� 0, ����(0)� 0 and so forth.
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Figure 3–2: Neuron transfer functions with a) odd symmetry and b) even sym-
metry do not change the transfer of the complete network.
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The symmetries caused by these types of transformation have different impacts, de-
pending on the functionality of the neurons they are affecting and their local intercon-
nections. If the neurons are directly interacting with the environment (i.e. the input and
output layers), the symmetry provides an invariance in pattern presentation: The per-
mutation of the elements of an input string does not alter the output. Because the per-
mutation or sign symmetry at the input makes sense only in the context of reordering
the elements of the input string, it will be elaborated together with the spatial symme-
tries in a problem. Further, each hidden–layer symmetry has a different impact on the
learning evolution, as discussed in the next section.

3.1.1.3 Repeatedness.
An invariance of the network function exists for each neuron upon a sign transformation
which determines two different weight vectors. For M hidden units, there are M sym-
metries of this kind, and thus there are 2M switching possibilities. The state of combina-
tions forms equi–functional weight vectors. In addition, if the values of all the weights
and bias of two hidden neurons are interchanged, the resulting network transfer will be
unchanged. Only a new network weight vector is obtained.

For M hidden units, there will be M! equivalent weight vectors. These two types of sym-
metries are combined, and the network has the weight space symmetry factor of M!2M.
For feedforward networks with more than one hidden layer the level of the resulting
symmetry can be obtained by multiplying these factors for every hidden layer. This re-
sult has been summarized by [35]:

The set of all equi–output transformations on the weight space W forms a non–Abelian

group G of order #G, with #G��
K�1

l�2

(Ml!)(2
Ml)

where K is the number of hidden layers, and M is the number of neurons in the hidden
layer. The authors of [1], [35], [85], [94], [147], analyzing this group of symmetries,
have concluded that each coherent transformation defines a symmetry in the weight
space, as consisting of equivalent parts. Consequently, it is possible to restrict the search
of solutions to only one of these parts. By analogy, the error surface is also symmetrical.
Additionally, if a solution is found during learning there are more equivalent solutions
on the symmetrical parts of the error surface. An important conclusion is that the learn-
ing trajectories are themselves symmetrical [85]. The general conclusions by the re-
fered authors is that in many cases these symmetries are of little practical importance.

A different interpretation of the importance of network symmetries has been reported
in [12] [131]. These papers suggests, that the neural system frequently moves from one
subspace of the global error landscape to another subspace in a manner that ensures con-
tradictions in training inputs and delays in the learning process. The system spends a
substantial amount of time between regions defined by weight symmetries. It can be
confined artificially to one of these subspaces, see [131].

3.1.2 Symmetries in the network parameters.

The initialization of the network is not a thoroughly explored subject. Beside the net-
work structure, also its parametrization can cause prolonged symmetrical learning
phases. The most widely accepted approach for choosing the values of the initial param-
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eters is given by [129], where an initialization with small random weights is advised.
More precise borders of the size of intervals for weight selection are given by [74],
where it is suggested that the weights and biases should be chosen from the interval
(� 2.4�Fi , � 2.4�Fi), with Fi  for the fan–in of neuron i. The most complete study of
the initialization strategies is made by [148]. Appearance of symmetries due to wrong
initialization  are discussed in [91].

The following conclusions are made in [81] upon investigating a very simple, one node
network with two weights. The region near the origin of the error surface (the region
where almost all parameters are approximately zero) is a transition region. This fact
supports the idea suggested in [129]: the weights should be initialized with small ran-
dom values. This initialization technique increases the probability of positioning the
initial weights near the origin on the steepest part of the surface, where the downhill
direction points towards a solution. The author notifies, that this is true for one–node
case. In the multilayer case, the steepest part of the surface is not necessarily near to
the origin. For the multilayer case, the advantages of selecting the network parameters
from a small symmetrical interval are given in [134] [148].

3.1.2.1 Overparametrization.
This kind of initialization can be disadvantageous if the network is overparametrized.
As a result the cost function may be almost flat at the minimum point in some directions
of the weight space. If the size of the training set is small in comparison to the dimension
of the weight space, then a flat cost function may occur. This can be shown by reasoning
over the following example: a two–layer neural network with one input and one output
neuron (Figure 3–3a). Without loss of generality it is considered that the input–to–hid-
den weights are fixed to unity. The reasoning is done only for the small random hidden
to output weights. The network function in this case has the form:

f (x, w)� ��
j

wk,j�(x)� ��
j

wk,joj (3–2)

where oj denotes the output of any hidden neuron and represents a downscaled value
of the input sample x. The values of wk,j are drawn from the uniform symmetrical dis-
tribution with a small range.

...
...

a) b)

Figure 3–3: The impact of overparametrising a network: the architectures
used.

It can be concluded that the larger the number of weights, the higher the possibility of
the value under the sum sign being zero. In practice, the input–to–hidden weight range
is smaller than unity, which implies that the symmetry effect of the large node number
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within a layer is stronger than the one described here. This condition increases the initial
indecisiveness and escaping from the initial symmetrical phase becomes difficult. This
is often observed when training for artificial problems, but rarely in real applications
since the diversity of the problem samples may break this symmetry.

f (x, w) � �(�
k

wk,k�1�(wk�1,k�2�(����(wjixi)���)) (3–3)

3.1.2.2 Range symmetries.
A large number of hidden layers has an equivalent effect on the network performance.
Let all the weights in the multilayer structure 3–3b be fixed to unity, and the network
inputs to be scaled in the range [–1..1]. If the sigmoid nonlinearity has slope 1, the first
hidden layer node outputs will take values between –0.46 and 0.46, as shown in figure
3–4a. The second hidden layer receives inputs in the range [–0.46 .. 0.46] and provides
outputs smaller by factor two [–0.227 .. 0.227]. This narrowing increases with increas-
ing number of layers and is strengthened in the fully connected architecture by the fan–
in symmetrising impact (see Fig.3–3a). In practice, when the weight values are initial-
ized smaller than unity, the effect of the multilayer structure is more pronounced, as
shown in figure 3–4b.
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Figure 3–4: Active zones of the consequent layers of sigmoid function by dif-
ferent range of the input stimuli.

The network symmetries correspond to the repeating equivalent parts of the error sur-
face. High symmetries in the initial conditions form flat areas on the error landscape,
giving the same response of the network to any input stimuli.

In order to improve the generalization performance a number of authors have suggested
to add noise in the initialization (as well as in the network parameters or to the problem).
For more details one is referred to the review of noise injection in [3]. The effect caused
by increasing the task complexity is somewhat similar to that caused by increasing the
dominance of the random component. Lower symmetries during the learning evolution
are observed in [157] when an non–zero bias factor is introduced in the committee ma-
chine. An extremely small slope of the nodal transfer [157] as well as a low learning
rate [159] can cause equivalent effects.

The initial phase of the neural network learning process has two major features: (a) the
parallel initial structure, and (b) the choice of a flat start position for the learning algo-
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rithm. The parallel initial structure defines weight space symmetries. From the perspec-
tive of the error surface, equivalent landscape parts are formed. The learning algorithm
starts from the so–called symmetrical phase. Later on it selects its path in one of the
subspaces. From the error surface point of view this initial symmetrical phase is also
an error surface relief form, which should be traversed by the algorithm. This form is
situated equi–distantly (symmetrically) between the different subspaces (solutions). In
section 3.3.2, it will be shown that this surface form is a saddle point; it is flat for small
initial parameters.

3.1.3 Statistical mechanics view on symmetry breaking.

Statistical Mechanics explains the symmetry in neural networks and alike problems in
a global sense. It relates the microscopic neuron structure to macroscopic neural proper-
ties by describing the collective properties of many interacting elements on basis of in-
dividual behavior and mutual interaction. The system properties can be more complex
than the mere collection of its elements. This feature is a consequence of spontaneous
symmetry breaking, which means, that a macroscopic system can be in a less symmetri-
cal (more complex) state than the underlying microscopic dynamics.

The error landscape is in the Statistical Mechanics literature usually formulated by an
energy function, as introduced by Hopfield (1982). The term “Energy function” comes
from the physical analogy to magnetic systems, but the concept is of a much wider ap-
plicability. In many research fields there is a state function that always decreases during
dynamical evolution, or must be minimized (maximized) to find an optimum state. In
the theory of dynamic systems it is called the Lyapunov function. Other names in use
are Hamiltonian in Statistical Mechanics, Cost function (Objective function) in Combi-
natorial Optimization theory, and Fitness function in Evolution theory.

3.1.3.1 Spin–Glass model.
In general, an energy function can be analytically determined if the connection
strengths are symmetric, i.e. � ij � � ji. Thus, symmetry in the connectivity matrix is
a necessary condition for Hopfield networks. Symmetry in the error landscape has its
analogy in the temperature charts of the replica method, originating from Spin–Glass
theory. Spin–Glass theory has been used to explain some network properties among
which the symmetry–breaking process. This explanation is based on the fact, that some
networks like the multilevel Kohonen network are developing orientation selective
neurons. This orientation selectivity can be modelled by a Spin–Glass model and thus
also be an example for the symmetry breaking process. Since Spin– Glass theory is a
very specific subject in the field of theoretical physics, its studies on neural dynamics
are understood well by a restricted number of scientists. In neural research mainly the
results of this studies are used. The Spin–Glass theory is beyond the borders of the re-
search done in this thesis. In the sequel, a simple interpretation of its results will be giv-
en, and the heavy mathematical description is entirely skipped.

In [61] techniques are introduced, that enable the application of Statistical Mechanics
in feedforward neural networks. The output of the hidden neurons have equal absolute
values at the beginning of the learning process, because the small initial values are posi-
tioning their outputs in the interval close to the zero point of the transfer function. If
during learning the network is not able to extract a rule from the data, the hidden neu-
rons do not specialize to a concrete function. This characterizes a symmetrical phase
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in the learning process, corresponding to a metastable state in the error surface. This
symmetry should be broken, i.e. the system should reveal its high complexity, which
corresponds to a specialization of the hidden layer units, and jump to a lower energy
state on the energy landscape. Because initially the symmetry is built into the network,
the examples together with the noise are supposed to break it.

3.1.3.2 Soft committee machine.
Statistical Mechanics presumes a straightforward relation between the network, drawn
in a symmetrical phase, and the permutation symmetry. In [154], the permutation sym-
metry is considered in the context of learning evolution: the permutation symmetry
makes the learning process to start in the symmetrical phase. Correspondingly, all hid-
den units have almost equal response. In the language of Statistical Mechanics, every
hidden neuron of a student (student is any network under learning) imitates with the
same degree a teacher (the network configuration which gives an exact mapping of the
input–output dependence). This permutation symmetry should be broken, i.e. every
hidden neuron should specialize, or in other words, should differ in response from the
others. This way the network will reveal the higher complexity of the problem, i.e. will
go in the state of lesser symmetry.

Moreover the Statistical Mechanics model of feedforward neural networks poses a
constraint that induces an additional symmetry in the network structure. The most com-
plicated structure, investigated until now with the methods of Statistical Mechanics, is
a soft committee machine [18]. This is a two–layer neural network with adjustable in-
put–hidden, but fixed hidden–output weights and linear output. The average learning
dynamics of this network is studied in the thermodynamic limit of the infinite input dy-
namics (the number of neurons is N��). The biases of the hidden neurons are fixed
to zero. This model is said to be quite similar to real–world networks. The constraint
that hidden–output weights are fixed on unity has been removed in [127]. There it is
shown that the learning dynamics are usually dominated by the input–hidden weights
(true mainly for the initial learning of MLPs) and hence the zero bias constraint is severe
enough to introduce sufficient symmetries in the network.

3.1.3.3 Shortcomings.
In off–line (batch) training the symmetry breaking is connected with the effect of re-
tarded generalization [154]: only, if the number of examples is large enough, can the
hidden units specialize and decrease the generalization error efficiently. Something
similar, but not identical happens in on–line learning: initially the hidden units do not
specialize which leads to a plateau in the learning curve. If the version space (the space
of all weight vectors, consistent with the training set, and not constrained to a specific
learning algorithm [60]) of the problem is sufficiently complex, then replica symmetry
breaking occurs.

The weak point of the Statistical Mechanics approach is that it can be applied so far only
to very simple networks, so–called parity and committee machines [18], [130], [157].
The more complicated networks, as for example 2–layer MLP with learnable analogue
output weights are a more difficult task to be investigated by Statistical Mechanics’
methods. On the other hand, the two–layer MLP is the simplest network structure in
practical use. The results, obtained with simplified structures such as a parity and com-
mittee machines, give a good general view on what is happening during the symmetri-
cal phase and how it appears.
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It should be pointed out, that structures such as parity and committee machines are
introducing additional symmetries in the network, because of their fixed and equal hid-
den–to–output weights and zero biases. In engineering practice such a long symmetri-
cal learning phase is not observed often.

3.2 Flatness by subsequent learning.

As pointed out before, symmetrical learning phases can also occur later in the learning
process. As this is not caused by the design of the network but by the design of the exper-
iment, we will first identify the situations that are related to the structure of the problem,
which can cause the network to be drawn into a symmetrical phase.

I J K

oj

f (x, w)

Figure 3–5: A one–output network.

3.2.1 Looking at adaptation.

The feedforward neural model shown at figure 3–1 suggests that two equi–potential
points on the global error surface have the same cost (equation (3–1)). The network
function of a one–output neural network, as represented in figure 3–5, has the following
form:

f (x, w)� �(�
j

wk,j.�(�
i

wj,ixi)) (3–4)

During learning, the weights are successively adapted till the training is completed. One
of the ways to model this is by a time series. Abnormal learning will then show by a
“longest run” effect as known from classical statistics [57]: changes can be seen to
constitute a symmetrical time series, when the effect will eventually become nullified.

The output of a hidden neuron will be needed in the following explanations, thus it can
be separately specified. The j� th hidden neuron output equals to:

oj � �(�
i

wjixi) (3–5)

and the input of the nonlinearity, associated with the output neuron �(x, w):

�(x, w)��
j

wk,j�(�
i

wjixi) (3–6)
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For the sake of compactness, equation (3–6) can be substituted in (3–4) to give:

f (x, w) � �(�(x, w)) (3–7)

In order to make conclusions about the equi–potentiality of the points on the global error
surface, the error function as specified in (2–4) will be used. Equi–potentiality can be
encountered if partial derivatives of the network function to the network parameters are
becoming negligibly small, i. e. the error function is flat in some dimensions. Note that
x, w are vectors. Consequently, the error surface can be flat in those directions (hyper-
planes). The flatness or equi–potentiality of the network function can be in several di-
rections.

3.2.1.1 Weight adaptation in time.
A direct evaluation about different points on the error surface can be made for very sim-
ple networks only. Normally, the network weights are used as indication of the error
changes, due to the following dependence:

�wji

�t
��

�E
�wji

(3–8)

The weight changes are governed by the generalization delta rule, which is:

�wkj(t) �� ��e(z(t), w) � ��k(t)oj(t) (3–9)

Here all the variables determining the weight changes are expressed as being time–de-
pendent. The second multiplicative term in equation (3–9) is the instantaneous error
�k(t) – the difference between the desired value f(x,w) and the actual value y of the cur-
rent example. This term is problem–dependent. Described in more detail, equation
(3–9) will change in the following way:

�wkj(t) � �  .  (y(t)� f (t))  .  �k�(�(t))  .  oj(t) (3–10)

Substituting equations (3–5) and (3–7) in (3–10) results in:

�wkj(t) � �(y(t)� �(�(t)))  .  ��(�(t))  .  �(�
i

wjixi(t)) (3–11)

3.2.1.2 The role of transfer.
The goal of the optimization algorithm, expressed before as minimizing the error func-
tion, can be reformulated in terms of  weights changes. At the moment that the network
reaches a stable point on the error surface, the weight values stabilize. Correspondingly
the weight change decreases to zero. The weight change dependence carries informa-
tion where zeroing of the weights can be expected.

A description in more detail of this dependence shows that the weight change for a hid-
den–to–output connection contains as a multiplicative term in the weight update of the
first derivative of the nodal transfer of neuron i, and the transfer of the neuron j:

�wkj(t) � ��(�
j

wkjoj(t))  .  �(�
i

wjixi(t)) (3–12)

If the network is created from neurons with one and the same transfer function (which
is the usual case in neural theory and practice), this multiplicative term has shapes, as
shown by the solid lines in figure 3–6 for the most commonly used transfers. The net-
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work, composed by logistic sigmoids, has two possibilities to reach a stabilization of
the weight change due to this multiplicative term: for both regions where neurons are
working in a saturation region. For the zero–centered sigmoid, one more possibility is
present: the point where the neurons have zero activation.

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Logistic sigmoid

φ
n
φ′

n
φ

n
φ′

n

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Zero−centered sigmoid

φ
z
φ′

z
φ

z
φ′

z

Figure 3–6:  Different sigmoid functions, their first derivative and the adapta-
tion curve.

We will see later on, that even where saturation is not restricting the learning behavior,
learning reliability may be an issue. For the zero–centered sigmoid this can be readily
explained from the condition � �()·�() � 0. Here also the impact is most directly visible
and we will therefore perform most of our experiments with such a sigmoid. However,
it seems that also for the logistic sigmoid, some problems can be present, as they tend
to display an unreliable learning duration. This is illustrated in figure 3–7, where con-
verging experiments when training perfectly symmetrical functions is performed with
differently shifted sigmoids, that show increased learning duration when the transfer
functions becomes more zero–centered.
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Figure 3–7: Variable learning duration for some sigmoids.
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We like to point out that where the derivative of �
�()·�() may become zero, the change

in weight adaptations becomes constant, i.e. when a flat area is entered with a small �w,
the entire passage will be made with this constant but small adaptation. Hence, travel
time will depend on the size of the arbitrary adaptation value at the start of the traver-
sion. In other words, the choice of transfer function only does not delimit the learning
problem and does not preclude it.

3.2.2 Incomplete adaptation.

Not only can weight changes die out in the course of time, they can also not take place
because their backpropagation dies out. In the following we will discuss shortly a num-
ber of phenomena that cause such incomplete propagation.

3.2.2.1 Saturation effects.
Since the transfer function is mostly flat (Figure 3–6a,b), its gradient is approximately
zero in most of the regions except for the small transitional range. For simplicity, let
us assume an one–output network. The network function can be represented by equa-
tion (3–4). The output of the network is the value of the output transfer function (on the
output sigmoid). If this sigmoid is activated in the saturation area, the operation point
will be on the error function’s flat region. Correspondingly its first derivative with re-
spect to the weights is almost equal to zero and respectively the resulting weight update
is approximately zero, i.e. there are no changes in the network state. This effect is also
known as saturation, because the transfer function is activated in the saturation areas.
Once a node gets into a saturation region, it is (seemingly) trapped due to the extremely
small weight updates in the subsequent training cycles.

The above described saturation phenomenon concerns the output layer of the network
and can be met by all the known squashed nodal transfers. It should be distinguished
from the saturation connected with the hidden layers. The network drawn into satura-
tion is encountered in some classification tasks.

The saturation of the hidden layers is a phenomenon with observable effects, similar
to the saturation of the output neurons. This effect is known as premature saturation.
The premature saturation of the hidden neurons of feedforward neural networks has
been investigated intensively in neural learning [36] [38] [61] [97]. The phenomenon
is defined as a period of training time, in which the learning error stays almost constant.
This definition is not complete, because other phenomena are characterized by the ap-
pearance of flat areas [11] not by saturating but by zeroing of the neurons.

Premature saturation is reportedly due to the improperly chosen initial weights with re-
spect to the input parameters [97]. The authors derive the probability of incorrect satu-
ration as a function of the range of initial weights, the number of nodes on the hidden
layer and the maximum slope of the activation function. This approach does not give
an answer to the question: why tuning the network parameters is crucial in some prob-
lems and absolutely not necessary in other problems of a similar complexity? More ad-
vanced in an historical and conceptual sense is the work of [61]. The authors find as an
undesirable growth of some weights the relationship between the network parameters
and the data to be learned.

In [61] is claimed that when a problem is difficult to learn for a network, saturation can
be observed. A general definition of ’difficult’ to learn task is not given. Instead, an ex-
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ample of a difficult task, learning of statistically independent input and target data, is
given. The method is derived from the parity problem [104] (i.e. XOR and multidimen-
sional parity problem), where the input and target values are statistically independent.
Unfortunately, the authors do not give any experimental support of their theory on either
real or artificial training data, and from the context it is not becoming clear whether their
conclusions are restricted only to the artificial parity problem and can be caused from
the small size of the training set (imagine the XOR problem: only 4 examples are repeat-
edly presented to the network; the generalization issues for the parity problem do not
make sense either).

3.2.2.2 Numerical influences.
The tangent hyperbolic can be represented as a Taylor series:

�(x) � tanh(x) � x� x3

3
�

2x5

15
� ���, |u|� �

2
(3–13)

If the value of x is close to zero, then tanh(x) � x. Correspondingly, the neuron operates
in its linear region – its output is its scaled summary input. This neuron is not working
effectively in the nonlinear model. If two or more such a neurons exist, they can be
pruned to 1. This case corresponds to approaching the second zero point of the function
from figure 3–6. The small weights phenomena is peculiar to the zero–centered sigmoid
transfer.

In this case the network parameters are not brought to saturation or nulled. The reason
for insufficient update of the network parameters is due to the gradients passed from
the upper layer. If these gradients are balanced or if all of the upper layers are saturated,

the summary weight update is equal to zero. In this case �
H

i�1

� i � 0, where H is the num-

ber of hidden units.

Another numerical influence becomes apparent when the resolution of the numerical
representation is decreased. Again one finds that learning duration increases [96]. Fur-
ther [51] and [95] note that with decreasing resolution the shape of the error surface
changes. It is even possible that paralysis (or stand–still) occurs when the errors become
smaller than can be represented with the current resolution.

3.2.2.3 Badly balanced training set.
A badly balanced training set with the majority of examples concentrated in a small area
finally brings the adaptation of the network state parameters to zero. The network pa-
rameters are not claimed to approach infinity or zero. The similarity between the input
stimuli and a big difference between the corresponding target makes the network to uni-
fy its response. The weight values degrade.

Algorithms of the backpropagation type are not very well suited for applications, where
a constant stream of new data are to be learned. As shown by [59], presenting constantly
new examples can cause forgetting of the previously learned ones (unlearning). Ac-
cording to the author, the cause of this forgetting is the overlap between the representa-
tions of the different patterns, which makes the backpropagation to produce semi–dis-
tributed representations. In these representations, only a few hidden units take a value
different from zero. The reduced distributedness of the internal representations has the
effect of loosing the most interesting neural features – the generalization ability and
damage resistance.
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One of the reasons for degradation of the weight vector to a few values, which do not
adapt further on, can be the symmetry in the examples shown to the network. The inter-
connection between network and problem symmetries is becoming apparent when the
learning process reaches a symmetrical element of the signal under training. To show
this clearly, a symmetrical target will be used for training. Firstly, some considerations
about the error surface shape in the beginning of the learning process will be given. Fur-
ther on, the behavior of a symmetrical function in such an area will be revealed. The
longest run effect of the symmetries of random distributions will be shown next. Later
on the analogous preconditions in latter stages of learning will be proposed. And finally,
examples of similar behavior will be shown to appear in later stages of learning.

3.3 Learning scenarios causing degradation.
There is little published research on the locality / distributedness of internal representa-
tions in neural networks. The local learning concept accepts, that there are links or asso-
ciations between sets of adjustable parameters and regions of the input space. If the rep-
resentation of an input pattern on the hidden layer of neurons is optimally distributed
between the neurons, there is a considerable interaction among the representations.
This interaction has two sides: it contributes to the network generalization abilities, but,
on the other hand, it predisposes the network to catastrophic forgetting.

��������
 ������������ ���������� �� � ������ ������ ���� �� ��� �!����� ��
������� ��� ��������������� ��� ��� �� ��� ��� �" ���������� ����
�!����� ���� �	���

A related term is interference of a neural network. The interference characterizes inter-
nal representations and appears when learning new information interferes with old in-
formation. Networks, that are less sensitive to interference, are referred to as spatially
local. In [29], this phenomenon is described as internal conflict in contrast to the exter-
nal conflicts that are directly distinguishable in the data set itself.

It is self–evident that very local representations will not exhibit catastrophic forgetting,
because the interaction among the representations is very small. New information can
be taught without interference with the already learned (old) information. The trade–off
here is that an entirely local representation excludes the possibility the network to gen-
eralize.

A solution of the so–described dilemma is a semi–distributed representation. Weaver
[155] has proved a useful theorem, which shows that, given an arbitrary large number
of weights, a single–hidden–layer Perceptron network with sigmoidal activation func-
tion exists that is as local as desired. Formulated in another way, learning at one point
will affect another point to a desired small degree which confirms the universal approxi-
mation abilities of a single–hidden–layer multilayer perceptron. Also measures of
locality of the network representation and interference are suggested in this recent work
of Weaver [155]. These measures describe the interference at point x� due to the learn-
ing at x. Both measures are based on knowing the gradient of the network output with
respect to the weight vector in points x� and x.

We have found one typical display of weight vector degradation when the symmetry
of the network is increased by, for instance, learning from a symmetrical training set.
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The cause can be explained by interference of the training examples and thus with ap-
pearance of interfering internal representations. Here, interference issues will not be
elaborated on, because the developed measures and theory is by far insufficient to say
more about how to treat the interference problem, or how to predict when a interference
will appear. Our practical meaningful criterion, which finally prevents from degrada-
tion of the weight vector seem to be very related to this work.

An example will be described in detail, starting with its “pre–history”, because it helps
to generalize for a larger group of problems. It converges with a weight vector degraded
to a different extent, and gives a practical dimension of the abstractly described problem
of “catastrophic forgetting”, interference, localization and distributedness. Normally,
these do not cause severe problems to the learning evolution, because the training set
content (the third error surface–forming factor), together with the learning algorithm,
overcomes this symmetry.

There are a lot of cases, when this normal development of the learning evolution can
be delayed, stopped, or brought to a suboptimal solution. Such difficult problems and
their possible solutions have been discussed in literature. Typical learning difficulties,
which can cause poor or unreliable learning for problems, whose complexity is sur-
mountable for the network, will be discussed further on. In other words, not the com-
plexity of the problem but its nature is causing the bad learning performance.

3.3.1 Symmetries in the patterns.
For neural network tasks, problems are described by sets of examples (training sets).
Symmetries in the patterns are considered as equivalent terms of the symmetries in the
problem. The problem symmetries can occur in space and in time domain. The space
symmetry may occur within a single pattern in classification. This symmetry will cause
that a hidden neuron may be triggered by mutually conflicting stimuli.

In the latter domain, we focus on the presentation order resulting from random sampling
and/or from time–sequencing; this appears primarily in approximation and prediction.
The time domain symmetry will then cause either poor approximation or unlearning of
the previous examples.

In the following we will start by discussing a number of early and constructive applica-
tions of symmetry. This illustrates that there are positive sides to what we will further
treat as a negative characteristic of neural networks: its sensitivity to symmetry.

3.3.1.1 Spatial symmetries in patterns.
The difficulties of the first–order perceptrons and Hopfield networks to recognize mir-
rored, rotational and translational symmetries have been addressed in [136]. The au-
thors elaborate on the order of a problem which roughly corresponds to the minimum
number of input units, that carry any information as relevant to the required output
[104]. For example, the Boolean OR function has order 1 because the value of a single
input unit contains enough information about the output. The Boolean XOR function
has order 2 because each unit of the input array, considered in isolation, contains insuffi-
cient information about the output value. The generalized XOR problem, also known
as parity function of n binary inputs, has order n. Higher–order problems can be solved
by adding hidden units. It is suggested that the XOR is an easily solvable second–order
problem if only one hidden unit is added to the network.
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[136] has attempted to solve the mirror symmetry problem: the network must detect
which one of the three possible axes of symmetry is present in an NxN binary pixel input
pattern. It has been proved that introducing hidden neurons makes symmetry detection
an easy task. A network with only two hidden neurons can already establish this proper-
ty regardless of the size of the input string (Figure 3–8a). For every hidden unit, the
weights are chosen with odd–symmetric values. This means, that if a symmetric pattern
is applied, both hidden units will receive a null summary input and their output will be
also zero, because of their negative bias values. The output unit, with a positive bias
in this case, will be equal to one.

�� ��

���

Figure 3–8: a)Rumelhart’s input symmetry detector; b) Blum’s XOR network.

Another observation made by [136] is that the weights on each side of the midpoint of
the string are in the ratio 1:2:4. This ensures that each of the eight patterns applied to
the network sends an unique activation sum to the hidden unit. Therefore there is no
pattern on the left, which will balance a non–mirrored pattern in the right–hand side.

When a symmetry pattern is applied, there is a second–order problem, because single
pixels alone can not carry information about the solution of the problem. Sufficient in-
formation can be extracted from pixel pairs that are related to the mirror symmetries.
The authors demonstrated, that the Boltzmann learning algorithm is capable of solving
the mirror symmetry problem.

Later on, [120] made a comparative study of the mirror symmetry problem using the
Boltzmann machine, Mean–Field Theory machine and the Multilayer Perceptron. The
Mean–Field Theory machine offers superior results to the Boltzman machine and
slightly better than the Multilayer Perceptron. The results point to the interesting prop-
erty that, by using relative entropy, Mean–Field Theory and a Multilayer Perceptron
have an approximately similar performance if they both have a single hidden layer and
the size of the input layer is much larger than that of the output layer.

In further studies, the effects of introducing symmetries to feedforward neural networks
are investigated [139]. The group–invariance theorem [104] was referred to by the au-
thor. From a practical point of view this approach may provide a method to simplify
training in those cases where the target function is known to be invariant under the ac-
tion of a particular group of inputs. This aspect of the group invariance theorem has been
generalized for Multilayer Perceptrons in [139]. The approach aims at simplifying the
training task by making the symmetries a priori explicit in the network structure. One
example with symmetrical weight assignments is the network, designed to perform the
XOR problem, as shown in figure 3–8b. This network is invariant to permutation for
components of the input vector and so it could be trained to compute the XOR function
with 5 parameters and 3 examples instead of the original 9 parameters and 5 examples
[22].
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3.3.1.2 Temporal symmetries in patterns.
Since [129] shows that easy and elegant solutions will exist for classifying symmetric
input strings, [22] attempts to approximate symmetric target sets. The existence of a
manifold of exact neural solutions for 2–variable Boolean functions has been proved.
Furthermore there exists a manifold of local minima of the mean–square error E. It is
concluded that for linear–separable problems a learning procedure forms stationary
points, but these are not local minima and therefore can not cause serious convergence
problems.

The described symmetry problem concerns a classification task with neural nets using
a nonsymmetrical activation function. The XOR net used by [22] shows that the null
weights configuration can also be an attractor during learning. As a consequence they
propose to follow Rumelhart’s suggestion of setting up the initial weights with small
random values. This approach prevents failures in the most cases.

It is shown that the specific structure of the training set of real–life problems may have
symmetries induced by the “longest run” potential [10]. The longest run induced sym-
metries can lead to slow convergence, unpredictable training duration or paralysis.

A popular way to present temporal signals to neural networks is over a tapped delay–
line. Design decisions are based on the size of the delay line and the sampling rate. Inad-
vertedly one may thus introduce temporal symmetries and end up with learning prob-
lems. It has been discussed to monitor this circumstance from the curvature of the
input/output plot.

The effect of initialization, where symmetry can play a misleading role, is one of the
areas scarcely researched in training temporal patterns. Different initializations can
easily lead to a different behavior: a phenomenon that bears likeness to chaos in system
dynamics. Resolving symmetry effects for learning can therefore hardly be based on
initialization.

3.3.2 Symmetry in the error surface.
As explained in Section 3.1.1, both sigmoid transfer functions are odd–symmetrical.
This implies, that at the origin, all their even derivatives are equal to zero (�

2k(0)� 0)
and their odd derivatives are different from zero (�

2k�1(0)� 0). Because the quadratic
error function is the average of a number of squared estimation errors, the local error
function �(w) can be considered without loss of generality to be:

�(w)� [y� f (x,w)] 2 (3–14)

3.3.2.1 Extrema.
The curvature of the error surface can be estimated by the second–order derivatives of
the cost function with respect to different parameters w. In [65], it is shown that a net-
work with a linear output neuron and only one hidden neuron can be used for investigat-
ing the shape of the error surface curvature. The one hidden neuron restriction is pos-
sible, because the higher–order derivatives, involving parameters associated with two
different hidden cells, are zero anyway. The transfer function in this case will look like:

f (x, w)� W.�(w.x� w0)�W0 (3–15)

where x and w are vectors. The first derivative of the local error with respect to any
parameter w (weight or bias parameter) is equal to:
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��
�w
�� 2[y� f (x, w)]

�f
�w

(3–16)

where �f��w represents the partial derivative of the network function with respect to
the different weights:

�f
�wi

� W��(w.x� w0).x (3–17)

or the partial derivative of the network function with respect to the different biases:

�f
�w0i

� W��(w.x� w0) (3–18)

or the partial derivative with respect to the output weight:

�f
�W

� �(w.x� w0) (3–19)

or the partial derivative with respect to the output bias which equals to:

�f
�W0

� 1 (3–20)

In the inert state (the point where all the weights are zero), all the first derivatives except
the derivative to the output bias are 0. In [65], it is proved, that every odd, infinitely
differentiable transfer function �, which has by definition all even derivatives equal to
zero, has zero–valued odd derivatives of the quadratic cost function with respect to all
parameters except possibly to the output bias. The Hessian is not positive and not defi-
nite, which means, that this is not a minimum of the cost function. Because the odd–or-
der derivatives of the cost (error) function are zero, this point is not an inflection point,
but rather a saddle point.

3.3.2.2 The saddle point.
It can be concluded, that the zero point is a kind of a N– dimensional saddle point, and
the optimization will take place on the direction of the output bias W0, which provides
the only non–zero derivative, i.e. the only direction with some steepness. In this point
the equation (3–15) will change to f (x) � W0. The corresponding derivative of the cost
function :

�E
�W0

�
1
N
	

N

��1

[y�� f (x�, w)] (3–21)

It is obvious that the minimum state of the quadratic cost E(w) in this direction is ob-
tained for W0 � y over the N examples.

This line of reasoning can be continued to define the kind of saddle point. Refering to
equation (3–21), the following simple observations can be made. In the neighborhood
of the zero point, the value of the error function (equation (3–14)) will be higher than
its value in the origin: if the weight wij � 0 with other parameters fixed,
f (x, w) � f (x, 0). Correspondingly, (y(x)� f (x, w)) � (y(x)� f (x, 0)). Since the
training patterns (the y–values) and the network output values are scaled to have a
smaller than unity absolute value, for the squared difference (and correspondingly for
the error function) holds the inequality (y(x)� f (x, w))2 � (y(x)� f (x, 0))2 for all the
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parameters, except for the output bias W0. Represented graphically, the error surface
in the neighborhood of the origin has the shape of a valley. One example of a valley is
shown at figure 3–9.
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Figure 3–9: A possible error surface shape near the zero point.

The saddle points are peculiar to the different stages of learning. The characteristic ex-
ample of such a case was encountered in the beginning of the learning process. As al-
ready discussed before, neural networks are initialized with random values from a
small, symmetrical interval around the zero point. If the zero point is a saddle sur-
rounded with steep parts in every direction but the output bias direction, the initializa-
tion with small values will position the starting point of the learning process on the
slopes of this saddle.

The saddle area is an area with high curvature along the most of the weight dimensions
and possibly flatness at one, that  defines the bottom of the saddle. As explained in Sec-
tion 1.2.2 this high curvature causes large gradient vectors. This is the reason that the
optimization process does not converge to the zero point – to the saddle bottom. An ex-
ample of such an area and the behavior of the gradient algorithm in it is shown for the
2–dimensional parameter vector in Fig.3–10a. The direction of the gradient of the pa-
rameters in this area changes often.

a) b)

Figure 3–10: The behavior of the gradient algorithm in the shallow valley.
High steepness of the sope allows the network easily to escape the valley.

The saddle points, as typical at the beginning of the learning process, as in later stages
of learning, cause unreliable performance of the network. (The most problematic kind
of saddle area is a valley – where the flat area is the one with a minimum energy.) Ob-
viously they are not an obstacle for the learning process in general. When different sym-
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metrizing factors exist, the typical behavior of the learning algorithm in this points has
changed to a degradation of the weight vector to zero or to an internal representation
with a low distributedness [11]. Difficulties can be present for some classes of functions
with explicit or hidden symmetry.

3.3.3 Symmetrical signals on problematic regions.

The elaborated difficulties for the learning trajectory are slowing down the learning
process. The nature of the signal to be learned can contribute to this slowing down effect
and may even lead to paralysis. One example for such a result is the training of a sym-
metrical set.

–x1 x1
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�� ��
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Figure 3–11: a) Two equidistant points of the symmetrical function; b) The
network output and the adaptation slope at the beginning of training.

If an even–symmetrical function is centered around zero, it has the following character-
istic (Figure 3–11a): if x1 and x2 are two equidistant from the center of the function
points, their values are such that x2�� x1 and y(x1)� y(� x1). A number of varia-
tions exist for the shown function symmetry. In figure 3–12, we give some straightfor-
ward examples.

��

��

���� ���� ���� ����

���� ���� ���� ����

� � � �

� � � �

Figure 3–12: Some examples of a) non–problematic and b) difficult to train
(symmetric) signals.

The uniform symmetrical initialization of the network parameters ensures, that during
learning the training signal will be effectively scaled according to the requirements of
the nodal transfer, i.e. with the center in the origin of the coordinate system (Figure



‘

65

3–11a). For better illustration of the forthcoming reasoning, the architecture of the net-
work used for the experiments is shown at figure 3–13.

��	���
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oj

Figure 3–13: A one–input, one–output feedforward network.

The corresponding oj and �(x, w), and the network function, are:

oj � �(wjix) (3–22)

�(x, w)��
j

wk,j�(wjix) (3–23)

f (x, w)� �(�
j

wk,j�(wjix)) (3–24)

For the zero–centered sigmoid and fixed parameter values holds f (x1)�� f (� x1)
and ��(�1)� ��(�2). If two symmetrically positioned points are chosen for training
examples z1� (x1, y1) and z2� (x2, y2) and presented at the network in sequential or-
der, they will cause a change that can be represented on the global error surface as the
sum of the changes �w1 and �w2:

�w1� �w2� (3–25)
[y(x1)� f (x1, w)]��(�1)�(wjix

1)� [y(x1)� f (x1, w)]��(�1)�(wjix
1)

where the partial derivatives are with respect to the arbitrary parameter w. The terms
��()·�() is the multiplicative term from the equation (3–12). For two symmetrical ex-
amples (let’s note once more that the signals in neural training are usually scaled to uni-
ty) and a zero–centered sigmoid, the multiplicative terms are with equal magnitude and
opposite signs (see figure 3–6d). Then the summary change will take the value:

�w1� �w2�� 2f (x1, w)��(�1)�(wjix
1) (3–26)

i.e. it depends only on the network output and its derivative values. In this case the target
(teacher) signal does not influence the weight update. As can be concluded from figure
3–6b, the value of f (x1, w) is very small in the beginning of the learning process. As a
result, the sum of the two subsequent weight changes will have the effect of performing
the optimization with a smaller than optimal learning rate or is equivalent to smoothing
the error surface – the optimization will be directed towards the bottom of the valley
(Figure 3–10b), and the further optimization will follow the valley bottom. The initial
valley is characterized with a very high error value. If the signal under the consideration
is not symmetrical, the points x1 and � x1 correspond to different y(x1) and y(� x1)
values, and consequently their summary contributions to the network output change are
not zero. The summary output value, multiplied with a large gradient vector will cause
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behavior, similar to the one shown at Fig 3–10a. As a result, the network state will swift-
ly escape the valley.

Of course the possibility for two symmetrically positioned examples to be presented to
the network in the subsequent order is very low. However, it can be shown that presenta-
tion of the training examples in a random order, a common practice in neural learning,
have similar summary effect (see appendix B).

In the simple example of two symmetrical training signals it was assumed, that the cur-
rent weight value is independent of the history of the learning process. Also, the adapta-
tion of the network parameters between two example presentations was ignored.

To understand the global impact of symmetrical training set Dn on the learning develop-
ment, let us elaborate on the effect of a subsequent presentation of patterns. The equality
of the product �k(t)oj(t) to ���(t)��wkj(t) can be seen from the derivation of the back-
propagation algorithm. Considering the recursiveness of the weight updating proce-
dure, equation (3–11) can be rewritten as a time series with index t and length n:

�wkj(n) � � ��
n

t�0

�
n�t

��(t)

�wkj(t)
(3–27)

Here, �wkj(n) is an exponentially weighted sum. When subsequent partial derivatives
��(t)��wkj(t) have the same sign, �wkj(n) grows in magnitude, thus weights are ad-
justed by a large amount. When the partial derivatives ��(t)��wkj(t) have opposite signs
on subsequent iterations, �wkj(n) shrinks in magnitude, which presumes a small adjust-
ment of the weight values. This description of the weight changes behavior can be made
more specific in the following way. Let us assume that n uniformly distributed samples
are taken from the input signal. If the samples are taken between –1 and 1, there are n�2
samples xi between –1 and 0, and n�2 samples are between 0 and +1, such that for every
sample xi there exist a sample xj, i � j, for which xi �� xj. If the signal to be learned
is symmetrical, to every tuple xi, xj, (xi �� xj) corresponds a yi, yj, tuple, such that
(yi � yj).

The probability, that the network will get two such a samples in subsequent training
steps is not very high. On the contrary, the probability for samples presented in a longer
run training to contain a large number of tuples which fairly satisfy the made assump-
tion is very high. From equations (3–10) and (3–27), the following equation can easily
be derived:

�wkj(t) � ��
t

n�0

�t�n

2 y(n)��(�(n))oj(n) � ��
t

n�0

� t�n

2 �(�(n))��(�(n))oj(n) (3–28)

This suggests the following conclusions. In accordance with the assumptions the first
additive term of this equation has a negligible influence on the learning process. Since
the learning develops practically without teacher, the second term stays also very small,
because learning starts with small parameters – correspondingly with small network
function values – and it is not stimulated to grow any further. As a result, the optimiza-
tion in the shallow valley region is done towards its bottom. Such an optimization is
equivalent to training with a very small learning rate (see figure 3–10b). The weight
changes are becoming negligible. If this phenomenon occurs in the initial phase of the
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learning process, the weight values degrade to the zero point. The network capacity is
reduced and further optimization is not possible anymore.

If the training set is not symmetrical, the first additive component of equation (3–28)
does not tend toward zero and the optimization takes place even if the network is in the
stationary area, as for example in the beginning of the learning process. In terms of the
reasoning earlier in this section, the dependencies derived here will ensure altering of
the sign of the last multiplicative term and of f (x, w) simultaneously and practically at
every iteration (Figure 3–6b). (Note that ��(x, w) is always positive.) The shrinkage of
the weight change �wkj(n) will be due to ��()·�().

Until now, the bias of the neurons was modelled as a extra node with an unity weight
(for instance in equation (3–4). If the bias is represented explicitly, then equation (3–4)
will change in the following way:

f (x, w) � �(�
j

(wkj�(�
i

(wjix
i � Qj))� Qk)) (3–29)

After long enough training of a symmetrical signal, the network output will become
equal to the values, taken by the output bias. Finally the network output value (resp. the
bias value) will converge to the average of the target signal. Further optimization is per-
formed only in the output bias direction –the only nonzero term left.

3.3.3.1 Training two identical networks.
The analysis made so far is confirmed in detail by the performed experiments. The ap-
pearance of such effects in the beginning of the learning process can be illustrated by
training of two functions – one fully symmetrical and another with slightly destroyed
symmetry (see figure 3–14a).

Two identical networks (networks with the same structure, transfer function, trained
with the same learning algorithm and initialized with equal parameter values) are used.
The training examples are endlessly supplied from a uniform random generator. This
way the assumption about the existence of antagonistic tuples of examples is fulfilled.
The first set contains random samples from a symmetrical function; the second has the
same random input string as an input vector and their corresponding target values drawn
from the slightly disturbed symmetry of the original target function. The symmetry of
the target function can be destroyed in many ways. Here one of them is used, which does
not change the input part of the training set: both networks are trained with the same
input vector, as visualized partly at the figure 3–14c.

The complexity of both tasks is comparable. The initial state of the network, as the stim-
uli, which it obtains are also identical. The outcome of the experiments differs enor-
mously (Figure 3–14a, the dashed lines). After practically endless training of a perfectly
symmetrical function the network produces a straight line output, while in the case with
slightly destroyed symmetry the approximation is precise.

The elements from the first term in the equation (3–28) are canceling each other’s im-
pact and the instantaneous error does not grow during learning. The summed difference
between the network target and output (equation (3–30)) oscillates around the zero val-
ue for the period of one complete presentation of a symmetrical pattern set (Figure
3–14d, the solid line). The repeating period of the random generator is estimated to be
around 1000 values. In contrast, when a nonsymmetrical target is trained, the sum of
the instant errors grows very quickly (Figure 3–14d, the dashed line).
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�(n)��
t�n

t�1

(y(t)� f (x(t),w))� f (x(t),w)). (3–30)

The summary error for symmetrical function, plotted with a solid line in figure 3–14d,
is a typical recording for many performed experiments. As already mentioned, the
dashed line shows the sum of errors for a non–symmetrical function, also taken by an
average performance of many subsequent tests. Because of the random manner of sam-
pling of a symmetrical function, the example presentation results in almost equal
changes of the error values in positive and negative direction, and consequently in can-
celing to a high degree the corrections, made in the previous learning step. This effect
we call cancelation [10].

In the simple experiment, displayed in figure 3–14a, cancelation leads to bad approxi-
mation – the network gives a straight line output, if a random equidistant sampling is
done. This result concerns the beginning of the learning process, when the learning al-
gorithm starts in the initial valley, positioned symmetrically between the different pa-
rameter spaces of the error surface. A similar effect can develop in later stages of train-
ing as well. In the first two stages of the learning process the valley bottoms and plateaus
are very likely to have high energy values and to bring the convergence process to a bad
solution. The weight values are not updated anymore and they are oscillating around
a suboptimal solution. If this process happens in the beginning of the learning process,
the weight values are reduced to the bottom of the initial valley area, which is symmetri-
cally situated between all parameter subspaces. This valley bottom corresponds to the
output bias parameter, the paramether, whose derivatives are not nulled. If this process
develops in later stages of training, the weight values oscillate endlessly around the
reached value.

In training more complex signals, cancellation affects learning time or it is also a reason
for poor approximation. Cancelation is usually encountered at later stages of learning,
when secondary symmetries in the training set become apparent. Examples of such a
signals will be given in the next chapter, where a criterion for discovering the cancel-
ation example sets will be formulated.

It is important to point out, that networks with zero–centered sigmoid neurons suffer
much more from cancelation phenomena than nonsymmetrical sigmoid networks. The
reason can be illustrated with the multiplicative term from equation (3–12) (see also
figure 3–6a,b). Since by the zero–centered sigmoid the product of the nodal transfer and
its derivative have an opposite sign, if the negative example (example with a minus
sign) is inputted to the network. In contrast, the multiplicative term takes only positive
values for non–symmetrical sigmoid (equation (3–12) and also figure 3–6c). The as-
sumption that the input example should be negative or positive has only a illustrative
meaning. If all the training examples are scaled in the interval [0...1], the symmetrical
initialization  around the zero point translates them to the negative and the positive part
of the sigmoid nonlinearities.
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Figure 3–14: Training for a perfect and an imperfect symmetrical function:
a)target function (solid) and approximation (dashed); b)weight vector evolu-

tion; c) summed instant error.
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3.3.3.2 Error landscape symmetries and degradations.
The described symmetries in the network cause indecisiveness of the learning algo-
rithm either because of equal possibilities to choose between a multidimensional sub-
spaces or because of the flatness of the error relief in the later stages of learning. All
the described cases in sections 3.1.1, 3.2 and 3.3.2  may be relegated to three cases:
zeroing of the weights, also known as a degradation phenomenon,  saturation, and bal-
ancing of the weight values. Within the network, hidden units represent the momentary
grasp which the neural system has on the problem at hand. The functions, represented
by the hidden units, form the internal representation of the problem. This internal repre-
sentation can have a different degree of distributedness. With radial–basis networks, the
internal representations are very localized – there is a high degree of correspondence
between the training signal features and the different nodes of the hidden layer. It has
been generally accepted, that the single hidden layer multilayer perceptron with a sig-
moid activation does not have a localized representation, although there are similar in-
ternal mechanisms, which guide the MLP and RBF feedforward networks, trained with
back–propagation algorithm. In the recent paper of Weaver [155], this misconception
is addressed. It is shown that the internal representation of MLP can be made as local
as desired.

The globality or such distributivity of the internal representation implies phenomena
such as interference and cross–coupling between the hidden units, which results in
problems of local minima or nearly flat regions in the error function, arising from near
cancellation of the effects of different weights. The cancelation phenomena, expressed
by parallel and nearly–zero symmetrical trajectories or degraded weight vectors can be
caused by many different factors, working in combination. Crucial is the influence of
problem features and its representation. Few difficult problem–induced cases were
shown in previous sections.

The degradation concerns the capacity of the network. During learning, network pa-
rameters are storing the information, contained in the examples. A certain capacity
measure can be associated with the network, which limits the information that can be
stored in it. The capacity of the network, or also known as the degree of freedom of the
network, is determining the complexity of the problem, which the network can fit. Cor-
respondingly, in order to ensure proper working of the network, a first condition is to
design a network with a large enough capacity to fit the problem.

The capacity of the network is often related to the number of units (respectively parame-
ters), which store the information from the examples. For MLP the number of the hid-
den layer units are controlling its capacity. A reasonable conclusion, derived from this
fact, is that a basic design principle will be to construct networks with a very large num-
ber of hidden neurons. Such a solution will contradict the conclusions in Section 3.1.1
that a too wide hidden layer increases the symmetry of the network parameters. As al-
ready explained in Section 3.1.1, the symmetries in the network parameters can addi-
tionally enforce degradation. In cases, where there are not additional conditions for
degradation, the overparametrising can cause  decreased generalization capabilities of
the network: the network tries to map even the noise in the training data.

During training, due to symmetries in the patterns or other reasons, degradation of the
network can occur. This is equivalent to disconnection of links between neurons. The
individual connections are stuck–at–0 and remain there practically for ever. An exam-
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ple for such stuck–at–0 faults is shown in figure 3–15a. Effectively, this phenomenon
is equivalent to reducing the capacity of the network. In extreme situations it can apply
to all the neurons in the network. An example of such a complete degradation is illus-
trated in figure 3–15a. A partial degradation of the weight vector, when the network
brings most of the weights to zero, and the remaining weights evolution is shown in fig-
ure 3–15b for training a network, initialized with small random weights from a symmet-
rical distribution, with samples from a symmetrical signal.

The behavior of the network, trained to map a signal, which has symmetrical compo-
nents, is shown in figure 3–15c via the weight vector evolution. Here, the main tendency
of the signal has been learned by the network, but the learning process does not progress
any further. The adaptation of the weights has stopped, and most of them have taken
the two overlapping parallel trajectories. (In the picture all the 8 hidden–to–output
weights are plotted). Another way of pattern presentation of the same signal brings most
of the weights to zero and leaves 3 to adapt until they map the feature in their capacity.
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Figure 3–15: Examples of degraded weight evolution.

The observed phenomena is said to be similar to degradation, i.e. zeroing (disconnect-
ing) the weight values, but not equivalent. The actual degradation does not appear,
when the causes for such a degradation appear at later stages of learning evolution.
Instead, the values of the weights, which have reached already a certain level but differ-
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ent from zero, does not evolve any further. An example of such a degradation–like phe-
nomenon without zeroing is shown in figure 3–15c. In the error landscape paradigm this
corresponds to a stay in a flat area, different from those caused by the zero–weight.

In all the visualized cases there are two important features of the learning process to be
observed: firstly, the weight values stabilize at a certain value, and secondly, most of
them go into overlapping trajectories. Correspondingly, there is no distributedness in
the internal representation. The lacking distributedness of the internal representations
is equivalent to a decreasing network capacity: a network, able to map a complex prob-
lem, degrades to approximate only some feature of the training signal, such as the main
tendency or periodicity. How to avoid these poor learning results will be discussed in
the following chapter.

3.4 Knowledge, Randomness and Symmetry.
The perspective considered so far suggests that the learning process is as much depen-
dent on the problem, (i.e. the knowledge which is being presented) as on the object (the
network which is going to process it) and on the learning algorithm (which makes the
incorporation of the problem into the network possible). The network implies the two
design principles: Symmetry (due to the highly parallel architecture, initialization prin-
ciples and used transfers), and Randomness (introduced by the randomized algorithm,
parameter selection principles and additional noise injections). The network, incorpo-
rating Symmetry and Randomness, and the Knowledge about the problem interact dur-
ing the learning process.

3.4.1 How things came to bear.

Knowledge comes in many disguises. It can be an implicit part of persons in an orga-
nization. By training people on the job, they can become knowledgeable about the tasks
to be performed and on their function in the company or in any other socio–economic
structure. But, when questioned, the persons involved may have problems in expressing
their knowledge in a form that is accessible to others.

Classical artificial intelligence starts with knowledge acquisition: the process of getting
knowledge out of people and into a model. This is a discipline in its own right. Question-
naires must be composed with considerable care to make sure that the gathered data can
be simply transformed into explicit knowledge. Such knowledge is then represented in
logical expressions to support logical reasoning.

This in turn brings the structure of new knowledge representation in terms of a neural
network into play. Machine learning discusses this theme as an uncovering of deep
knowledge in contrast to the shallow knowledge that results from black–box modeling.
Where a system is described as a function or a relation on the input/output behaviour,
it appears as a black–colored box of which no content is visible. The knowledge about
the system is limited to its outward appearance. When more of the internal structure
becomes known, the knowledge deepens.

As a view on the internal structure becomes available in neural learning by the captured
knowledge on the hidden nodes of the network, it lends itself very well to the retrieval
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of deep knowledge. Putting the three classical process parts (knowledge, acquisition
and model) together gives a simplified view on a neural system as a feedback system.
Only when separately the captured model is falsified does the feedback from the model
to data set come in operation.

For neural networks these system elements are rather called data set, example presenta-
tion and network structure. This terminology shows that it is rather a structural view.
As we aim to uncover the nature of the learning process, this will not fit nicely to our
purpose. On the contrary, we need a terminology that reflects the behavioral aspects of
the process.

3.4.1.1 Taking a different view.
In this thesis, we propose to distinguish between knowledge, symmetry and random-
ness. We have uncovered the symmetry problem as a major factor in monitoring the
sampling strategy. Symmetry can be present in the data set and in the network and will
require different decisions on sampling. Randomness may influence the effect of sym-
metry but will largely show its impact through the network structure. In other words,
both are highly related but will bring different views on repair. It is the aim of this thesis
to show that the KRS–model is closer to reality and will therefore lead to better ways
to ensure learning reliability.

The available knowledge over the problem to be solved, instantiated in the input/target
samples, gives the major guiding line of the learning process. The stochasticity, or the
randomness, introduced in the neural system, and the symmetry are two other crucial
factors, which influence the search for a successful and reliable itinerary. The symme-
tries in the landscape, signified by crests, valleys and flat–regions, presume equally
probable itineraries. In other words symmetry gives an equal chance to move in several
directions and therefore leads to indecisiveness. On the other hand, randomness is sup-
posed to help the network escape from such a dilemma. It helps the learning algorithm
to move away from the current stationary spot. In other words, symmetry and random-
ness define an antagonistic system of forces for anyone who travels the road of knowl-
edge.

Symmetry can be dominant in the beginning of, but also at specific moments during,
learning. Randomness (for instance as stochastic variable in the learning algorithm or
as additional noise at the network input, output or parameters [3]) is then required to
force the solution to follow alternative itineraries. When the amount of randomness is
not sufficient to balance the effect of symmetry, learning will not be completed: instead
of being adapted to ensure the right mapping between input/output data strings, the ini-
tial parameters will eventually become zero. If the noise (the randomness) of the system
is dominant, learning will also be unsuccessful, because the network will rather learn
the noise than the exemplified knowledge. The fundamental issue of learning is there-
fore the attaining and maintenance of a functional balance between symmetry and ran-
domness directed by the examples (the knowledge).

To facilitate an optimal strategy in handling symmetry and randomness in relation to
captured knowledge, it is important to know more about them. Though randomness and
knowledge presentation are subject of constant interest [3], [67], [102], symmetry has
not been elaborated in a systematic manner. Figure 3–16 suggests that symmetry can
be categorized from two different perspectives, concerning either the place (the net-
work or the problem) or the effect (the resulting relief of the error surface) of its appear-
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ance. The error landscape displays essentially two meanings to the word “symmetry”:
either the scenery itself or the choice in travel direction can be symmetrical. Such differ-
ent meanings come about when studying the landscape as an interaction between the
network structure and the problem. The error landscape results from network topology
and value settings, while the travel direction stems from the structure of the problem
as presented to the network during learning in request from the learning algorithm.

Having a look at neural networks as constructed in practice, it can be seen that random-
ness goes together with symmetry in a splendid variety: in Hopfield and Kohonen net-
works, randomly initialized neurons are connected in a symmetrical lattice; in feedfor-
ward networks, permutational symmetrical topologies are initialized with random
parameters, uniformly distributed in a symmetrical range around the origin.
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Figure 3–16: The different faces of symmetry.

Within the Knowledge/Randomness/Symmetry framework, finding the best learning
trajectory is equivalent to ensuring the best ratio between these 3 components during
the entire learning evolution (Figure 3–17). If the proper ratio of these three components
is destroyed in the certain stage of learning, a way should be found to increase its pres-
ence.
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Figure 3–17: Evolution of the KRS–system.

3.4.1.2 Learning stages and reliability.
The introductory section of this chapter puts forward two major reasons for bad learning
performance. The first one is related to the initial phase of training. As mentioned earli-
er, the network and the problem are completely separated in the beginning of the learn-
ing process. The network is constructed in the symmetrical fashion (it is “clearminded”)
to be able to take a path in every direction. From the error landscape point of view the
learning process starts in the area situated symmetrically between the different learning
subspaces. During the initial training phase the guidance from the learning algorithm
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and the training patterns are trying to break the symmetrical state of the network and
to force the remaining search in one of the possible subspaces. The bearer of this initial
symmetry is the highly parallel architecture and the choice of the initial state.

Once the initial symmetry is broken, the learning algorithm starts its gradient search
in one subspace. As proved many times, a lot of difficult (mainly flat) areas can be met
in this phase of the learning process. By overcoming these hurdles, the learning process
can reach the final stage and tune its state to the satisfactory optimum (Figure 3–18).
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Figure 3–18: The stages of neural learning.

The error surface paradigm provides an integral view on the 3 phases of the neural learn-
ing process. These phases are all represented as surface parts, which should be tra-
versed. In the initial phase the learning process starts in the area, equidistantly (symmet-
rically) situated between the subspaces, when all possible (equivalent) solutions can
lay. The duration of the network’s stay in this area depends on external factors such as
noise (the random fluctuations), and on the problem samples, which tend to extract the
neural system from the equilibrium state. This phase is known also as the initial symmet-
rical phase.

The equalities (the symmetries) in the network interfere with the problem to be learned
and with the learning algorithm. If the nature of the problem to be learned is such that
in combination of the network symmetries it disables the learning algorithm to make
decisions for a long time (i.e. the signal has a cancelation nature), the network comes
into a state, which is similar to degradation. In line with nomenclature from fault toler-
ance literature, network degradation is the phenomenon, when some of the connections
of the network are practically disconnected – i.e. brought to zero.

In some simple cases, for instance in the investigation of a simple symmetrical function,
this is really happening. For more complicated signals, as shown at figure 3–15c, the
weight values are not nulled. Here the signal is a high–frequency sinewave super–im-
posed on a low–frequency wave. As the single sinewave can be satisfactorily learnt, one
might expect the composition to be learnable too. This is unfortunately not true. Instead,
the network has learned an element of the signal, its major tendency or its periodicity,
and stops when a ’difficult’ signal part is met. When analyzing this behavior, one finds
that the remainder of the problem to be learnt has a distinct, local symmetry which pre-
cludes a succesful result.

In the third stage of learning, the optimization is done in most of the parameter direc-
tions. The values of the active weights are in a quite wide range  and symmetry is not
a stopping factor for the tuning process anymore. But the large parameter values can
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make the learning algorithm to take too large steps and may even bring unlearning with
a growing error.

These three phases are illustrated in figure 3–19. It gives glimpss on the approximation
of a complex signal at four time stamps: after 42, 7700, 18,400 and 46,300 training
cycles, corresponding approximately to 0, 3,9, 23 epoches. In this succession of pic-
tures, one can easily discern how the approximation process moves from global appear-
ance to local detail. A closer look at the beginning of symmetry breaking is provided
by the curves on weight and error evolution.
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Figure 3–19: Stages in a learning process.

3.4.1.3 Towards a KRS measure.

In case of an unsuccessful experiment a common practice is to reconstruct the experi-
ment and restart training process. A range of alterations can be devised ranging from
changing the network to changing the data set. The wide variety in options makes it very
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hard to find the optimal variation. Often the presence of potential problems goes unno-
ticed.

In order to get the problem into grip, a balance in the KRS–field should be kept. Chang-
ing on–line the learning speed has been used with occasional success, but as we pointed
out this only comes to avail when the speed of error backpropagation is at stake. In the
KRS–view this is not a remedy but only soothes the pain. A more structured method
can be based on finding an optimal extraction of the knowledge. It is for this reason that
we rather discuss learning behavior as a knowledge transformation process governed
by the two antagonistic influences: symmetry and randomness.

The critical issue is therefore: how can the antagonism be quantified? This is not an easy
thing to decide. Firstly, we need to show that the KRS–model can explain a number of
known anomalies in a generalized setting. Secondly, we need to come with a practical
way to fight against this anomalies. Once this has been done, there is ground to pursue
a more in–depth, analytical formulation. In this thesis, we limit ourselves to the first–
hand solution. It will be found in a next chapter that the behavior of a non–learning pro-
cess is so much different from a learning one, that a simple qualifier will suffice to im-
prove drastically the network performance. This in turn validates that our model
hypothesis might be correct enough to pave the ground for further research.

3.4.2 The KRS model.

So far our critique on the current methods of symmetry breaking is that they are either
problem–specific,  or concern one phase (usually the beginning) of the learning process.
Alternatively we propose to solve the global learning reliability problems by keeping
the proper KRS–ratio during the entire learning period. In a sense this idea is borrowed
from active learning [121], which presumes that the learning algorithm has control over
what part of the problem domain it receives information about. Our suggestion is to base
this control on the instantaneous check of the training set structure and to reorder it if
necessary. This way, not only the initial high symmetry will be destroyed, but also the
long plateaus of the training error can be shortened and shallow valleys escaped. As a
result, reliable convergence and learning duration can be ensured in difficult to learn
tasks (for instance when cancelation signals are trained) or the training time decreased,
when ordinary signals are learned. The other advantage of this proposal is that the prob-
lem is not violated by adding extra noise to it.

The occurrence and impact of neural network symmetries as seen on the global error
surface have been reviewed and analyzed from the learning evolution point of view. In
summary, the symmetries in network architecture and transfer are forming repeating
parts in the error landscape and are of importance only in the beginning of the learning
process, i.e. before the specialization of the neurons occurs. These symmetries are pre-
dictable and common for most networks. Normally they can not harm the learning pro-
cess. On the other hand, when the problem symmetries are present, together with high
initialization  symmetries, the structural equalities cannot be destroyed and thus the spe-
cialization of the representation neurons (learning) is likely to fail or to suffer from a
too long and unpredictable learning duration.

All the reviewed literature concerns either artificial problems (attempts to learn geo-
metrical or algebraic functions, that contain a lot of internal symmetries), or networks
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of importance rather for theory than for practice (parity machines, committee ma-
chines) which introduce artificial symmetries as well. In [10] it is shown how symme-
tries can affect real–life problems.

Moreover the suggested strategies for breaking the symmetry have the following weak
points: (a) they often change the complexity of the problem to be learned by introducing
additional noise – a remedy that can harm the learning quality near the convergence
point; (b) the solution they suggest is in most cases problem–dependent; (c) often they
concern only one moment in which the repair should take place.

3.4.2.1 Looking into the mirror.
Symmetry is a fundamental property, where the conciseness of a mathematical model
is at stake. Symmetry can be found in almost any natural process and subsequently used
to model part of the process and generalize for the total. Analytical algebra gives a vari-
ety of examples of how symmetry can be used by a range of laws, such as on commuta-
tion, reflection, transition and association.

We have seen however that symmetry can also have negative effects. By the occurrence
of a “longest run” phenomenon, a network can be brought to confusion rather than to
knowledge. Evidently it makes no sense to change the problem to be trained. The issue
is rather that the presentation order of the data set should allow for breaking the symme-
try during learning.

We have also discussed the role of randomness. It means to break the symmetry but
should keep the implied knowledge intact. This leads to the idea that symmetry and ran-
domness are to be in balance to allow for the transmission of knowledge between data
set and network. From [17] we quote

“In our test we observed three phases with smooth boundaries. At the
beginning of the adaptation (a fully open system) there is not enough
knowledge to make exploration decisions, so random selection is as
good as reflective exploration. In the next phase the accuracy can be
significantly improved by making good exploration decisions. In the
third phase, so much is known about the system, that it becomes closed,
and new examples don’t have much influence on accuracy. In this
phase exploration becomes less effective. The boundaries between such
phases are not obvious. We summarize conditions when exploration
would not be advisable: (1) when the agent has learned enough about
the system so that it is no longer an effective open system; (2) when the
overall learning set is going to be completely learned anyway.”

We see the same theme recurring in a number of publications. For instance, Heisterman
looked at the use of genetic algorithms for optimization problems [75]. After an initial
phase, where Monte Carlo analysis might be used to create a sensible set of genes, he
uses only a limited set of genetic operators to close in to the optimal solution. However,
when the optimum is nearly found, he changes over to straight gradient search.

We interprete this as a steady change in balance between symmetry (making for a num-
ber of local extrema) and randomness (allowing to ignore the local attraction). One
should mark, however, that symmetry and randomness are not independent parameters.
We have seen that symmetry can be caused by the sampling of a signal. By behavioral
symmetry, the same effect is due to the finite precision arithmetic in the network itself.
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The influence of the resulting quantization error is commonly called noise and therefore
a contribution to randomness.

The importance of the above cited work is that it shows how simple criteria can be found
to indicate a phase transition. To accomplish this, we need to find a qualifier that gives
a true indication of the present overall ratio between symmetry and randomness in the
presence of knowledge. We will call this the KRS–ratio.

3.4.2.2 The role of the qualifier.
To depict the role of the qualifier, we will first take a look at the basics of the learning
process, as shown in figure 3–20a. The content of the data set is sampled and brought
to the attention of the neural network over some learning algorithm. This learning is by
large a uni–directional process. Learning problems often go unnoticed and only under
catastrophic circumstances will the need arise to make changes in the data set (re–order-
ing; augmentation; enrichment). This will happen off–line; the data set is intuitively im-
proved untill the learning seems to succeed.

Data Set

Neural Network Qualifier

Data Set

Neural Network

Ordering

Symmetry

Randomness

(a) Classical Learning (b) KRS–based Learning

 Figure 3–20: A look at the learning process.

Our research aims to uncover the nature of learning problems and to acknowledge the
uncovered parameters: symmetry and randomness. The situation is bi–facial. An asym-
metrical signal on an asymmetrical networks seems learnable. However, when either
the signal or the network is symmetrical, problems may occur. While when symmetry
is present in both data set and neural system, accidents are bound to happen. For this
reason, we see symmetry (and likewise randomness) as attributes of the overall learning
(Figure 3–20b).

Because of their omni–presence, the influence of symmetry and randomness will be
hard to quantify directly. If ever, information theory will be the carrier rather than pure
stochastics. But sofar this theory has not been applied successfully to the learning pro-
cess [48], we will rather attempt to derive an empirical rule. This rule aims to indicate
learning problems as soon as possible. Compared to the classical approach it is viewed
that many short duration fail attempts are to be prefered to the single long awaited disas-
ter.

In other words, we aim to find an easy qualifier that measures indirectly the effect of
symmetry and randomness on learning reliability, irrespective of their nature. Such a
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qualifier should be fit to steer decisions on how to change the presentation of the data
set. Rather than to allow for an arbitrary selection from the data set, we propose here
a willful ordering of the data set: the presentation set. We will not attempt to change
the learning algorithm.

This then poses the next problem: in which way a data set should be re–ordered to
achieve a better learning reliability. In general, this is a combinatorial optimization
problem that can not be solved on–line. As in this thesis the focus is on the KRS relation
and the ordering problem is only of secondary importance, we will discuss a greedy
short–cut. In the first instance, we will assume symmetry to have either a local or a glob-
al impact. By judiciously enlarging and shrinking a windowed view on the data set the
effect of symmetry in the current learning process can be eliminated.
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4 Example selection.
The previous chapter puts forward, that the major obstacles for a reliable
itinerary on the error surface (and for the learning reliability, respectively)
stem from the peculiar error relief forms such as plateaus or valleys between
the solution subspaces, creating conditions in which adequate learning is
difficult to achieve even if it is theoretically feasible. The dynamics of the
learning process may include situations where further progress is halted on
such relief forms. The key to learning success is founded on the order, wherein
the examples are presented. The most common way of example ordering is
to select them at random from the set of available examples. We argue that
this is not sufficient and introduce alternative sampling strategies.
Particularly we propose a notion to allow for automation in this
problem–driven example selection: the cancelation criterion. This criterion
will be formulated and verified to show its potential for enhancing the
learning reliability.

The nature of iterative learning on a randomly initialized and (in terms of the selection
of training examples) arbitrarily developed network is such that a precise replication
of the experiment is practically impossible. Every experiment is dependent on two fac-
tors outside the actual problem definition: (a) the choice of the initial parameters, that
position the network at a certain point on the error surface, and (b) the order of presented
examples that direct the itinerary on this surface.

It is widely known that an unsuitable initialization of the network can be a reason for
its bad performance [107]. We claim, that the occasional failure of the learning algo-
rithm is rooted in both above named factors: not only wrong initialization, which makes
the learning algorithm to start from difficult to escape areas on the error surface, but
also wrong guidance of the example flow in a way that precludes the escape from diffi-
cult error surface’s relief forms. In an attempt to generalize, it can be observed that the
second case implies the first one: if proper guidance of the learning algorithm can find
a way through a difficult landscape during learning, it is certainly possible to surmount
a difficult initial position.

This claim can be supported with a very simple experiment scheme. Two groups of ex-
periments are performed with the same network until the cost function for every single
run drops below 0.01. Both experiments start in the same initial point with the same
training set, ordered according to a different rule. The outcome of the two groups of runs
show a difference in training time and in learning trajectory. Typical trajectories from
both experiments with average performance (regarding to training duration) are visual-
ized by error function development in figure 4–1.

This experiment shows, that the learning process depends more on the way training ex-
amples are presented than on its starting position. This implies, that a successful and
reliable convergence of the learning process can be achieved by only controling the pre-
sentation order of the examples during learning. The choice of a starting position can
be made according to widely accepted initialization rules.
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So far we have put forward that the effort to construct a reliable learning trajectory can
be spent entirely on directing the itinerary of the learning process. In contrast, ensemble
methods (in their simplest form) imply starting from different points in the weight space
and choosing the network (the solution) which takes the best trajectory. Such an ap-
proach does not answer to the question how to proceed if there is not a good solution
found or if the initial metastable state is not escapable for some reasons (see for illustra-
tion the analysis of a symmetrical function in a shallow valley in section 3.3.2.1).
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Figure 4–1: The error function for experiments with examples of the same
training set ordered in different manners. Both experiments are started from

the same initial point in the multi–dimensional weight vector space.

We have characterized the choice of initial parameters and of the example presentation
order as dynamical aspects of neural learning. Within the error surface paradigm the
process dynamics relate to the route, that the learning algorithm takes on this surface
on its way to the optimal solution, while the surface shape is static. Since the route is
determined to a large extent by the example stream, normally constructed according to
some randomization principle, the impact of randomness on neural learning will be dis-
cussed in detail with respect to both its weak and strong points. Though random sam-
pling seems advantageous in helping the network to escape a state of symmetry, it can
not ensure that the same learning trajectory will be repeated twice. In the first instance,
this means, that the learning experiment can not be replicated. Consequently, this is a
cause for bad reliability: the learning duration can not be guaranteed.

Therefore alternatives to the random sampling scheme will be discussed here. In search
for dependencies between the learning quality and the example stream presented, some
experiments are performed with alternative ways of selecting training examples. It il-
lustrates the influence of different pattern presentations on the learning reliability, but
foremost suggests a framework for solving a number of learning problems, i.e. ensuring
the reliability in terms of higher probability for convergence.

Though a closed–form analytical expression to predict network behavior as a function
of example presentation order has not been found, frameworking the interdependence
between the example presentation and the weight changes and considering the peculiar-
ities of the error landscape leads to a practically acceptable criterion: the KRS–ratio.
It is found out, that if the KRS–ratio converges to zero within one epoch, there is a high
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chance for cancelation to appear. The suggested example reorderings are increasing the
KRS–ratio development and correspondingly resolve cancelation situations. In accor-
dance with the created cancelation criterion, a sample selection strategy is developed
and its feasibility is shown.

4.1 The basics of sampling.
The creation of a training set that ensures optimal functionality from the learning pro-
cess has many aspects. As the continuum to be modeled is infinite, taking representative
examples involves a sampling operation: a finite set of examples is extracted according
to a sampling algorithm, such that the set (a) can be learned and (b) allows for general-
ization. The properly trained neural network has then become an executable model of
the infinite continuum.

Characteristic  of a sampling algorithm are the sampling rate and the sampled interval.
The relation between these two has been worded for information processing by Nyquist
in his Sampling Theorem. It states that the information as present in the infinite continu-
um can be contained in the finite example set. However, the Nyquist Theorem is neces-
sary but not sufficient for neural networks. It derives its significance from the fact, that
it gives the minimum amount of examples that must be present in the example set. It
is generally possible to reduce the size of the training set, as reported in [69] [146]. But
in some applications obtaining the training samples is costly. Important in these cases
is to find the smallest number of examples that lead the network to a good result [80].

The next question is therefore, whether all examples in the set must be used? It is clear
that according to the Nyquist theorem again a minimum number of the examples must
be used. The related question is therefore: if the example set is redundant, which exam-
ples must be chosen? This question has far reaching consequences, as it implicitly al-
lows for a discreticized but potentially infinite input space. For the moment, we rather
restrict ourselves in the number of ways to optimize learning.

Therefore we assume that an example set is available and will be fully used for learning.
So next to the above physical concept of sampling data points from a signal, we will
also view sampling as a data selection technique. From the pool of examples, we take
all examples in a deliberate order and present them individually to the network for the
purpose of learning. In other words, by sampling the data set is transformed into a pre-
sentation set, the difference being that in the latter the examples are already queued for
presentation.

4.1.1 Sampling techniques.

The presentation order of the examples is of greatest importance for the success of
learning. For a long time, a random selection of examples has been prefered as it was
noted that by repeatedly presenting the examples in a fixed order forces the network to
remember this order too. Often, this order has no real meaning and leads therefore to
false learning. By presenting the examples in a random order, the network will never
see the same sequence and therefore learns from the individual examples only.

In the following, we will start from this random sampling (RS) technique as a point of
reference. Subsequently we introduce some variations to find that next to its obvious
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advantages it also has some drawbacks that make for a reliability problem. It is essen-
tially this reliability problem that we aim to solve in this thesis. Therefore a brief review
of existing neural sampling schemes is made first.

4.1.1.1 Random sampling.
Most neural algorithms apply a number of random choices during their operation.
Hence, even for a fixed input, different runs may give different results in time and accu-
racy. This nicely fits the definition of a randomized algorithm, according to [92]:

��	������ A randomized algorithm is one that receives in addition to its input
data a stream of random bits that it can use for the purpose of making
random choices.

There are two major advantages of randomized algorithms. Firstly, often the execution
time or space requirement of a randomized algorithm is smaller than that of the best
deterministic  algorithm known for the same problem. Secondly, all the existing ran-
domized algorithms are extremely easy to understand and implement [92]. Randomiza-
tion of a known deterministic algorithm with a detrimental worst–case behavior con-
verts it often to an algorithm that performs well with high probability on every possible
input.

Randomized algorithms gather information about the distribution of their input data by
drawing random samples. In the case where the input data are fixed it is useful to ran-
domize the order at which they are presented. In this sense, the random transformation
of the example set from data set to presentation set has been performed by a randomized
algorithm.

In general, there are no tangible rules in neural theory relating the signal to be learned
and the nature of training patterns. Thus random equidistant sampling gives in most
cases a satisfactory result. Moreover, the random factor is crucial for the work of all
learning algorithms of a stochastic nature. The founders of the backpropagation algo-
rithm have suggested in [129] that not only the network parameters but also the training
examples should be chosen randomly. The motivation for this choice is based on the
features of the most commonly used optimization method – the gradient descent. Gra-
dient descent is performed on the local error function:

f (w, z�)���we(w, z�) (4–1)

The stochastic gradient descent on a local scale approximates the deterministic gradient
descent on a global error landscape:

E(w)� lim
T��

1
T
�
T�1

��0

e(w, z�) (4–2)

Another reason to choose the training samples randomly is to reproduce the density of
the underlying distribution. If there is no further information available, this choice is
very reasonable, but it usually results in a suboptimal training performance. Beside its
easy implementation, random example presentation supports a framework for theoreti-
cal investigation of the generalization properties of neural networks. It is generally re-
fered to as “Learning from examples” (Section 1.2.1). Analytically, learning from ex-
amples method is examined in many studies, among which are [13], [41] and [46]. A
complete description of this approach for analyzing neural networks’ generalization is
given by Poggio et al. [123].
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Random sampling assumes that training examples are arbitrarily chosen, and that the
learning process evolves under its own dynamics. In this case, it can be said that the
neural network is a passive learner: the neural network has no control over the construc-
tion of the presentation set.

4.1.1.2 Alternative sampling schemes.
The intuitive alternative to randomization is that of selecting the training examples to
follow the time order of the extracted signal samples. This happens for instance when
the natural order of presentation is of importance (as in time–series prediction tasks)
or when this is the only possible way of obtaining the examples (like in on–line learning
scenarios).

Both choosing the examples for training at random from the available samples as well
as presenting them to the network in their natural order are passive learning schemes:
training algorithms do not have control over the example selection and presentation
process. The most broadly applied neural algorithms are passive. The Hopfield Net-
work, for example, takes its pattern set as a whole and so does also the Back–Propaga-
tion algorithm in its batch version. In the stochastic backpropagation, examples to be
learned are randomly selected  [46], which is also a passive learning technique.

A lot of studies show superior results when training examples are chosen in some sys-
tematic way. Generally, the decision on which examples are selected, is made by the
training algorithm. This is the reason to refer to this training scheme as active learning.
Active algorithms applied to neural networks aim to ensure success of the neural learn-
ing process by optimizing the information coming from the environment. They are ei-
ther oriented towards the strategy of pattern presentation or to the selection of the best
training set. Accordingly, there are two distinct classes of techniques for choosing train-
ing examples. The first group assumes that the network is partially trained on a set of
previously acquired examples. This class of techniques is known as active sampling or
progressive learning [46] and can be defined as the task of adding new examples to the
set of available examples. The second class of active learning techniques is known as
active selection or informative learning [80] and implies selection of training examples
from the set of available examples.

In the active learning scheme the necessary number of training samples heavily depends
on their distribution over the input set. Properly selected, these actions can drastically
reduce the amount of fatalities and the computation time required for learning to be
completed. As reported by Morgan and Boulard [106], one can produce results by using
only a small fraction of the available examples, that are close to those obtained when
all available data are used. Another reason for using a specific strategy of pattern selec-
tion is that network performance can be drastically improved (Cloete and Ludik [39]).
This latter result, together with [7], [121] etc., establishes neural active learning as an
alternative for passive learning from random examples.

In summary, it can be said that the sampling of a signal to be learned as well as the selec-
tion of the examples for actual training are important characteristics of the training pro-
cess. Different manners of sampling or example presentation require changes in the
training algorithm, but not in the optimization principles. Therefore, active and passive
learning are terms concerning not the training process in general, but the way of exam-
ple selection and its benefits to the learning success. Different sampling and ordering
methods are relevant to one of the sampling schemes, as summarized in figure 4–2.
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Figure 4–2: Classification of the learning process with respect to example
presentation.

4.1.2 Neural active learning.
Active learning has been studied independently by researchers in many different areas
such as neural networks, robotics, computational learning theory, experiment design,
information retrieval, and reinforcement learning. It addresses the effects of pattern
selection and presentation on the learning process. The active learning algorithms ap-
plied to neural networks aim to ensure success of the neural learning algorithm by se-
lecting the optimal information from the environment. They are either oriented to the
strategy of pattern presentation or to the selection of the best training set.

4.1.2.1 Active selection (Informative learning).
A logical way of actively selecting the training examples is: to choose from a large and
redundant set of samples those, that will allow one to achieve the ultimate goal of learn-
ing the problem at hand. The reduction in the number of training samples can be neces-
sary for several reasons. Firstly, reducing the training set size will eventually speed up
learning. Lets assume that the number of selected examples is much smaller than the
number of overall available samples. Thereby learning can be expected to have a short-
er duration, because it is accepted that the training time is proportional to the number
of examples to be learned. Secondly, obtaining the training samples is costly in some
applications.  Then finding the smallest number of examples that lead the network to
a good result, is of importance [80].

The training set reduction can be achieved either by an incrementally growing training
set [121], by selecting samples or queries [14] or by skipping examples in the training
set [2] [69] [146].

If the training set is not carefully chosen, learning can result in bad generalization. Then
it is important to select a concise but efficient (in terms of generalization) training set.
Learning schemes, that make it possible to select training examples such that the redun-
dancy contained in them is avoided and generalization abilities are not worsened, are
called query learning. It contains two non–separable tasks: data modeling and data
selection.

The data modeling process starts with choosing a small data set from the problem to
be learned and consists of fitting this data into a neural network model by an optimiza-
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tion method [126]. The model should be accurate, but not over–fitted. One way to fulfill
this restriction is to base the model selection process on cross–validation techniques
[19] [89] [93]. The so–obtained model paves the ground for the data selection process,
where an optimization criterion is defined and computed. This criterion can for instance
correspond to the model’s estimate of the squared distance between its actual output and
the expected correct output for a new data point. The data that minimizes this criterion
is then added to the training set.

After the data model has been selected, there are three different approaches to find new
data. The first approach is applicable when a neural network model has been established
using already seen input/output examples and the exploration of the data space will in-
clude an incremental expansion of the training set. If the input value of a new example
is unknown, it is necessary to calculate the input value to be queried. Usually, this new
value is calculated stochastically. This first approach is called Query Construction
[141], but, if there exists a string of random input values that can be queried, it is normal-
ly referred to as Query Filtering [121]. The process of adding more examples to the
training set is often called data subset selection [30], [163].

In every training set there are “difficult to learn” training examples – the network learns
them least and in approximate borders. Some work in neural active selection aims to
improve the learning and generalization capabilities of the network by modifying the
presentation frequency of patterns [30] [108].

In [46], a focus on particular examples is envisaged, which constitutes active learning,
to escape from situations where the network is stuck in a local minimum. For all the
studies mentioned above, numerous criteria exist to select the pattern to be learned, but,
in all cases, the general principle is to choose the example that will give the maximum
of new information about the environment. The way of implementing the method of
changing the frequency of pattern presentation is the influence of each example of the
training set to be weighted [30] [108].

4.1.2.2 Active sampling (Progressive learning).
Learning can be considered as an intrinsically temporal process: the environment is not
learned as a whole and at once, but in several stages. As seen in figure 3–19, the network
approximates the median of the samples at the very beginning of the learning process.
Later the network learns the global tendency of the target function (Figure 3–19b). In
the following steps the network approximates small details from the target. Finally, the
complete signal is learned by the network (Figure 3–19d).

This subdivision of the learning process can be considered as an advantage, since it
gives the possibility of learning progressively. Progressive learning (or also known as
active sampling) assumes, that the training set is not learned at once. The final goal to
learn the posed problem is achieved by fulfillment of intermediate tasks: the partial
learning. There are not many studies on that aspect of progressive learning in neural
networks, although it was evoked some years ago [46].

Active sampling is essentially concerned with determining the distribution of training
examples, which may differ from the distribution according to which examples occur
naturally in the learning environment. The modified distribution is determined by mak-
ing use of a priori knowledge about at least one of three objects: (a) the computational
model i.e. the neural network architecture, (b) the learning algorithm as largely deter-
mined by the error criterion used for training and the learning rule by which this error
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is minimized, and (c) the learning task which includes the environmental distribution
and any a priori knowledge of the target function. In some cases, there is enough knowl-
edge about the learning task and the network model, and thereby it is possible to deter-
mine the optimal sampling distribution in advance, without need for active sampling
[5] [43]. Active sampling determines the sampling distribution according to the result
of learning upon previous examples. In this sense the network is an active participant
in its training.

The most well–known study on progressive learning is done by Elman [55]. He solves
a grammatical prediction task. Sentences, generated by an artificial grammar, are pre-
sented to a simple recurrent network, which must predict at each time the probability
of occurrence of every word in a dictionary. When the corpus of sentences is presented
as a whole to the network, training fails. Conversely, when the training set is divided
into two subsets (one containing easy sentences and the other containing complex sen-
tences) and when the proportion of complex sentences increases progressively in the
same training cycle, then the training succeeds.

The improvements achieved by progressive learning can be intuitively interpreted from
the shape of the error surface. The error surface is entirely determined by the training
set and the network topology and transfer. As discussed in the previous chapter, the sur-
face is the same during the whole learning period in the classical passive scheme of
back–propagation learning. In active learning, the error surface changes continuously,
since the training set changes. Consequently, when beginning with an easy subset, the
gradient dynamic applied in a first error surface easily and rapidly leads close to a mini-
mum of the surface, which places the network’s weights in a good configuration to learn
the second subset, and this is repeated at each stage, until the end of the learning. This
explanation is related to studies about initialization of the weights in back–propagation
networks [83].

Such studies on progressive learning are very interesting, but there are some reasons
to suppose that their validity is limited. Firstly, they suppose that the decomposition of
the example space in successive training sets is known a priori. Secondly, the training
set has to be changed. In [55] the next training set is selected every five epoches. In other
experiments, there is a threshold on the error below which the system takes the follow-
ing subset. This threshold is diminished at each subset, either by taking a priori defined
values [39] or according to some law [39] [45]. In all cases, a priori information is given,
that has a strong influence on the results. Thirdly, most experiments are made on recur-
rent networks [54] , where the design of consecutive training sets is based in the analysis
of the temporal sequences; see [132] for some rather disappointing experience.

The historically first approach in progressive learning is the combined subset training
[30] [45]: the network is trained on a subset of random patterns selected from the whole
training set until a certain criterion is reached. Then a second subset is added to the first
one, and so on until the whole training set is learned. Cloete and Ludik [40] suggest also
an increased subset training, which implies a multiplication of the training set size by
a fixed number. Another limitation of this approach arises from the problem to predict
the difficulty of a task by the number of examples to be learned. Thus, the first subset
can be quite hard to learn, almost as hard as the whole training set.

The natural development of the active sampling method is to build consecutive training
sets by increasing not the size of the training set, but its difficulty. This is achieved in
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[39], where the network is first trained to count from 0 to 1, then to 3, then to 7 and lastly
to 15. The obtained results are significantly better than with a combined subset training.
Similar experiments, but with different motivation, are reported in [55]. The author
shows in a task of complex sentence prediction, that starting with a training set contain-
ing short sentences and increasing the length of the sentences allows the network to
learn the whole environment, whereas it is unable to learn it otherwise. In the third ap-
proach, partial training as suggested by Jacobs [83], several intermediate tasks are pre-
sented to the network (before it learns the final task).

An interesting experiment is described by Fahlman [56], where the recurrent cascade
correlation architecture is used to learn the Morse code. Learning is achieved by pre-
senting the patterns from the easiest characters together with the most difficult ones.
Implicitly an important part of pre–processing has been performed here, as the Morse
code already takes the importance of characters into account. The code provides a se-
quence of dots and strokes for each character, such that the most frequent characters are
assigned the shortest sequence. This makes it clear beforehand which characters are
easy and which are difficult.

4.1.2.3 Active learning implementation principles.

A widely accepted and practical way to implement active learning principles is in the
framework of so–called optimal experiment design [6], as popularized in statistics. This
framework is based on a technique of Maximum Likelihood Estimation. The work in
this direction has been carried out in [42] [44] [99]. An integrated prediction error has
been used as the objective function for selecting a new data point. This error function
assumes that the data points have asymptotically a normal distribution [121], of which
the parameter values must still be found. It is possible to use a Markov Chain Monte
Carlo simulation [115] to establish this measure.

Another framework to be considered is the sequential optimal recovery [13]. This type
of analysis does not make probabilistic assumptions, but concentrates on the worst–case
behavior of the algorithm. It has been subjected to a detailed study in the area of func-
tion approximation, in which one tends to compute the maximum possible error for the
guidance of selecting the next data point. All the methods mentioned so far can be de-
scribed with the Bayesian inference paradigm [142].

As described in section 2.3.1.1, an advanced approach for neural network training to
overcome the dependence of the learning process from the choice of initial state is the
committee method. This method copes very well with the Bayesian paradigm. When
a committee of neural network models is obtained as a result of the data modelling pro-
cess, there is an expected disagreement on where to sample for new data in the problem
domain. This disagreement can be expressed as an ambiguity measure [93], or by the
estimated output variances [89] [124].

The choice of committee model differs with each application area. Bootstrapping tech-
niques have been used by [53] for the time–series prediction task. It was found that a
better generalization performance and a more accurate estimation of output error bars
is achieved [27] [149]. This confirms our expectation that pre–structuring of the presen-
tation data based on a windowing technique is worthwhile. This idea will be further de-
tailed later in this chapter. But first we need some more background information.
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4.2  Alternative example selection schemes.
The alternative sample selection scheme, as will be motivated and developed here, aims
to increase the reliability of neural learning. For this purpose it should correspond to
the concept of reliability, namely achieving robustness and effectiveness through find-
ing an optimal training trajectory. For making the learning itinerary reliable and always
reaching a satisfactory solution, it should be ensured that even difficult error landscape
areas will be passed. As elaborated on in previous chapters, such are very flat and very
curvacious regions. Normally, a randomized training algorithm can escape flat areas
and shallow minima or valleys; for a specific group of signals, which will be named
cancelation signals here, such areas are usually an unsurpassable obstacle. The experi-
ment in section 3.3.3 analyses one simple example of this signal group; others will fol-
low in the remainder of this thesis.

There is not a learning method that can solve all potential problems. We attempt to get
over unreliable convergence by a proper example selection scheme. Here it will be
shown how selecting the training examples in a different manner can change the learn-
ability of cancelation signals. Additionally, as was shown by the opening experiment
of this chapter, the learning speed of an arbitrary signal may be increased by orders of
magnitude through a proper example reordering.

Since the order of presenting the training examples is crucial for improving learning
reliability and speed, the impact of example streams on the learning process has to be
revealed first. After defining the overall characteristics of a cancelation signal further
in this section, the cancelation training set will be introduced for the training itself. It
predicts the learnability of a particular training sequence. The main point here is, that
even if the signal has a cancelation nature, presenting the extracted training samples in
a special order can avoid a number of learning problems. In order to define the way of
selecting the training examples a simple criterion, called KRS–ratio, is developed. Its
simplicity makes it easy to calculate for the current training sequence and thus to be
implemented on–line in the training algorithm.

Calculating the KRS–ratio predicts which signals will be difficult to train. The learning
difficulties are investigated by systemizing the results of many experiments with sig-
nals with different level of cancelation. Manners for increasing the KRS factor are easi-
ly derived from the features of the optimization method and random processes. The re-
sults of training large numbers of sets, produced by reordering the extracted samples
in a special manner, are confirming the usefulness of the chosen resampling strategies.

4.2.1 Example presentation order and learning success.

The analysis of the data–driven nature of the learning process requires a corresponding
framework. Here only general directions will be given to provide a basis for the sam-
pling method which will be proposed in a further section. Moreover, the general analy-
sis and solution for above described learning problems will be made within this frame-
work.

Following the definition, given in 1.2.1, the learning algorithm’s task is encoded in the
set of examples z�. Finding the function f (x)� � which maps the problem best is
equivalent to discovering the conditions in which differences between the responses,
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given by the network and by the supervisor, to the same input vector are smallest. This
difference for the pattern z�� (x�, y�) is denoted as error e(z�, w) in equation (2–1). The
algorithm processes the sequence of examples z� until the network error (2–3) falls be-
low some given magnitude.

If z� is a randomly drawn example from the training set �z1, z2, . . . ,zN�, the total error
function can be formulated as:

E � 1
N
	

N

��1

p(z�).[f (x�, w)� y�] 2 (4–3)

where p(z�) is the probability that an example z� is presented, y� is the target part of
this example, and f (x�, w) is the network response. The widely used random pattern
presentation method requires that in one epoch all training examples are presented. Cor-
respondingly, every example is equally likely to be presented to the network.

4.2.1.1 Impact on the learning success.
This implies that the optimization can be performed on the development of the weight
values in time. The probability that example z� is presented can be expressed by the
probability that it is the example with number t, taken for training the neural system.
This correspondence indicates that the conclusions on the effect of consequence of pat-
tern presentation can be derived by calculating the probability characteristics of the
training set.

Learning reliability is to be judged on the trajectory which the learning process develop-
ment makes on the error surface. As it was shown by equation (3–8), the changes of the
error value with respect to the network parameters (weights) is equivalent by value and
opposite by sign to the changes of the weights in time. This derivation is very helpful,
since the change of the weights in time is related to the presentation order of the training
examples. In order to give more insight to that statement, let us remember that the
weight vector values at moment t+1 depend on those at moment t and on the weight
change, caused by the example with sequence number t:.

wkj(t� 1)� wkj(t)� �z(t)wkj (4–4)

where �z(t)wkj is the weight change when the tth randomly selected example z(t) is sup-
plied to the network. For the on–line mode the weight change after the presentation of
the tth random pattern is:

�z(t)wkj �� ��e(z(t),w) � ��k(t)oj(t) (4–5)

The generalized delta rule for updating the weights wkj(t) includes also a momentum
term, contributing the influence of the previous weight changes to the current one, i.e.
of the change the previous examples caused to the weight values:

�z(t)wkj(t) � ��z(t�1)wkj(t� 1)� ��k(t)oj(t) (4–6)

In order to see the effect of the sequence of patterns on the synaptic weights it is neces-
sary to sum the changes which every pattern causes on the weight values:

�z(t)wkj(t) � �z(t�1)wkj(t� 1)� ��� � �z(1)wkj(1). (4–7)

From equations (4–6) and (4–7) the current change of the weight value, caused by the
current example z(t), can be represented as a time series.
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�z(t)wkj(t) � ��
t

n�0

�
t�n
�k(n)oj(n). (4–8)

This form of the generalized delta rule has been used for analyzing the behavior of a
symmetrical  function in the initial shallow valley (equation (3–27)). The notation
�z(t)wkj(t) is made here to show explicitly the dependence of the weight values on the
training examples. In general such a notation makes the description less distinct, and
will be avoided in further sections by substituting with �wkj(t). Besides, �k(n) in equa-
tion (4–8) can be substituted, leaving

�wkj(t) � ��
t

n�0

�
t�n(y(n) � f (x(n), w))�k�(�(n))oj(n). (4–9)

As already explained, f (x, w) � �(�(t)). Thus equation (4–9) will change into:

�wkj(t) � ��
t

n�0

�
t�n(y(n) � �(�(n)))�k�(�(n))oj(n). (4–10)

In summary, the learning algorithm (a) chooses in an arbitrary way the examples z�, (b)
orders them to a pattern stream z(t), and (c) transforms the pattern stream z(t), (where
t is the natural numbering 1, 2,���t��� of the examples in the order of their appearance)
to the sequence of weight values wkj(t), formed by adding a weight change �z(t)wkj to
the previous weight value. In this sense the two streams wkj(t) and �z(t)wkj contain equiv-
alent information:

�z1, z2, ���, z�, . . . ,zN� ––> {z(1), z(2), ... , z(t), ...} ––> |{wji(1), wji(2), ... ,wji(t), ...} ––>

��z(1)wji,�z(2)wji, . . . ,�z(t)wji, ��� � (4–11)

This reasoning is valid in all the example presentation manners, which ensures an equal
probability p(z�) for every example z� to be presented. The described equations will
help for instance to imagine when the example stream leads to weight degradation and
how this can eventually be avoided.

Later in this thesis, we will develop the idea that structuring of the example presentation
ordering is necessary to avoid learning problems. From the above equivalence between
sample presentation ordering and weight value change, one may therefore rightfully de-
duce that structuring the example set implies a structuring of the network. In this sense,
the technique to be developed can be viewed as a first step in the direction of modular
synthesis of neural networks with a guarantee on learning by construction. This makes
our technique to a viable alternative to the “knowledge annealing” technique advocated
by [144].

4.2.1.2 Resampling schemes.
Although an indication about the changes of the trajectory on the global error surface,
characterized with the change of the weight vectors, is given by the data stream z(t),
this indication is not straightforward. But certainly, some useful conclusions can be
drawn.

The most general conclusion about the dependence between the weight changes and the
differences between subsequent examples follows directly from equation (4–9): large
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weight changes are proportional either to an abrupt change of input stimuli or to a large
error (large differences between the target signal and the network output). In contrast,
a stabilization on the weight oscillations is to be expected when the target signal is al-
most learned or when the input values are changing smoothly. The learning trajectory
as well as the weight plots have one global path of changes, but on the short term they
are exposed to small fluctuations [160]. In the long run, large changes in the weight val-
ues can be expected when consequent examples cause weight changes with the same
sign (in the same direction). This obvious conclusion, derived from equation (4–10)
will be considered when attempting to direct the learning trajectory in the forthcoming
sections.

By now the importance of the inputs has been discussed in neural literature in terms of
saliency or sensitivity analysis. The two basic methods for inputs importance estima-
tion are known as predictive importance and casual importance. Predictive importance
is concerned with the increase of generalization error when an input is omitted from a
network [101]. By casual importance estimation the inputs are manipulated in order to
find out how much the outputs will change [101]. A common conclusion of the sensitiv-
ity analysis methods is that different measures of importance are likely to be used in
different applications of neural networks.

4.2.1.3 Bootstrap resampling.
Bootstrapping is used in neural research as a method for estimating generalization error
based on ”resampling”. Since resampling is a typical feature of the bootstrap method,
it can be used to asses the impact of sampling variation in the data set on the trained
weights.

The bootstrap method generally requires no major assumptions other than simple ran-
dom sampling and finite variance. This allows us to investigate the sample variability
in a statistics of interest, by making repeated computations by a randomly drawn sam-
ples with the same probability distribution as the initial samples. The distribution of the
statistic of interest can then be observed over the resampling experiments. Under ap-
propriate conditions the distribution of the resampled statistics corresponds to the sam-
pling distribution of the statistics of interest.

In [15], the bootstrap method has been used to assess the sampling variation. First a
large number N of pseudo samples of size n have been drawn independent of the original
sample and the statistical characteristics of every such sample are used to draw the con-
clusion for the original statistics. This bootstrap methodology allows for the identifica-
tion of those variables that are truly predictive for the target. Our interest in this work
is that it gives a statistical validation of the observed relationships between the input
information, processed by the neural network and its target.

4.2.2 Example stream features.

Our experience shows, that some signals are more difficult to be learned by random pat-
tern selection than others, see for example the discussion in Section 3.3.3. The perfectly
symmetrical  signal in figure 3–14 will never converge to the desired value, while the
“easier” signal  with imperfect symmetry leads almost effortless to a satisfactory solu-
tion. Since the difference in the two experiments lies only in slight changes of the con-
tents of the target patterns set, one may expect, that there is a relation between target
signal features and its learnability, correspondingly with its reliability.
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The analysis of the experiment illustrated in figure 3–14 brings us to direct our attempts
on the definition of signals that can cause reliability problems. Moreover, it suggests
a way to overcome reliability problems, caused by such signals, by supplying the train-
ing samples in a way that the correspondent weight updates will not cancel each other.
The experiment in figure 4–1 at the beginning of this chapter shows the influence on
speeding up the learning process of different manners to order the examples of a training
set. This latter experiment concerns a signal, which is learnable by a “standard” random
pattern selection scheme.

The described experiments from figures 3–14 and 4–1 have been especially chosen to
illustrate the potential impact on learning speed and reliability of the ways to select the
training samples. An interesting question is whether the approximation of an arbitrary
signal is affected by the example selection manner. If the relation between signal learn-
ability and its structure, the way it is sampled or the order of presentation of the samples
can be found, then learning quality and reliability is to be considerably improved. Such
a relation, expressed by a (preferably simple) criterion will allow an easy check on
whether the current training set can be learned easily, and – if not – how its learnability
can be improved. This check can be made before training starts, which will give an indi-
cation whether learning problems can be expected with this signal if it is trained by
means of random sampling. Reliability problems can appear as well during training.

4.2.2.1 Definition of a cancelation training set.
In Section 3.3.3, the behavior of a symmetrical function in the initial shallow valley has
been analyzed. The initial shallow valley is a peculiarity especially for networks,
constructed by zero–centered sigmoid neurons. As can be concluded by the analysis in
section 3.3.3:

If the training set consists of pairs of samples which cancel their impact
on the progress along the learning itinerary, a reliable learning by
means of random example selection can not be guaranteed.

It is to be expected, that if the learning process meets a very flat error region, such a
training set will bring prolonged training times as well. In both cases there is a large
chance for the learning process to be of a poor quality. For instance in the approximation
task from section 3.3.3 optimization can be directed to the optimal point on the bottom
of this valley. In a flat region, such a signal will cause an itinerary which rather follows
the lows of the random process (Figure 2–12b) than to take a direction, which corre-
sponds to a better mapping of the training problem. The formalization of this learning
problem, as well as the made experiments, brings us to generalize that this effect ap-
pears by a wider group of signals which have the potential to bring the learning process
to an unwanted ending. A basis for determining the range of signals, which have the
potential to cause reliability problems with a cancelation nature, will be the observa-
tions on the global weight vectors behavior (respectively on the taken learning trajecto-
ries) when unreliable learning occurs.

Different weight behaviors, associated with non–learning are (1) degradation of the net-
work parameters; (2) all the parameters go to a few parallel trajectories; and (3) satura-
tion of the network units. The first two are observed when the cancelation situation is
present.

An intuitive rule for reliable learning in this case is to keep the weight vectors in the
range such that neither saturation of the network units, nor network degradation occurs.
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This implies, that the internal representation should be kept distributed enough not to
allow a degradation of the weight vector values. Of course, this might not be true for
networks that need pruning. For some tasks, networks with a very large amount of
weights are designed, and the learning process prunes out the unnecessary parameters.

Interpreted through the error landscape paradigm, degradation of the network takes
place, when a high energy valley, or local minima is reached. The optimization goes
into the direction of the local lowest point. Degraded to a few parameters, the network
is able to learn a detail of the problem, corresponding to this high energy stationarity.

The observed effects of the existence of a cancelation phenomena during training have
been analyzed by a typical example in approximating a symmetrical training set. In this
case degradation is not an obvious phenomenon since the weight vectors have no time
to grow initially and loose potential due to cancelation. The degradation in this case can
not be distinguished from the lack of initial symmetry breaking. Here an attempt will
be made to generalize the analysis made for a symmetrical signal to cases where a sec-
ondary cancelation of the training examples and respectively network degradation will
appear.

As discussed already, the degradation can be encountered in two forms. The first one
is characterized by the typical behavior of the network parameters to approach a zero
point which, when mapped on the global error surface paradigm, corresponds to a mul-
ti–dimensional  high energy valley, at which most of the network parameters reach its
bottom. The bottom of a multi–dimensional valley can have several non–zero direc-
tions, which correspond to the non–zeroed network parameters. The second form of
degradation is characterized by all network parameters taking a few parallel trajecto-
ries.

Lets go back to the assumption, made for analyzing a symmetrical signal, that n uni-
formly distributed samples are taken from the input signal. Let the input signal is scaled
in x–direction between –1 and 1. Then there are n�2 samples xi in the range [–1 0], and
n�2 samples in [0 +1], such that for every sample xi there exist a sample xj, i � j, for
which xi �� xj. To every input tuple xi, xj, (xi �� xj) corresponds yi, yj, tuple of the
target signal, such that yi � yj.

The explanation of the cancelation effect was made on the assumption, that two corre-
sponding elements of a tuple are presented in subsequent order. This way the impact,
which the second example from the tuple will have on the learning development, is can-
celing the impact from the first one. In practice the probability that two such examples
are presented in subsequent order is not very high. But since two subsequent examples
are most often on different sides of the zero point, in the longer run the summary impact
of the example presentation is zero.

Equation (4–10) will be used in order to generalize the appearance and influence of this
phenomenon for an arbitrary signal. In it the weight adaptation �w was expressed as
a sum of the changes, caused from a sequence of training examples. This sum can be
divided into two sub–sums:

g1(t) � ��
t

n�0

�t�n

2 y(n)��(�(n))oj(n) (4–12)
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g2(t) � ��
t

n�0

�t�n

2 �(�(n))��(�(n))oj(n) (4–13)

This division of the weight adaptation time series is helpful to reveal the impact of the
target sequence when the input sequence does not lead to meaningful changes in the
network output, i.e. when a degradation of the weight vectors occurs. Only the first sum
depends on the training signal (equation (4–12). The second sum is externally depen-
dent only on the flow of input values (equation (4–13)). A similar description has been
used for the analysis of the experiment in section 3.3.3 from equation (3–28).

By analogy with this analysis, it can be expected, that cancelation problems will appear
when the first sum (equation (4–12) converges close to zero for one training epoch. With
the assumptions made for random sampling this implies that the training signal has little
impact on the training process. What the network produces as an output is in this case
a combination of the mean of the signal and the impact of the input sequence. When
the example sequence is arbitrarily ordered, the network approximates only the signal
mean if the training has just begun, or stays at the already learned part feature of the
signal in later stages of learning.

Therefore, in order to find out the impact of the target signal on the training process (in
peculiar error surface areas), we need to analyze only the first additive component g1.
If equation (4–12) converges close to zero during one epoch:

lim
t�N

g1(t) � 0 (4–14)

then it can be expected that the examples in the signal to be learned will cancel each
other’s impact even in shorter intervals due to the additive properties of random, zero–
symmetrical  sequences.

To determine the signals that will satisfy (4–14) let us look at this equation into more
detail. The constants � and � can be ignored, since they are not adaptable for the “stan-
dard” way of performing backpropagation. Except on the target values, the equation
(4–12) (which is implied in (4–14)) depends on the multiplicative term �, which for
the i–th example is:

�
i � ��(�(xi))oj(xi) (4–15)

Therefore it depends indirectly on the input distribution. As in the symmetrical case it
is convenient to scale the input signal between –1 and 1 and the target signal y between
–1 and 1 for the zero–centered sigmoid transfer and 0 and 1 for the logistic one. This
choice is made because of the active parts of the corresponding transfer functions. Since
the scaling factor for the target signal y is not of importance for the condition (4–14),
it is chosen to be [0...1].

Then if two subsequent training examples z2i � (x2i, y2i) and z2i�1� (x2i�1, y2i�1) have
equal but opposite values for the products of target and � values (equation (4–16)), they
will cancel to a large extent the impact of each other’s presentation.

�
2iy2i � � �

2i�1y2i�1 (4–16)

If the complete training set consists of such sample tuples, their sum will be equal and
describes the condition in which cancelation will appear.
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�
N�2

i�1

(y2i
�

2i � y2i�1
�

2i�1) � 0 (4–17)

As can be seen from the plot in figure 4–3 of overall �z–values of a zero–centered sig-
moid network, there is a very high probability that the last two multiplicative terms of
equation (4–12) provide an equal probability for the network to give positive or nega-
tive output. When this altering of the sign of network output is present in a short series
of steps, the values are subtracted from each other. Thus only on the third multiplicator
from equation (4–12), the target sample set determines whether training will lead to
degradation.
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Figure 4–3: Adaptation curves for different sigmoids, when training signal is
excluded.

The second sum, determining the network adaptation vectors, expressed by equation
(4–13) follows the changes in the input signal. If the impact from the targets is mutually
canceled, and the input samples are scaled between –1 and 1, it can be expected that
equation (4–13) will give a zero summary result for one training epoch. Then equation
(4–17) can be reduced to:

�
N

i�1

yi�i � 0 (4–18)

This equation for a cancelation check is in general not suitable for prediction of the
learnability  (or reliability) of a signal, because the � values are not known. Our aim is
to derive an approximate criterion, which depends entirely on the extracted training ex-
amples. For a symmetrical signal it is possible to substitute the � i values with xi values,
as discussed in the following subsection.

4.2.2.2 Symmetrical signals and cancelation.
For every y–symmetrical signal the following dependence is valid:

�
0

�1

� y(x)dx � �
1

0

y(x)dx � 0 (4–19)
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If sampled equidistantly and scaled under the assumed conditions, the input values xi

and xi�1 (corresponding to the tuple values yi and yi�1) have opposite signs and equal
magnitude. This implies, that the x–values of the examples are contributing effectively
only with their sign to the adaptation process, if presented sequentially. Then (4–18) can
be represented in the following way:

�
2N

i�1

yi�(xi) � 0 (4–20)

where the function �(x) is as follows: �(x) � 	
�
�

1 if x � 0
0 if x � 0

� 1 if x � 0

By sampling uniformly and at random, the probability that examples with numbers i
and i � 1 have opposite valued x parts is very high. Cancelation will take place, if the
x–coordinates of the drawn samples alter often. As was already shown in a number of
experiments, cancelation can appear after a part of the approximation process has al-
ready been done. At later stages of the learning process, after some details of the signal
or its main tendency are already mapped onto the network, equation (4–20) can be valid
for the unlearned part.
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Figure 4–4: Fast detection of cancelation in sinewaves.
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Equation (4–19) gives an illustrative rule, which allows to determine the danger for
learning reliability in simple signals. For a half sinewave scaled as shown in figure
4–4a, equation (4–21) is valid. If substituted in equation (4–19), the integration will
lead to a zero result and thereby signifies the occurrence of cancelation. A similar rea-
soning can be made for the signal from figure 4–4c, which consists of two positive sine-
waves with additional uniformly distributed random noise.

y1(x) � sin(
1
2 �x�

1
2 �) � sin(

1
2 �(x � 1)) (4–21)

In contrast, the full sinewave in figure 4–4b does not satisfy the continuous cancelation
as can be concluded by equation (4–22). Once substituted in eq. (4–19), the integration
will provide a non–zero result, which signifies the exclusion of cancelation.

y2(x) � � sin(�x � �) � sin(�(x� 1)) (4–22)

The corresponding experiments confirm that the first and the third signal have cancel-
ation nature, which reveals by random sample selection.

The way shown to predict reliability, respectively learnability, of simple signals is con-
venient because it is illustrative. In real–life applications the signal shape is usuallynot
known. The predictions about the possible reliability problems should be made on the
basis of the available (often noisy) examples. In such a case calculating the integral
from equation (4–21) is not possible.

4.2.2.3 Cancelation criterion.
Neural systems learn from examples taken from the training signal by means of some
sampling rule. The extracted samples determine what the network can learn about the
task, represented by this signal. As was elaborated in the previous section the acquisi-
tion of the knowledge, contained in the extracted samples, might be obstracted by a re-
striction on the interaction between network and learning algorithm, which can be re-
vealed by the specific representation of some tasks, i.e. a specific example set. The
definition of a cancelation training set relates the signal, or more specifically the ex-
tracted example set, to its learnability. The definition assumes that the training exam-
ples are presented in a random manner.

Beside the contents of the extracted example set, its ordering (for instance the current
randomization)  can cause variation of the learning performance. Further in this section,
experiments that show how different orderings of the same training set can considerably
change the training duration and repeatability (and even avoid some learning problems)
will be shown. Furthermore, resampling based on signal variability can bring a different
outcome when repeating an experiment. Therefore, instead of checking the learnability
of a signal (which we consider equivalent to checking the extracted example set) it is
more convenient to examine the current ordering of the training examples and to change
it if necessary. Still, checking in advance the cancelation properties of the signal re-
mains a necessary step to determine whether further resampling or example reordering
will be necessary in a particular case.

Both examinations (of the learnability of a signal, and of the current sample sequence)
can be done in the same way if the cancelation criterion is expressed through the training
examples only. Such a representation of the cancelation criterion will determine what
type of example reordering will lead to improved learning. This will be the basis for
creating an adequate sampling strategy.
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The definition of a cancelation training set relates the signal to the potential and the cer-
tainty it can be learned. Therefore the formalization of the cancelation danger only
through the training examples will help controling learnability and learning reliability,
respectively.

Equation (4–20) determines the range of signals, which in terms of random uniform
sampling (which presumes altering of the x–value sign at almost every iteration) has
the potential to cause failure of the training process. The conclusion, which can be
drawn from the previous section and from the corresponding experiments is, that the
existence and subsequent ordering of pairs of training examples, which exactly cancel
each other’s impact, is not a strict condition determining the learning quality. If the sum-
mary effect of a few sequential target value presentations from the negative region with
respect to the x–axis is equal to the summary impact of the target examples from the
positive x–range, then equation (4–18) will reach the zero point. As a result the weight
values continue to oscillate around the state they have reached already or degrade to
zero.

As was shown before (see figure 4–1) reordering of the samples from the same training
set can not only improve the quality considerably, but also speed up the learning process
and ensure a repeatable training duration. In order to be able to test whether the
constructed training set (after a randomization or special manner of sampling or order-
ing of the examples) has the potential to cause learning problems, the cancelation crite-
rion should be constructed in a way, that will encounter the sequential order of the pre-
sented examples. Again the training set is assumed to be scaled within the [–1, 1] range
on its x coordinate and within (0,1) range on its y–coordinate. This scaling helps to de-
fine the cancelation properties of the training set and may be independent of the scaling
of the examples, which will be used for actual training.

The analysis of a symmetrical training set in a shallow valley, made in the previous
chapter, was based on the assumption that two nearly equidistant (measured from the
beginning of the coordinate system) samples are supplied sequentially to the network.
The difference between their y–values (yi � yi�1) is approximately zero. A subtraction
of their corresponding x–values (xi � xi�1) will give the doubled xi–value. On the
small time scale weight vectors have slow dynamics: they are adapted by small amounts
and rarely change their sign. Therefore the change of the value of the network function
is small, and its sign is determined by the sign of the training examples. In the beginning
of the training process the parameter values are small enough to provide noticeable
changes in the current values of g2(t) terms (see eq.(4–13)).

In summary, if two equidistant patterns of a symmetrical signal are supplied to the net-
work in the beginning of the training process in consecutive order, the following set of
equations is valid:

�
�
�
�

�

xi � � xi�1

yi � yi�1

g1
i(t) � � g1

i�1(t)

g2
i(t) � g2

i�1(t)

(4–23)

In the beginning of the training process the values of g2(t) are negligible, because of
the small parameters values. In this case, the initial symmetry breaking can occur only
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due to the influence of the elements of the g1(t) sum. The instant values of g1(t), corre-
sponding to equidistant examples, are canceling each other impact being approximately
equal by value and opposite by sign.
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Figure 4–5: An example for secondary cancelation.

If the training set does not contain equal y–values to corresponding x–values, i.e. when

�
�
�
�

�

xi � � xi�1

yi � yi�1

g1
i(t) � � g1

i�1(t)

g2
i(t) � g2

i�1(t)

(4–24)

is valid, then the calculated g1(t) values are different and the initial symmetry breaking
occurs easily, since the adaptation steps are big enough due to the non–cancelation sub-
sequent g1(t) values. Such a case is shown in figure 4–5c, where the weight vector sym-
metry is easily broken. In tangible terms a broken initial symmetrical phase corresponds
to the learned main tendency of the signal, as shown in figure 4–5b. After the mapping
of the main signal tendency, the combination network–signal shows cancelation prop-
erties. In the not learned part of the signal, y–values correspond to opposite and compar-
atively close values of the x–vector. This contradicting information stops further
adaptation (when training is performed on the zero–centered sigmoid transfer network).
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In both cases it is useful to define a directional coefficient of the changes in the signal
that should be learned. The sequential presentation of two examples which have equal
teacher values and different stimuli vectors will cause contradictory (canceling each
other) adaptation steps. If the growing (decreasing) direction of a signal is taken, which
will correspond to a non–zero direction coefficient value, the consequent adaptation
steps will provide meaningful changes. The so–calculated ratio prevents from contra-
diction when for x–samples that are close in time correspond y–values that are close
in magnitude. In many smooth signals, such a correspondence between x– and y–cou-
ples of values exists and there is in fact no conflict situation. In conclusion it can be
stated, that a small direction coefficient ratio, indicated by a very small value of the
fraction (4–25), is an indication for a cancelation situation.

�yi � yi�1

xi � xi�1
� � 1 (4–25)

This fraction takes into account the ambiguity, which appears when two stimuli, having
the potential to cause similar g2(t) adaptation components, correspond to equal  teacher
values, which provide similar but opposite g1(t) components. A cancelation occurs
rarely in two subsequent training steps, but even in a short training interval the normal-
ized sum of the non–absolute values of all such tuples of examples is:

KRS(z) �
1
M
�

M

i�0

yi � yi�1

xi � xi�1
(4–26)

where M is the number of the performed training iterations. M can span from one to
few presentations of the training set. If for an arbitrary training set the sum of all such
a fractions for the already ordered (or just randomized) training groups of N samples
converges to a value near zero,

lim
M�N

KRS(z) � 0 (4–27)

it can be expected that the so–ordered training set will bring the network to degradation
and the learning process will be unreliable.

Equation (4–26) represents the sum of the direction coefficients for the current sam-
pling of a signal. If condition (4–27) is valid for a training set, this training set can not
be learned by means of random example selection. For example, if we apply the cancel-
ation criterion to the signals from the experiment visualized at figure 3–14, then the
KRS–ratio, calculated for the first signal, converges to zero. The development of the
KRS–ratio corresponding to the second signal predicts that this signal can be learned
if the extracted training examples are randomly ordered. In figure 3–14b the KRS–ratio
of the sinewave, trained on the interval [0, 2�], is shown. It predicts problemless train-
ing, which is confirmed by the corresponding experiments.

Actually the three ratios indicate the network learning performance on the same signal,
exemplified on different ranges. The three example sets are representative: they contain
enough information so that the internal generator of data can be learned by the network.
Correspondingly, it is indifferent which of them will be used for training the network.
The three KRS–ratios converge to different values. It could be expected, that the highest
KRS–ratio ensures faster training, since it predicts that there are less examples, that
have the potential to cancel each other’s impact. Indeed, the performed experiments
have shown, that the complete sinewave is much easier to be learned than the one,
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trained on the interval [0, 0.95�] or the noisy half sinewave. This observation suggests,
that beside the learnability, the KRS–ratio development is related to the training dura-
tion and to the learning reliability, respectively. This dependence will be investigated
in the forthcoming section.

The KRS–plots, shown in figure 4–6, predict learnability of very simple signals. The
training process is entrapped in a stationary state in the very beginning of the training
process. Once escaped from this state, there are no further risks for the learning success.
By more complex signals the learnability, respectively the reliability problem, can ap-
pear in the beginning as well as in later stages of training, when the network has already
learned to map a feature of a signal. Our goal is to investigate both learnability and
learning reliability in realistic learning scenarios. The following investigations will be
made by signals, which have the potential to cause prolonged learning or stand–still si-
tuations in later stages of learning, and not when an initial symmetry breaking still  has
not occurred.
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Figure 4–6: The KRS–ratio evolution of the training sets, extracted by ran-
dom sampling of the function sin(x) on intervals [0,�], [0, 95�] and [0, 2�]

and with added noise.

4.2.3 Reliability of cancelation signals.
The previously defined cancelation criterion aims to predict the learnability of a signal
or of the extracted and (most often randomly) ordered training set. It gives a quantitative



104

estimate whether the created training sequence will cause bad learning. As discussed
in chapter 2, the learnability of a signal is the main condition for estimation of its reli-
ability. The other aspects of the learning reliability are training time and mapping accu-
racy, i.e. the degree to which a signal has been learned.

To estimate the reliability of cancelation signals, the mapping accuracy will be taken
as a fixed value. The evaluation will be made on (a) whether a signal has been learned
to the desired (fixed) degree, and if so, (b) how long the achievement of this goal took
and whether the learning duration and reproducibility of the experiment with duration
of the same range can be guaranteed.

In terms of the introduced cancelation criterion, a degree of cancelation will be defined.
This degree will be computed in percentage of cancelation examples. The connection
between the degree of cancelation and the measured reliability aspects will help to un-
derstand whether and how the existing training set can be learned faster by resampling
or reordering of the training examples. Moreover, whether the example reordering can
guarantee the training time (i.e. the replicability) of an experiment.

As already discussed in chapter 2, the stochastic nature of neural learning does not allow
exact evaluation of reliability of the neural learning process. In an attempt to quantify
the learning success and duration, a statistical investigation over the signals with unre-
plicable convergence will be done. The investigated cancelation signal is shown at fig-
ure 3–14. This signal has been chosen for higher practical convenience of the experi-
mental results than could be provided by a symmetrical signal. This signal overcomes
the initial symmetrical phase and shows cancelation behavior in later stages of learning.
As already explained, cancelation concerns the effect of long–term presentation of
training examples, which have the potential to provoke changes in the network state
with equal but opposite strength. This phenomenon becomes noticeable when the error
surface contains shallow valleys and flat areas, which can entrap the learning algorithm.
The level of cancelation corresponds to the degree of internal symmetry and can be
measured in percentage of examples with cancelation potential.

4.2.3.1 Periodicity.
As elaborated in other studies [10] [21], periodical signals may contain a risk for learn-
ing reliability. We agree, that for such signals cancelation can appear more often than
by others. Since a periodical signal will give a more realistic view on the cancelation
problem than simple symmetrical signals, our investigation will be continued on such
signals. The periodical signal from figure 4–7 is artificially created to allow easy con-
trol over the content of cancelation examples in the extracted training set. To generate
example sets with an a priori known level of cancelation, two different fragrancies of
variation are added. The main tendency of the signal is a fading sinusoid, and the addi-
tive components with higher frequency are providing the required percentage of cancel-
ation examples. A signal with a high level of cancelation will correspond to

f (x, y)� sin(�x)exp(� x)� cos(�y).

For the sake of convenience, uniformly distributed noise is added. The noise level is
less than 10% of the magnitude of the training signal. The relation between x, y and t

is as follows: t� T
X

x� y , where T, X, Y,   are correspondingly the total number of

samples and the maximum number x and y values (T� XY). The corresponding KRS–
plots predict that the first signal will be more difficult to learn. We expect that the can-
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celation additive components will cause bad learning in a single experiment and unreli-
able performance when subsequent trainings are performed. If during training the
difference between the signal and the learned part satisfies the criterion in (4–26), it can
be expected, that further optimization will be impossible. Every periodical training sig-
nal has almost such a potential. We expect that there are similar reasons, which cause
degradation in on–line learning, when the new coming information causes forgetting
of the already learned mappings.
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Figure 4–7: The cancelation signal investigated.

4.2.3.2 Mean and variance of training duration.
The learning time and the success of approximation of this signal has been extensively
experimented with. The percentage of cancelation examples in the extracted training
sets varies from 10% to 100%. For every particular number of cancelation examples
200 different training sets are extracted, ordered and applied.
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Figure 4–8: Network generalization performance.

In figure 4–8a the results of this investigation into the effect of cancelation pattern sets
on network reliability are depicted. The performance of the network on subsequent ex-
periments with differently randomized training sets is plotted against the perceptual
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presence of cancelation in the examples. It can be seen, that once a certain amount of
cancelation patterns is present in a training set, the percentage of successful trials de-
creases quadratically and the experiment becomes non–reproducible. Simultaneously
the training duration increases drastically. This is shown in figure 4–8b. The learning
duration is plotted versus the percentual presence of cancelation examples after all the
non–learned experiments are discarded.
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 5 Algorithms for windowed
sample selection.
In chapter 3, the principal difficulties of the gradient algorithm on error
surface areas have been discussed. Based on the behavior of the example
determined trajectory, the relation between the idiosyncrasies of a signal, as
present in the extracted training sequence, and its learnability has been
established through the cancelation criterion. The provided analysis
suggests sampling strategies, which successfully can remedy such
cancelation problems, as shown further in chapter 4. Here the cancelation
is to be prevented by adapting the criterion created for learnability and
reliability enhancement to concrete signals and signal groups. The feasibility
of the developed method is discussed within the developed theoretical
framework and some comparative results are shown.

The neural method requires that a real–world problem is represented as a set of exam-
ples of its behavior. In the previous chapter it is shown that every signal and correspond-
ing extracted training set have a certain degree of cancelation. The degree of cancel-
ation in an example set is an important factor which determines its learnability and
reliability. The analysis of the relation between reliability and degree of cancelation,
as expressed by the KRS–ratio, suggests several ways for reliability enhancement. All
of them require, that the KRS–ratio within one epoch should be kept high to prevent
the learning development from cancelation.

In this chapter, various possibilities for realization of the so far developed strategy for
reliability enhancement via example reordering will be specified. Their advantages by
training signals with varying complexity and structure will be shown. Furthermore,
there are training situations, which require additional effort for surmounting the states
of indecisiveness and slow progress during learning. Summarizing all the possible can-
celation situations and creating a tangible set of rules, which can ensure learning suc-
cess by any of them gives a practical validation of this work.

The method created for reliability enhancement and the corresponding active training
algorithms, which will be developed in further sections, have their weak points and pose
some learning problems if applied in a wrong way. In later sections the main drawback
of the training algorithms will be discussed as well.

In the following, we will first discuss the cancelation signal groups in more detail. The
investigated signals are divided in groups according to the complexity of the cancel-
ation problem that might appear. The simplest treatment is required by symmetry and
parity problems, defined by [104] as second–order problems. This leads to a further for-
malization of the principal sample selection algorithm. Periodicity of a signal is shown
to be a drawback of the regression method, when the least squares qualification, by far
mostly used in neural learning optimization criterion, is applied. In analogy to the de-
scribed second–order problems, degradation of the network due to cancelation appears
as well when approximating periodical signals. The effect of periodicity is elaborated



120

to find an extended algorithm for sample selection. The ideas which are coming on fore-
ground by treatment of periodical signals reveal the danger of cancelation and the strat-
egies for treatment of a broader group of signals, which we name general cancelation
signals. In such cases cancelation can creep in unnoticeably and result in poor/pro-
longed approximation. Finally we will review some practical cases.

5.1 Cancelation signal groups.
Many of the real–world signals have a cancelation nature. If training data are provided
from a continuous process, every extracted training set will catch a part of the signal
with different cancelation potential. This causes training to have different duration.

The purpose of this study is to show that statistical effects by data presentation can set
in without further ado, but, when becoming apparent, a relevant treatment should be
applied. Therefore, it is important to predict the range of situations where unreliable
learning is expected to take place. Although the created cancelation criterion gives a
good indication when learning problems are expected in a particular case, relevant
quality enhancement methods will be obtained by dividing the cancelation signals in
groups with respect to the complexity of the existing cancelation situation. Some exam-
ples are shown in appendix A.

5.1.1 Second–order problems.

In the well–known book of Minski and Papert on “Perceptrons” [104] the order of a pre-
dicate is defined as the size of the largest conjunction in the minimal sum of products
logical form for that predicate. This implies that when both conjunction and alteration
are predicates of order one, XOR is a predicate of order two. The generalization of XOR
to more than two inputs is parity, which is not of finite order. The group–invariance
theorem [104] generalizes the order of a problem using the arguments of symmetry. The
order of different geometric functions has been defined, and related to the learning
problems. The major conclusion from this important study is that successful learning
is more dependent on the problem to be learned than on the learning mechanism.

From a practical viewpoint, pattern symmetry and parity are often given as examples
of difficult to learn second–order problems. Their basic characteristic is that single pix-
els alone do not carry information about the solution of the problem. Sufficient informa-
tion can be extracted from pixel pairs that are related to mirror symmetries or that are
corresponding pairs in the 2–dimensional parity problem. It is a problem for a least
squares criterion to do the optimization when such ambiguous information is to be
learned. Further on in this section some examples of symmetry and parity problems are
shown.

5.1.1.1 Some elementary observations.
Cancelation effects are introduced in this thesis by the half sinewave. A number of ex-
periments have been performed with different symmetrical signals as well; these exper-
iments confirm nicely our proposition, that every symmetrical signal will get a learning
process into cancelation. Figure 5–1 visualizes two second–order learning tasks and
their corresponding KRS–ratio development during random sampling.
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Figure 5–1: An example of two signals with second–order problems.

Variations of the KRS coefficients development when the signal is sampled at random
within different number of training subintervals are shown with non–solid lines. The
training set was divided into 2, 5 and 11 intervals, respectively.

Since the neural method is never used on such a ’clean’ signals in practice, an interest-
ing question is whether the cancellation will disappear once noise is added to the signal.
This reasoning has to be contrasted to the noise injection learning methods, that imply
adding an input or weight noise during training. They logically improve not only the
generalization  ability of the network, but also the learnability of this signal. We do not
try to prove that the noise in the training data (in our range of reasoning in the target
signal) will improve learnability, which is obviously so, but to show, that although there
is a noise in the signal, it still has high cancelation potential due to the statistical charac-
teristics of the examples (see Appendix B), and therefore a learning failure is possible.
In the next experiment, noise is added to the target signal. We may expect that, if the
added noise is with higher amplitude, or the number of training samples is not big
enough, there is a chance the cancelation properties of the signal are decreased and
hence learnability improved.
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Figure 5–2: Prediction of learning a sinewave with noise.
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In figure 5–2, random noise with normal distribution and amplitude up until 10 percent
of the amplitude of the signal itself is added to the half sinewave. Learning difficulties
are present, if training is performed by arbitrary presentation of the training examples.
Logically, when noise with normal distribution is added to a symmetrical signal, the
chance for cancelation grows with the number of the extracted training patterns, since
the distribution of random samples is becoming more uniform.

Simple second–order problems are characterized by a prolonged initial symmetrical
phase. The KRS graphs for random example selection by all the signals (the solid lines)
predict that differentiation of the internal representations to a specific solution will not
occur for all these signals. By the signal from figure 5–1 a degradation of the network
parameters may occur, even after the initial symmetrical phase is broken. This result
is due to the used optimization method which will be generalized in the forthcoming
section.

5.1.1.2 Influence of sampling.
So far, training has been performed by means of random sampling of signals, which
have explicit symmetry or can be divided into contradicting pairs of examples. In figure
5–3 a cancelation target set is extracted from signals, which by means of random equi-
distant sampling does not show cancelation properties explicitly. In other words,
sampled symmetry sets can be created by choosing not–equally spaced contradictory
patterns. We have created such training sets artificially (Figure 5–3a,b), but a number
of pattern selection methods or practical sampling recommendations, efficient other-
wise, can also end up with creating a cancelation example set (Figure 5–3c).
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Figure 5–3: Functions from which symmetrical training can be extracted.

Handwritten word recognition (HWR) is a typical example of when sampled symmetry
can creep in through the choice of practical sampling strategy. Handwritten Word Rec-
ognition, also called isolated handwritten word recognition, deals with the problem of
machine reading of handwritten words, generally with the assistance of a lexicon of all
valid words. A handwritten word is typically scanned in from a paper document and
made available in the form of a binary or grayscale image to the recognition algorithm
for Off–line HWR. The problem differs from On–line HWR where the writing surface
is frequently an electronic notepad or a tablet, and where temporal information (the tra-
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jectory of the pen as it traces the word) is available to the recognition algorithm, which
attempts to recognize the writing as it is being written.

Figure 5–3c illustrates an often used approach for sampling the text by Handwritten
Word Recognition. The complete word is a training signal. Depending on the style of
the writer all up– and down–going lines might be carrier of important information. This
is the reason why the so–defined signal (the word contour) is divided on a sequence of
strokes: line segments between two sign changes in the writing direction. Each stroke
is characterized by a 5–tuple: the starting point, three equally spaced intermediate sam-
ples and the end point. Ensembles of strokes can be identified as characters, which in
turn can be assembled to words. The normalizing storage of strokes by 5–tuples, that
blurs away the differences in angular writing raises symmetries in the created training
set. For instance, the first character of the word in figure 5–3c will be found from an
upgoing and a downgoing line at different angles, but with a symmetrical representation
on stroke level.

5.1.2 Cancelation and periodicity.

Intuitively, a periodical signal is expected to multiply the difficulties, which appear in
learning a symmetrical and other second–order problem. A study done by Bishop [21]
derives the difficulties of the neural method to approximate periodical signal in analogy
with the conceptually close problem of regression in statistics.

For treatment of some periodical signal, division of the signal into windows and training
with randomly drawn samples within those windows is not sufficient. There are still dif-
ficulties for the network to break the symmetry or to prevent itself from unlearning. The
reason is that the order of the problem is decreased but is still high enough to provoke
ambiguous “lessons” which the teacher signal gives and thus high enough to cause un-
learning.

Of course, if the reasons for bad learning are only and entirely dependent on the order
of the problem, the neural method should not be able to learn any signal, since a polyno-
mial, that changes its direction K–1 times, has a degree of at least K.

Further a simple technique is proposed, which breaks the order of the problem by divid-
ing the input space in a way to prevent from invariance and indecisiveness. Increasing
the abruptness of the input space has been suggested otherwise by saliency analysis
methods. Here the relation between the order of the problem, its cancelation potential
and necessity of increased abruptness is investigated.

5.1.2.1 Least squares optimization for periodic signals.
The learning process of artificial neural networks is very similar to the way many statis-
tical models do estimation. Modeling a continuous function of input variables is compa-
rable to the regression problem, well–known in statistics.

If neural networks are placed in the same framework as statistical models for classifica-
tion and regression, the assumption should be made, that there are N independently cho-
sen pairs of inputs x and targets y, whose distribution is unknown. The set of all such
couples �z� � (x�, y�) : �� 1, 2,���N� is the example set. The goal of network training
is not simply to learn the example data set z but rather to model the underlying data gen-
eration process. In this sense the neural task is to learn to predict the target y if the un-
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known input x is given to the network. The most general description of a process which
generates the data is in terms of the joint probability distributionp(x, y) over input and
target variables. This joint probability distribution can be represented as:

p(x, y) � p(y|x)p(x) (5–1)

where p(x) is the unconditional distribution of the inputs and p(y|x) is the conditional
distribution of the target variable when the input vector x is given. The task already for-
mulated for the neural method to predict the value of y for unseen x is achieved if the
conditional distribution p(y|x) is known. Modeling this distribution is done by optimiz-
ing the probability the network to give an output y when input x is given for the com-
plete input space. There are many ways to optimize this probability [19]. The basic opti-
mization methods are founded on the Maximum Likelihood Principle. If optimization
should be done for the data set D, containing N examples {x�, y�}, which are drawn in-
dependently from the same distribution, the likelihood function can be defined as a mul-
tiplication of these probabilities. The probability for the complete data set D when the
weight vector w is given is represented by:

L(D|w) � �
N

��1

p(y�|x�) (5–2)

where L(D|w) is a likelihood function. The different choices in error function arise from
different assumptions about the form of the conditional distribution p(y|x). The least
squares approach corresponds to finding the maximum likelihood for the special case
in which p(y|x) is modelled by a Gaussian distribution which is spherically symmetric
in y–space and has a x–dependent mean [21]. Translating this representation to an Eu-
clidean space makes least squared optimization inappropriate for periodic targets.

5.1.2.2 Cancelation effects by the periodical signals.
The above mentioned difficulty of the regression method to perform optimization with
least mean squares is conceptually close to the problem which appears with symmetri-
cal signals. After calculating the cancelation coefficient for a periodical signal, it often
indicates that the signal is difficult to be learned. Going back to the experiment, which
visualizes the stages of training process, it can be observed that first the most global
feature of the signal (the main tendency) is learned by the network. If the signal is peri-
odical, the remaining part to learn contains a continuous sinusoid (cosinusoid), and cor-
respondingly is expected to have a high cancelation potential. Secondary cancelation
due to periodicity of the signal will cause convergence problems.

The training sets, shown in figure 5–4, represent such synthetic periodical signals and
their corresponding KRS–ratios. Synthetic signals are expected to have much more
training problems in terms of cancelation, which causes degradation of the effective
network. This is so because there are on average much more equalities designed into
such a signal and thus ambiguities for the training method and consequent unlearning.

This analysis and the experiments with synthetic signals show, that degradation–like
phenomena are eased by the periodicity of the signal, because of the reasons explained
earlier in this section. We claim that cancelation is mainly due to the specific property
of the examples and their ordering, and can be detected by calculating the KRS–ratio.
The investigation over many periodical sets, extracted from the same signal but with
different cancelation content, illustrates that.
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Figure 5–4: Examples of synthetic periodical signals.

A good illustrative example is the synthetic signals example sets from figure 5–4. Both
signals are periodical, but the second one does not have a KRS–ratio development,
which predicts cancelation. Repeating training of the second example set by means of
random sampling shows reliable learning behavior. More details about learnability and
learning reliability of training sets extracted from the same signal but having different
percentages of cancelation examples has been presented in section 4.2.3 (Figure 4–8).
When a cancelation is present in the training set, the signal periodicity increases the
training difficulties and requires additional treatment when training.
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Figure 5–5: Examples of periodical signals, recorded on a power–generator.

A good example is the symmetrical signal from figure 5–1. Simple techniques, such as
moving the window from which training samples are drawn, do not help avoiding the
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cancelation effect. A simple division of the target sequence on intervals is also not a
reliable method for training a cancelation signal. Making the signal input space more
harsh by dividing it on parts, synchronized with the period of the signal ensures fast
learning with low variance when training differently randomized training sets.

The signals shown in figure 5–5 are recorded during the emergence working mode of
a power generator. The first one (Figure 5–5a) contains a large percentage of cancel-
ation examples and its approximation usually fails when a random equidistant sampling
is done on it and the training is performed with a network with zero–centered sigmoids.
In contrast, the signal in figure 5–5b does not have a cancelation nature despite of its
periodicity. Anyway, increasing its reliability in terms of speeding up the convergence
process can be done by the training algorithm, proposed further on.

In contrast with simple second–order problems, cancelation can appear for more com-
plex tasks in the beginning of training or may cause a network degradation in later sta-
ges. After differentiation of the hidden nodes has began and the corresponding fan–out
connection has grown, the secondary cancelation prunes them and brings the network
to some suboptimal solution. This secondary cancelation stems from the features of the
learning development.

As discussed in section 3.4 and illustrated in figure 3–19, a learning process has several
stages: the main tendency or another major feature of a signal is learned first; second
level of detail is grasped by the network next; finally the smallest details of a signal are
mapped. This implies, that after a certain level of mapping has been reached, further
adaptation can be stopped because the system–task has come to a level of indecisive-
ness, because the task (signal) features, which has to be grasped next have a high degree
of cancelation.

Approximation  quality

Figure 5–6:The approximation quality of a signal by which secondary cancelation
appears.

An illustration of such a case is shown in figure 5–6. Even after exhaustive training, the
quality of approximation does not improve a lot, because the next learning stage implies
mapping with a high cancelation. The weight vector picture is similar to that in
Fig.3–15b. A conclusion, which we have arrived at, is that the periodicity itself is not
causing reliability problems, if there is not high level of cancelation in the examples.
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5.2 Improved learnability.

As frequently implied in this thesis, learning problems that have network degradation
as a final effect may emanate from a range of numerical and methodological problems
during training. The central theme in this thesis is the cancelation phenomenon: the ex-
amples as newly presented to the network cancel the contribution to the learning pro-
cess, made by previously presented examples. The neural training process can suffer
even more, when the signal is periodic. In such cases there are additional similarities,
introduced by the inability of the applied distance measure to represent a 1–to–1 corre-
spondence for this group of signals in the Euclidian space. In general, additional prob-
lems, that increase the impact of cancelation are (a) the order of the training problem,
which can be reduced by division of the input stream, and (b) numerical problems that
cause insufficient differentiability of the input examples. In common practice, when
there is no other information about the features of a signal S(x, y) to be approximated,
the training of the neural network is performed by presenting the x–coordinate to the
network together with the function value, i.e. the y–coordinate. Since the signal has to
be scaled in the transfer function range (usually [0, 1] or [–1, 1], the difference between
two subsequent x–coordinates from the initial example order becomes very small, when
the number of training patterns grows. In general this should not be a big problem. When
the complexity of a signal grows, and especially when there are cancelation structures
in it (like the signals in figure 5–4 and 5–5), there are a x–values which differ very little
within the interval with a cancelation y–part. The differentiation between the training
patterns within this range is hampered and the network learns only the dominating ten-
dency, i.e. takes the average value in this range.

The division of the training signal on intervals with respect to the target signal can ease
this learning problem in some cases, but it will not help, when the selection intervals
for training include cancelation structures, since the corresponding input values (within
this interval) differ very little. Presentation of the training examples in intervals forces
such a hardly distinguishable x–values to be presented subsequently and in this way to
increase the symmetry of the training system. The straight line output is expected to be
seen as a response of the network in this range, analogous to the analysis of the simple
symmetrical  function (Section 3.3.3).

In this section the peculiarities of example ordering by second–order problems and the
necessary extensions for periodical and general cancelation signals will be elaborated
on. To alleviate the reliability problems by those groups of signals, some improvements
of the learning method will be shown in the following. The handling of such problems
will be scrutinized here in two parts. First, we will develop the basic algorithm for learn-
ing improvement. Subsequently, this algorithm is extended to handle secondary cancel-
ation and periodic issues also.

5.2.1 Improved learnability for second–order problems.

An empirical investigation into learnability and learning reliability in general has been
performed in the previous chapter. Multiple experiments, performed with different
training sets, extracted according to the same sample selection scheme from a signal
are summarized.
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As suggested from empirical and theoretical analyses in the previous chapter, simple
second–order approximation problems can be solved by destroying the contradictions
in the training examples that cause unlearning of recently learned information. Approx-
imation of simple symmetrical signals can be resolved in several ways. They are all
aimed at decreasing the cancelation effect by increasing the discriminatory ability of
the network, initially designed in a symmetrical way.

Assuring discrimination by destroying the contradictions, that emanate from learning
second–order problems on highly parallel and symmetrically built architectures, is an
easy task for a particular realization. As discussed in section 4.3.2, for learning a sym-
metrical signal it is sufficient to move the window from which the training examples
are drawn. In this way the number of cancelation examples can be decreased. An alter-
native way for decreasing the cancelation potential of the training set is by simply “cut-
ting of” a piece of a signal: the trained network is able to generalize for the non–trained
part.

These intuitive methods have little practical significance. Basically, the shape of real–
life signals is not always known. Furthermore, the power of neural learning is that the
conclusions can be made on basis of examples from known areas of the problem. Thus
approximation of mathematically formulated signals does not require an example–
driven method such as neural learning.

The practical significance of our reliability improvement methods is not only restricted
in the need for explicit knowledge about the nature of the signal, but also in the com-
plexity growth of a signal. For instance the signal in figure 5–4 will not be better learned
from a moved sampling window, due to the implied periodicity.

The benefit of the suggested solution for learning symmetrical signals is the practicality
of increasing the KRS–ratio and breaking the indecisiveness of the neural system, re-
spectively. This experience will be used to solve cancelation problems that appear in
complex signals. A better treatment strategy for more complex higher–order problems
or for signals in which cancelation becomes apparent in later stages of training is a sys-
tematic use of various sample reordering strategies.

Training with reordering methods, as formalized in section 4.3, shows considerable dif-
ferences in the KRS–ratio development, as illustrated in figure 5–1b and figure 5–2 with
non–solid lines. The plots correspond to arbitrarily chosen window sizes: 2, 5, or 11.
They are giving good results for these particular signals. In general, the learning algo-
rithm should involve calculation of KRS development characteristics and change the
window size and/or the kind of reordering if necessary.

Since the training algorithm determines how to choose the training examples, it is an
active selection algorithm, according to the definition, given in 4.1. This active training
method will be named windowed active training, because the suggested resampling
techniques for improved learnability are based on dividing the training set on intervals
or on groups of examples, within which there is a low probability that cancelation exam-
ple pairs to be picked up in a small time–scale.

5.2.1.1 An algorithm for active training.
The active training algorithm, which enables us to solve cancelation problems, is based
on the stated KRS criterion. The developed resampling strategies help to increase the
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KRS–ratio. The active training algorithm provides practical rules for finding out when
resampling is necessary and what kind of (re–) sampling strategy should be applied.

The usefulness of our cancelation criterion has several aspects. Firstly, it gives an indi-
cation about the learnability of a signal in general and the training examples as created
and ordered for the current epoch. Secondly, if the signal is learnable in general, the
criterion can predict whether it or the current training set have a high degree of cancel-
ation and correspondingly prolong the learning time.

These aspects of the cancelation criterion become apparent during the interaction be-
tween training set from one side and a randomized optimization method operating on
highly symmetrical structures from the other side (Figure 3–20). The practical realiza-
tion of this interaction should be incorporated in the learning algorithm. This can be
achieved as follows:

� Check whether the training signal contains a high percentage of cancelation
examples.

� If learning reliability or learnability in general is endangered, a resample
strategy should be applied.

� As suggested in 4.3.1, a practical way to increase the KRS–ratio is by divid-
ing of the training set on intervals and further picking randomly the training
intervals and/or the elements in them. The number of selection intervals can
be determined by starting with one, comprising the complete training set,
and incrementing the number of intervals (i.e. dividing the training set). Af-
ter every incremental step it should be checked whether the reordered train-
ing sets will have cancelation problems as well.

� When the cancelation check finds a division of the training set that predicts
good training results, the network can start learning with the current number
of intervals.

The evaluation of a particular sample stream can be achieved easily at any moment dur-
ing training. Learning problems in terms of premature stopping of the adaptation pro-
cess will appear only if the learning trajectory passes peculiar areas on the error surface.
This is very likely to occur in the beginning of the learning process. However, at any
further stage the adaptation may be stopped or enormously delayed as well. A good indi-
cation for existence of a cancelation situation – cancelation training set and difficult
error surface area – is a training period with constant error (if the small fluctuations of
the error function are neglected) as illustrated in figure 3–14e.

In terms of the active training algorithm construction, the last consideration implies a
regular check for plateaus of the error function – if the training error does not change
significantly for a long period, a new division of the training set on intervals should take
place. If the latest reordering causes a decrease of the KRS–ratio, a decremental step
of the number of training intervals should be made. In summary, the suggested active
training algorithm differs from any passive training algorithm with the following ac-
tions:

� Before training starts: Check for high cancelation content (low KRS–ratio)
in the extracted training set. If there is a risk for learning reliability, divide
the training set on intervals, until KRS plot predict reliable learning.



130

� If during training the error value does not change for a long time, a new divi-
sion of the training set with a corresponding KRS check should take place.

Taking a top–down scheme of division of the training set on intervals is in accordance
with the KRS model (Section 3.4.2): In the beginning of the training process there is
a high symmetry in the solution space, since the learning process is free to choose its
traveling direction in accordance with the training problem encoded in the examples.
In this training stage a large group of selected examples may direct the learning itinerary
in the same global direction for a longer period without forcing the network to reach
a local suboptimal state. Selecting large groups of non–contradictory examples will
rather break the initial high symmetry. In later stages of the training process, decreased
window sizes will increase the chance of obtaining satisfactory minimal states by
avoiding jump–overs of local, possibly satisfactory minima.

5.2.1.2 Algorithm 1.

From the signal to be learned S(z), where i th  sample from the signal is characterized
by the value y of a signal at a moment  x: zi � (xi, yi). The complete example set z can

be represented as follows: z� �(xi, yi)�
N

i�1
 is extracted by representative (for instance

equidistant) sampling. In case of approximation or classification tasks, the examples
in the training set z are randomly permuted, and they form a data stream
R1� Perm1(z). To predict the potential for a reliable training of a signal a cancelation
criterion requires a large enough number of training examples. In order to avoid the un-
certainty of the predicted cancelation content, due to the random ordering of the exam-
ples, the predicted cancelation is made on basis of more than one randomization of the
training examples. The number of permutations depends on the size of the extracted
training set. Every different permutation of the example set  z forms a different data
sequence R1� Perm1(z) , R2� Perm2(z) ,..., Rs� Perms(z) . They can be gathered
in a longer sequence as:

R � R1 H R2 H ,..., H Rs (5–3)

The value of s is empirically determined and depends on the length of the training set.
Basically, if the KRS–ratio calculated for one ordering of the training set is high enough,
that training sequence is good for the current training epoch. More than one ordering
of the example set can be made before training to start in order to insure, that the training
problem is not due to the current (pseudo)–randomization. The pre–training cancel-
ation check calculates the KRS coefficients with the training sequence, containing the
elements from the s randomizations as given in equation (5–3):

KRS(z) �
1

sN� 1
	
sN�1

j�1

yj�1 � yj

xj�1 � xj (5–4)

The potential danger of unreliable learning is present if this ratio goes close to zero:

lim
|z|��

KRS(z) � 0 (5–5)

If condition (5–5) is satisfied, the training set z is divided into p subintervals. The new
example sequence is made in accordance with the chosen reordering scheme. The
KRS–ratio is now calculated with s new training sequences, ordered according to the
subinterval scheme. If the example stream created in this way converges to a value dif-
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ferent from zero, the training can start with this ordering of the training examples.
Otherwise, the size of the training interval should be decreased until the cancelation cri-
terion predicts reliable learning.
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This algorithm gives the sequence of actions which should be taken to construct a train-
able sequence. It is constructed in the way it should be applied before training starts.
If during training the plateau of the training error is encountered, this algorithm has to

be applied again. The initial data set z� �(xi, yi)�
N

i�1
, this time will be one with the cur-

rent division on training windows.

5.2.2 Coping with periodicity and general cancelation.

This thesis has elaborated on the assumption that the success of neural learning and par-
ticularly of MLP networks depends more on what has to be learned than on the learning
method itself. Many successful applications are based on the selection of best features
for training. Feature extraction is a major data preparation step for classification tasks.
In general, more specifically in approximation and prediction, the information about
the neural task is encoded in the target values, since the input example stream most often
encodes temporal information or the position of the sample in the signal.

The here developed algorithms try to give a global strategy for example stream reorder-
ing that can ensure reliable training. Our practical rules for training are valid for both
cases: ad–hoc learning and construction of specific features. In Algorithm1, the
changes of the example stream with respect to the target signal are embedded. As dis-
cussed earlier in this section and in 4.3.2, this can be insufficient for more complex sig-
nals. Changes in the input can provide for additional improvement of the learnability.
As already discussed in Section 4.3.2, signal changes in the input stream have to be di-
rected to increase its differentiability in case of cancelation. This is the reason why in
Algorithm 2, which has to solve more complex cancelation cases, it is endeavored to
increase the input stream differentiability.
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In Section 4.3.2 it is shown how the weight adaptation depends on the input values and
on the difference between subsequent inputs. On basis of this dependence, various prac-
tical ways to do that can be derived. They are related to the characteristics of the training
task. Further on, several ways for input stream construction will be shown.

As discussed earlier, both periodical and general cancelation signals give rise to an
additional difficulty when training without a priori knowledge about the input–output
space. The constraints, introduced (1) by existing cancelation structures within relative-
ly smaller ranges of the overall signal space together with (2) the decreased discrimin-
ability because of the similarities in the input values, increase the symmetry in the learn-
ing system and create extra conditions for bad reliability performance. The suggested
windowing method alone does not always alleviate the cancelation problem in this case.
On the contrary, it can make it stronger since it forces the values from the same training
interval to be supplied in a sequential order and thus decreases the differentiability pro-
vided by the input space. For instance, in periodical signals there are additional similari-
ties, introduced by the inability of the applied distance measure to represent 1–to–1 cor-
respondence for this group of signals in the Euclidian space. The enhancement
suggested in section 4.3.2 of the discriminability of the input stream has a particular
realization for periodical signals – besides ensuring that two subsequent input vectors
have a different impact on the network state, they should provide for a non–ambiguous
input/output correspondence. In a similar way, additional training problems within gen-
eral cancelation signals can be prevented.

For every particular task, there is more information available when a certain event (cer-
tain example of the task behavior) has happened. For instance, for periodical signals,
one may prior identify repeating phases as: the season, month, or week in stock market
prediction tasks, the frequency a machinery rotates with, the standardized frequency
of power generation. For ECG signals the kind of the pulses of the heart beat by a
healthy person, the duration of the different phases etc. is known. To alleviate the net-
work mapping process such additional information can be used instead of or together
with time, order or any other “standard” available knowledge, encoded in the input
stream.

A priori information can be supplied to the network as an additional input stream. For
instance, approximating a power signal (cf. further in this section), can have couples
of values for the time and phase information as an input vector and the signal, measured
at the output of the diagnosed device, as an output.

Such a case is illustrated in figure 5–17a. Here, the division of the input space on inter-
vals stems for cancelation. As a result of long training, the network succeeds in learning
the R pulse of the signal, where the differentiability of the input–output space is higher,
but fails for the other signal components. We now present an algorithm, which summa-
rizes in a working consequence the considerations discussed so far.

5.2.2.1 Algorithm 2.
Algorithm2 combines all the considerations for training signals with high cancelation
potential and arbitrary complexity made so far. The signal to be trained with this algo-
rithm can contain any periodical or cancelation structure in it. The changes with respect
to the “normal” training procedure (as described in Section 1.2.1) are made before and
during the training phase. Before training starts, there are two basic steps: (a) the order
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of the training examples should be determined in accordance with the training signal,
and (b) the kind and division of input information is to be made.

Algorithm1 gives the basic rules for finding out when and what kind of example reorder-
ing should take place. It can be applied directly to simple cancelation problems. In such
cases it is usually enough to find the number of division intervals, by which cancelation
will be less and to train with this fixed number of intervals. When the complexity of a
signal increases, the corresponding error relief is becoming more complex as well, and
the optimization process may require further tuning. As indication when new example
reordering will be necessary, the encountered plateaus of the error function are used.
If the optimization process does not progress for a long period, the current manner of
example sequencing is not efficient anymore. A new change of the number of division
intervals can improve the performance on the current error landscape area. For instance,
if currently a deeper valley or a flatter plateau should be passed, the learning trajectory
should be guided to make a longer shift in the same direction. Respectively, the exam-
ples which will ensure that the time series (4–9) have less oscillations, have to be cho-
sen. If the smaller size of windowing intervals gives a better KRS–ratio, a step back-
wards to a more optimal number of intervals should be made. Mapped to the training
algorithm, this implies that during the learning phase a check whether there is a plateau
of the thinning error should be made.

Algorithm2 has to deal with complex cancelation signals. It gives the additional steps,
which have to be made in order to discover and make explicit hidden cancelation in the
training sequences. It refers to Algorithm1 as a example reordering step. When such a
reordering should be made is controlled in a slightly changed way: the cancelation po-
tential has to be calculated with respect to all training inputs. If one of them has a bad
KRS–ratio, the information it provides will not have a positive effect on the training
process: it will not contribute to the knowledge acquisition process and will have a sym-
metrising effect on the influenced network part. Furthermore, if the different inputs
have KRS–ratios which differ very much, the ones with a higher ratio will dominate the
training process development.

The reorderings of the training set made during training are supposed to break hidden
symmetries in the data streams. It is possible, that there is one symmetry breaking pro-
cess, and afterwards the training goes smoothly to the solution with the required op-
timality. More than one abrupt change in the error curve, respectively in the weight val-
ues, are also possible.

In later stages of learning there could not be a direct indication about the present cancel-
ation by the KRS outcome, since it gives an indication about the current ordering of the
entire training set. The difference between the entire training set and the already
mapped part of a signal can provide for unreliable learning. This can happen if there
is hidden cancelation in the substructures of a signal. Further development of the KRS
method could be able to give an indication of the risks of secondary cancelation. For
now, a plateau of the error function is searched during the training process. Note that
there is not a search for the plateau of the error surface, but for a plateau of the error
function, which may indicate that the training process is in any kind of stationary area
(valley, local minima plateau, etc.).

The separate steps of the windowed sampling method with divided inputs are described
in the following algorithm:
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The suggested Algorithm2 implies three steps which make it different from the passive
learning methods: (a) choice of a proper example reordering scheme and sampling in-
terval size, (b) adaptation of the number of selection intervals during the learning phase,
and (c) proper division of the input space. The possible drawbacks when applying this
algorithm will be discussed and illustrated with the outcome of relevant experiments.
Two real–world problems that show the benefits of the algorithm will be discussed in
more detail further on. Then the outcome of a series of experiments will be summarized
in a table, to show the improved results in terms of average training duration and vari-
ance for signals trained with and without the help of Algorithm2.

5.2.2.2 Experiments with interval size.
The suggested algorithms give good results for the majority of signals we have experi-
mented with. Some of the results obtained are shown in table 5–1, which give a compar-
ison with the results, obtained with the same signals but trained with the “standard”
backpropagation algorithm. To show the advantages of the developed sample reorder-
ing methods a few experiments will be discussed in more detail here. Moreover, there
are certain risks that applying the sample selection algorithm can bring worse results
if used wrongly. In the following the most common cases of faults by using the sample
selection algorithm will be described.

First the weight vector development, when changing the number of training intervals
incrementally, will be shown for the training signals of figure 3–14a and figure 4–7. Fig-
ure 5–7a,b visualizes the corresponding weight changes. The number of network pa-
rameters is the same in both cases, but the weight vector development differs structural-
ly due to the different complexity of the training tasks. For the sake of clarity of the
results, the recordings are made at every 100 training iterations, until the error level of
0.02 has been reached.
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Figure 5–7: The development of  weight vectors when incrementally changing the
number of training intervals for the signals from a) Figure 3–14a b) Figure 4–7.

Training of both signals starts with random selection of the training examples. After
about 3 epoches, all the weight values are becoming negligible for both signals. The
training error remains constant for a few epoches, which is detected by the training algo-
rithm as a plateau of the error function. This indicates that the sample order should be
changed. The division of the original training set on subsets is made according to the
RSRI sample ordering scheme. The weight values are brought back from (almost full)
degradation to normal for training magnitudes. The higher complexity of the second
signal requires longer training. During this extension period, the error plateau has to be
broken one more time through a new division on subintervals. For the illustrated case
this is made at about 10 epoches (about 250 hundreds of iterations in the plot).
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Figure 5–8: Approximation quality after the corresponding change in the in-
terval size.

An interesting question is what has already been learned at the moment, when the train-
ing set is newly ordered. For the first training set (Figure 4–7) the network output is a
straight line before the reordering of the examples takes place. The result of learning
the signal from figure 4–7, corresponding to the weight vector development in figure
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5–7b, is given at figure 5–8 before the first and the second reorderings of the example
set and shortly after that (i.e. 4, 10 and 14 epoches, corresponding to 100, 250 and 350
hundred iterations in the plots). Before the initial symmetrical state is broken, the net-
work response is a straight line. At the following training period, between 180 and 300
hundreds of iterations at the weight vector plot (Figure 5–7b), the network has learned
the periodical changes in the signal. The third period of development of the weight vec-
tors corresponds to the dash–dotted plot of the signal. In this stage the network maps
the precise position of repeating signal elements.

The KRS–ratio and the development of the KRS–plot predicts when the training signal
will have cancelation problems. The current status of using this indicator for learnabil-
ity of a particular signal is as follows: If the KRS coefficient is low, a reordering of the
training set should be done.

For many signals the level of this coefficient does not rise very much after various ex-
ample reorderings, but is high enough to indicate learning without cancelation. Thus,
there is a different KRS–value for every signal above which learning success and reli-
ability can be guaranteed. There is still some empiricism in defining this value a priori.
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Figure 5–9: An example of impropriate example reordering during learning.

This drawback of the KRS–criterion leaves room for sometimes making a wrong selec-
tion of subinterval size (and number respectively). This can lead to secondary training
problems. To show the impact on learning progress, a wrong selection of training inter-
vals will be forced, by intentionally choosing a wrong subdivision of the example set.
Changing the selection subinterval ranges with a constant increment makes such a
learning situation possible.

In figure 5–9a the weight changes are visualized when the number of subintervals after
the resampling is equal to the signal period. Within one period, the training sequence
has cancelation properties. The neurons and the corresponding weights which have not
been degraded before the wrongly chosen interval division comes into use, now show
a tendence to unlearn. The division has been made after 5 epoches (150 hundreds itera-
tions in the plot). After the algorithm has detected a new plateau in the training error,
a new division of the training set at 10 epoches (300 hundreds iterations) brings finally
a successful approximation.
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Figure 5–10: Three most typical error functions by training the signal from
figure 4–7.

Figure 5–10 illustrates the three most probable learning trajectories when training the
signal from figure 4–7 with division of the training set in subintervals. The trajectories
represent the three most typical developments of the training process when applying
Algorithm 2. They show the training error in dependence of the current number of inter-
vals (on the x–axis) and the training epoches on the y–axis. The initial division on train-
ing subintervals is made in accordance with the calculated KRS–ratio. Further division
on subintervals is initiated when very negligible changes of the error values for a long
period of training are detected.

The conclusion from these experiments is, that the biggest descent of the error level
happens in the very beginning of the training process. The third graphic shows, that after
the first large change the learning curve decreases almost linearly when further divi-
sions on subintervals are made. In this case, it is not clear whether continuously increas-
ing the number of intervals contributes for faster training. Since the neural experiments
remain irreplicable, this can hardly be checked. A better approach to show that is
through making explicit the relation between the KRS–ratio: the error plateaus and the
necessity to change the training intervals.
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5.2.2.3 Constructing input streams.
The drawback when selecting a reordering scheme in accordance with the target space
have been discussed in general in the previous section. Here special attention will be
paid to the construction of example streams. There are a few intuitive principles for do-
ing that: (a) the input stream should not provide information that contradicts the target
stream, and (b) there should not be a contradiction between the different input streams,
and (c) the input streams should not introduce additional ambiguities. The possible
drawbacks of the input space division method can be related to either their interdepen-
dence with the subdivision of the target space, or the domination/contradiction of input
streams.

As described in the previous section, foreseeing local cancelation and decreased differ-
entiability helps to avoid additional training difficulties, as caused by periodic and gen-
eral cancelation signals. The corresponding changes in the example streams aim to in-
crease the discriminability of the input space in a way that will not harm the training
process. In case of periodic signals, a logical way to do that is by including the periodici-
ty of the signal, which is most often known [9] as an extra input information to the net-
work. Such a reorganization of the input space is expected to improve learning because
of the following reasons. Firstly, the division of the input signal on two different streams
increases the differentiability and the abruptness of the input/output space and thereby
contributes to an early escape from an initial symmetrical phase. As frequently dis-
cussed earlier, the initial symmetrical phase, though encountered in every learning
problem, is especially ostensible and long when cancelation or low discriminability
takes place. Secondly, using a staircase additional input, synchronized with the period-
icity of the signal, has always a positive effect on training process itself, because input-
ting a feature of the signal eases the mapping process a lot.
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Figure 5–11: Training a periodic signal plus supporting differentiator.

These two reasons for increasing the abruptness of the input/output space by dividing
the input signal on two streams have general applicability for speeding up learning and
ensuring reliable convergence for an arbitrary training signal. Since the two different
inputs have their own contribution to the creation of the activation pattern (the internal
representation of the problem space) in the network, they will contribute to the symme-
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try breaking process separately. Correspondingly two separate KRS–ratios have to be
calculated.

Such type of input space division has been done for experiments with various support
signals. In figure 5–11, the KRS–ratio development is shown for the periodic signal
shown in figure 5–4, supported by a simple x–coordinate input. The plot which is closest
to zero represents the resulting KRS coefficient development for an input stream, taking
the scaled x–coordinate values. Obviously, such an input is less favorable. A support
signal with a staircase appearance (solid line in figure 5–11) does not have a very posi-
tive effect on training either, as can be concluded from its KRS–coefficient graphic (the
second closest to the x–coordinate plot). The largest impact on the training develop-
ment has the saw–tooth signal, represented on figure 5–11 with a dash–dotted line and
leading to the most obiquitous KRS coefficient development. Further improvements of
the structure of the input streams will be shown in later sections.

It should be noted that the contribution of the third signal alone is insufficient for train-
ing because it creates similarities in the input stream, i.e. different target examples have
the same corresponding inputs. Such a construction of the example streams will create
as many ambiguities in the neural system as the cancelation in the target stream of ex-
amples does. An example of such an input stream is the one shown in figure 5–11a. To
avoid the contradictions that this stream of examples will introduce to the learning sys-
tem, an additional input that distinguishes this equivalence is needed. Either the x–coor-
dinate of a signal, which differentiates the two targets in time, or an input stream, which
adds a level (bias) to every saw tooth can be used as such input information. The stair-
case input stream, as shown in figure 5–11a, is the simplest variant of such an input.

The specific contribution of input stream division on cancelation prevention is that cal-
culating the KRS–ratio for the input that carries the main signal will predict a very high
cancelation potential if the target signal has been windowed to include cancelation
structures. We are aware that overcoming the cancelation is a much easier task. A prop-
er division of the training signal soon provides satisfactory results, while a bad ratio be-
tween the target subinterval and the input space division can increase the training time
substantially and lessen the approximation quality due to the decreased active capacity
of the network.

We can easily construct a signal with an improper KRS–ratio by selecting the number
of target intervals equal to a period of the signal (and correspondingly synchronized
with the changes in the input stream). As an example, see the variations of the weight
vector values in figure 5–7b and figure 5–9a. These two pictures show the changes in
the weight vector when the wrong interval selection is made either in the beginning of
(Figure 5–7b) or during (Figure 5–9a) the training process for the signal in figure 4–7.

For the two experiments the number of selection intervals have been varied incremen-
tally on constant time intervals with a predefined step. The first experiment starts with
1 interval (i.e. the complete training set). Since the training set has very low KRS–ratio
at about 3 epoches for both signals, all the weight values quickly become negligible.
The original training set is then divided on subintervals and the training is continued
by supplying the training examples according to RSRI resampling scheme. The weight
values are brought back from (almost full) degradation to a normal for the training mag-
nitudes.
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For the second experiment the training is started with the interval size which corre-
sponds to a high KRS–ratio. The initial symmetrical phase is broken in the very early
stage and the differentiation of the weights grows. Later on, the number of intervals of
the target signal is made equal to number of division intervals of the input space. Since
in the separate parts there is a very high cancelation, most of the hidden weight values
go to zero and the effective size of the network decreases. During this stage of the train-
ing process the network output can map only the already learned global tendency of the
signal, as shown at figure 5–9b with the dashed line. During the simulations it has been
observed that the approximation quality has been slightly degraded in comparison with
the results seen after the initial symmetry breaking. After 15 training epochs (corre-
sponding to 30000 iterations in the plot), the number of intervals was increased again,
and the training process has developed until it reaches a satisfactory solution.

A simple way to decrease the interdependence between the input and output streams
even more is to select arbitrarily the onset point for every new window from the target
signal.

In summary it can be said that in windowing as well as in distributing the information
between multiple inputs, the training process risks converging in a very suboptimal
solution. A clear indication of a suboptimal solution is weight vector degradation. The
risks, when the target set is windowed, are in zeroing the weights because of a wrongly
chosen number of training intervals, which increases the cancelation within the inter-
val. Most of the values of the corresponding weight vector during training with a wrong-
ly chosen training interval degrade to zero or a certain fixed value (often the output bias
value). This corresponds to unlearning of already learned information. Changing again
the number of resampling intervals brings the training process to its normal functioning.
Correspondingly, there should be protection within the resampling algorithm to prevent
a wrong choice of training intervals.

Up until now, the periodicity of the signal has been used to increase the KRS–ratio of
the input/output space. Any other division of the input space has a similar effect. But
since the supplied input has a very high impact on the learning success, using informa-
tion that contradicts the nature of the training problem can be harmful for the training
process, since it can increase the non–linearity of the problem. Furthermore, studying
such a voluntary division of the input space does not make a lot of sense, since in prac-
tice one will rather use the available knowledge for the problem in order to construct
an input stream (input feature).

5.3 Two real–life problems.
The suggested algorithm for windowed sample selection was developed on the basis
of statistical investigation over the artificially created signals. To show its potentials for
solving practical problems, experiments with a real life signals, which include high can-
celation, are presented. As discussed before, signals with periodicity, as well as signals
whose established manner of sampling provides with highly symmetrical training sets,
imply a risk for the reliable learning performance.

The importance of this contribution is illustrated by the observation that training prob-
lems can often appear although the task complexity is easy to handle by the chosen neu-
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ral structure. Reliability is hereby taken as the ability to learn in a stable, reproducible
way. For applications in an industrial setting, such a reliability should ensure real–time,
hazard–free behavior. A typical example can be found in the diagnosis of power genera-
tors, as discussed next.

5.3.1 Diagnosis of turbo–generator.

The fault–diagnosis of power generators has a long and rich history. As a compound of
electrical  and mechanical parts resists a sufficiently detailed analytical representation
that aids in the subsequent localization and repair the diagnosis is usually performed
by very experienced persons. However, these persons tend to become a rare item on the
personnel market and the quest for an intelligently system is on.

Destabilization of a turbo–generator by shaft torsion can be estimated during its opera-
tional lifetime by vibroacoustic measurements [72]. Spectral analysis shows that every
mechanical  change in a generator system causes changes in its vibroacoustic frequency
spectrum. Peak values in this spectrum can be associated with specific changes in turbo-
generator operation. Hence the development of a certain malfunction can be monitored
and therefore the moment when it will become fatal can be predicted in a very early
phase. However, as only a limited number of faults can be comfortably learnt, the cre-
ation of new cases must be constantly nurtured.

The practical significance of a classical vibration–based fault monitor and report AI–
system is limited as:

� the amount of on–line information is too large for comfortable handling,

� the count of all probable failures is too high for simultaneous monitoring, and

� only known faults can be classified.

The first of these arguments stresses the need for on–line data processing. The recorded
example signals of simulated or real faults have to be learned by the network. The sig-
nal, shown in figure 5–12a, is recorded during the emergence working mode of a power
generator. In order to discover in one training sessionwhether this signal has the cancel-
ation potential it is first tested by the cancelation criterion. A high degree of cancelation
has been discovered, as shown in figure 5–5b. If the training set created by equidistant
sampling of this signal is supplied to the network at random, it leads to a poor approxi-
mation. A division of the input space on two streams similar to these from figure 5–11
and proportional to the periodicity of the signal provides for a result as shown in figure
5–12c, if the training set is presented at random. The approximation quality does not
improve with the time, as illustrated by the weight vector development. The weights
have taken two parallel trajectories and are oscillating in small areas, as shown in figure
5–12d. A breaking of this symmetrical phase does not occur when the training set is pre-
sented in arbitrary order. The periodicity of the signal is  learnedbecause of the domina-
tion of the input information, synchronized with the periodicity of the signal. In this
case the network output is governed by only 3 hidden neurons, which can successfully
approximate the periodicity of the signal.

Although the suggested KRS–ratio indicates when a reliable learning can be expected,
it does not provide tangible rules to construct the example streams. For a division of the
example stream in accordance with the target signal, the Algorithm1 uses developed in
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the previous chapter sample selection strategies. We have shown that a proper selection
of input data streams can increase the learning speed and the reliability enormously.
Furthermore, some input streams improve the learning performance better than others.
The KRS criterion can verify that the corresponding combination target/input causes
no reliability problems. Choices for input streams remain a designers’ task, and their
decisions are influenced by the accumulated expertise and the availability of relevant
information about the specific problem.
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Figure 5–12: c) weight changes during cancelation–free training, leading to
the signal approximation shown in a). d) weight changes during cancelation

training leading to the signal approximation shown in b).

Because of the known periodicity of the power signal, it is not necessary to choose a
selection interval size with the KRS–ratio which calculates adaptively for variety of
subinterval divisions. The correct selection interval size can be found by dividing the
training set into parts defined by its local extrema. The first training sequence is deter-
mined by selecting the size of the training intervals to take the range between subse-
quent odd local extrema. The number of the subintervals and elements within an subin-
terval are chosen randomly during the training. The training sequence created in this
manner showed higher degrees of cancelation, as expected from the fact that the resam-
pling was performed in a wrong manner. The training sequences, created by decreasing
the size of the sample selection subintervals show lower and lower degree of cancel-
ation. Figure 5–12c illustrates the weight changes when a non–cancelation training set
is extracted. In this case the learning quality is quite satisfactory, as shown at 5–12b.

Further improvements in the learning speed and the replicability of its duration can be
achieved by choosing appropriate input streams. An example of input streams for im-
proved reliability is shown in figure 5–13. A typical facet of this application of a neural
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network in an industrial environment is the occurrence of new frequency contributions
from new failures as well as the shift in existing frequencies because of wear and ageing.
For the diagnosis it is required to perform the learning at regular intervals. These on–
line requirements make extensive pre–processing impossible, while on the other hand
reliability is of utmost importance to guarantee hazard–free operation.
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Figure 5–13: Input streams for improved learning performance.

5.3.2 QRS detection.

In this section the results with a known medical application will be discussed: the
approximation of the heart beat signal as used for QRS detection. For the rendering of
the problem and for the description of the state–of–the–art, we have used material from
[90].

Heart disease is currently the major cause of mortality. More than half of the people with
heart disease die within two hours of an attack, that may start as angina pectoris, myo-
cardial infarction, or congestive failure. The most susceptible category is formed by
men in the age of 40 to 50 years. A physician could monitor such cases better if equipped
with highly integrated medical instrumentation, that should be safe, reliable, accurate,
and robust.

The QRS detector represents a building block for critical care electrocardiogram (ECG)
monitoring and also heart rate monitoring during activities as jogging, aerobics or cycl-
ing [73], [23]. The device could improve the reliability of arrhythmia diagnosis and im-
planted pacemakers monitoring. The assignment is to specify and verify a neural QRS
detector on artificial ECG test data representing the normal heart function.

5.3.2.1 Physiological facts about ECG.
The ECG signal originates from the cardiac muscle where electrical impulses are
employed to control the mechanical actions of the heart muscle [26], [50]. The heart
is a four chambered pump consisting of left and right atria and ventricles. In the resting
phase (diastole) blood enters through the atria and passively fills ventricles. At the end
of the diastole, the atria contract to assist in filling the ventricles. In the active phase
(systole) blood is pumped by contraction of ventricles to pulmonary artery and aorta.
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Mechanical activities of the heart are controlled by two neural centers, namely the si-
noatrial node (SA) and the atrioventricular node (AV). The major neural pacing center
(SA) generates impulses to initiate systolic contractions and sends them through nerve
fibers to the AV node which delays the pulse before sending it to the Bundle of His, then
to the Branch Bundles and finally to the Purkinje Fibers which conduct the impulse to
all parts of ventricles. SA and AV form a hierarchical system in which the SA node nor-
mally assumes control of the beating rate (60–80/minute). In case of SA failure, the AV
node assumes control at much slower pace (40–60/minute).

The ECG is composed of three major sections, the P, QRS, and T waves. The P section
represents atria muscle depolarization, the QRS complex represents contraction of the
ventricular muscles, and the T section represents only an electrical event with no me-
chanical counter part. Normally, the heart beats 72 times per minute. This rate (not the
coordination) changes under special psychophysical conditions (stress, relaxation,
sleep, exercise). Slowed and accelerated heart rate are called bradycardia and tachycar-
dia, respectively. During tachycardia, the heart rate can be doubled or even tripled.

The main causes of arrhythmias are malfunctioning of pacemaker cells, blocks in elec-
trical pathways, and abnormal electrical impulse generations from within sections of
the cardiac muscle. Resulting conditions are flutter, fibrillation, and heart block. Flutter
is a combination of much less coordinated muscle actions than the normal and rapid
contractions of heart muscle. An extreme version of flutter is called fibrilation. Atrial
fibrillation is far less serious than the ventricular one, since the heart continues to func-
tion, but up to 30% less efficiently. Ventricular fibrilation can cause death of heart
muscle. Heart block occurs as a consequence of interruption of electrical pathways of
the heart causing discoordination of ventricular and atrial rhythms.

5.3.2.2 Artificial sample generation.

In order to obtain learning and test data for the neural QRS detector developed here,
an ECG simulator is needed. It consists of a heart simulator and four noise insertion
models namely for power line noise, respiration noise, baseline shift, and EMG. All pa-
rameters for the simulators mentioned above are assembled in one parameter file, that
contains also information on the number of heart beats and the sampling frequency.

The heart signal consists of 9 parts, wherein 5 peaks occur: the p–, q–, r–, s– and t–peak.
Most prominent is the r–peak, because of its significant amplitude; therefore the detec-
tion of the r–peak frequency is often used for a first characterization of the heart beat.

As shown in 5–14, a single heart beat starts with a flat part (called here “before p”) lead-
ing to the p–peak. A flat part is characterized by its duration (or width) and its signal
level (or amplitude); a peak is characterized by its duration, its maximum amplitude
and the displacement of the peak within the assigned time interval. All these numbers
have a typical value and a variance. After the p–peak follows again a flat part, that leads
to the q–peak. Immediately thereafter occurs the r–peak and the s–peak. Lastly we find
a flat part, the t–peak and a concluding flat part. This basic pattern can be repeated a
specified number of times (”number of beats”) and will be discretisized in time by a
sampling signal of a specified frequency (”sample frequency”). The alternative specifi-
cation of “heart beat frequency” should be somewhat in–line with the specification of
the heart beat signal parts.
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Figure 5–14: Somewhat beautified rendering of a single heart beat.

The ECG simulator calculates ECG samples and writes them to an output file together
with a phase flag which indicates the current phase (PQRST) of a heart beat. The heart
simulator produces P, QRS, and T waves according to a selected heart beat frequency
(beats/min) and the shape of the waves. The shape description consists of time interval
width [ms], amplitude [mV], and peak displacement from the start of time intervals
[ms]. The general shape of a peak is sine–like.

A number of disturbances can be introduced to reflect the practical noisy measurement
conditions, such as there are:

� power line noise, producing the influence of external electrical equipment
(typ. 50 Hz.);

� respiration noise, producing the effect of other bodily parts in function;

� base line shift, producing the effect of shifting earthing conditions due to sud-
den moves of the body to sensor attachment;

� EMG noise, producing random effects on the heart signal;

5.3.2.3 Towards a solution.
The classical DSP–oriented approaches for QRS detection are based on signal ampli-
tude measurements and are therefore oversensitive to noise – especially abrupt base line
shift and EMG noise [128]. To reduce unwanted effects of false QRS detection i.e. to
detecting QRS where no actual QRS exists, several preprocessing techniques are used.
In this section, we focus on neural network solutions for ECG interpretation. Main
points of interest are preprocessing, network type, inputs, outputs, and data used. Some
comments are also included.

In only a few cases of ECG interpretation raw data are used i.e. the data are used without
preprocessing. Normally the raw ECG signal is filtered by low and high–pass filters
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[151], [161], [82] using signal processors [82] and/or FFT [151]. Some additional data
transformation procedures like normalization, centering, base line shift reduction, and
R peak detection are also in use. The next step is feature extraction by classical means
[162]. Features normally include QRS width, QRS amplitude, QRS offset, T slope, T
prematurely [162], power spectral density [151], or 37 standard ECG variables by the
HP program (like sex, age, and a set of nonlinear functional transforms of the input pa-
rameters) [25].

Many authors use already existing ECG data bases like the American Heart Association
Database (AHA) [162], the MIT–BIH arrhythmia database [161], [34], or the Universi-
ty of Leuven ECG database [25], which makes it hard to compare the results. The sec-
ond source of ECG data are Holter tapes [82], self–sampled data, and/or simulated data
including ACG anomalies.

5.3.2.4 Approximation by windowed sample selection.
The QRS signal as described in the previous section poses two types of problems in
achieving a successful approximation. First, since it is periodic, learning difficulties
due to the periodicity can be observed. Secondly, since various substructures within a
single period of the signal show a high level of cancelation, the known ways of repre-
senting examples from the input/output space will manifest such additional learning
difficulties. Since the learning problem by periodical signals have been elaborated on
already, in this section more attention will be spend on overcoming the learning difficul-
ties by general cancelation signals. This is the reason to train one QRS period first.

An ad–hoc learning scenario provides for an unsatisfactory learning performance with
both types of networks: zero–centered sigmoid network gives a straight line output after
an exhaustive training, since the logistic transfer network shows poor approximation.
The outcome of an experiment with the second type of network after about 47000 pre-
sentations of the training set (more than sufficient for a signal with such complexity)
is shown in figure 5–15.

Figure 5–15: The results by ad–hoc training with logistic network.

In line with the reasoning made so far in this thesis a division of the target signal on
intervals is made as a first attempt to improve the learning quality. A comparable
approximation quality to this shown in figure 5–15 is achieved by the windowed sample
selection algorithm about 50 times faster, even with a symmetrical network. The learn-
ing curves for an experiment outcome with a average performance for logistic sigmoid
network, trained with randomized training set and zero–centered sigmoid network
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trained with WSS algorithm are shown in figure 5–16. The solid line that shows a dra-
matic improvement of the training time, corresponds to training, performed with the
windowed sample selection algorithm. The learning curve for a zero–centered transfer
network trained by means of random example selection is not shown, since such a net-
work has not reached a comparable approximation quality after practically endless
training.
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Figure 5–16: The learning curves for standard backpropagation a) and WSS
training b).

An attempt at further improvements of the training process in terms of approximation
quality and speed are made through division of the input stream as an additional step
to the windowed sample selection procedure.
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The division of the input stream can be made in several manners. For instance, the ECG
signal from figure 5–17a can be trained by blindly dividing the input space on parts and
increasing the discriminability of the input/output space. The training process requires
very big amount of training time to find a satisfactory solution, since the input informa-
tion can contradict the problem features. When recorded, the ECG signals have to be
synchronized, i.e. there is time information available. Furthermore, the average dura-
tion of the different QRS phases is known. This allows one to use this information for
input space division instead of training with blindly determined division of the input
space. This feature of the ECG signal is equivalent to the knowledge about the period
of the periodical signals. The main difference from a periodical signal is that the input
streams are divided into unequal parts by QRS signal.

In periodic signals, risks of introducing an additional symmetry to the learning system
are caused by making the existing cancelation structures too explicit: within each subin-
terval of the input stream there is a corresponding cancelation structure of the output
stream. Training either by means of random example selection or by windowing of the
target stream, so that the cancelation structures are included in these windows, results
in poor approximation. An additional input with a staircase appearance provides for an
equal input values to corresponding equal targets. Choosing a subdivision of the target
space which includes high cancelation, makes such input entirely useless. Randomized
selection will also provide cancelation learning, if not in general, than for learning of
a specific structures.

Similarly, unreliable performance is expected if the signal contains structures with high
degree of cancelation (as seen in the different pulses of a QRS signal). Such a signal
we call a general cancelation signal, since neither symmetry nor periodicity is explicitly
present in it (here we referr to a one puls of a QRS signal). A QRS signal sampled in
a longer time scale than one period possesses an additional risk for cancelation due to
the periodically repeating QRS pulses.

A series of experiments with QRS signals was carried out. These experiments ranged
from training by a random selection of examples, through sample ordering with respect
to the target stream, and to reordering with respect to both input and output streams.
Within one QRS period a danger of unreliable learning exists when the window includes
a cancelation structure. However, this condition can be strengthened if one of the inputs
accentuates on this feature. In the case of the ECG signal, such a danger can be foreseen,
if for an extra input are used the phases of the heart rhythm. Within a few of the phase
durations there are obvious conditions for cancelation.

5.4 Discussion.

This chapter gives a practical validation of the developed methodology for reliable
training of a MLP network. After the introduction of the neural method, the second
chapter gives major directions on how network learnability can be enhanced. The third
chapter narrows the problem area by unifying it to a manifestation of indecision in the
network operation. The fourth chapter develops the strategy for avoiding learnability
and reliability problems in general on the basis of reordering the streams of examples
supplied to the network during training. This strategy gives many possibilities for their
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realization, which need to be concretisized for practical use. Creating an example reor-
dering strategy on the basis of the developed KRS–criterion leaves a range of opportuni-
ties for practical realization. This variety requires for an algorithmic implementation
of the developed sampling strategies for problems with different complexity and fea-
tures, provided in the fifth Chapter.

The concrete realization of the resampling strategy developed varies more with the fea-
tures of the signal rather than with its complexity. The supporting arguments for this
statement are implied in many places in this thesis. The reliability problems are solved
with respect to the complexity of the cancelation situation present in the problem.
Among the possible ways to cope with simple cancelation cases is to move the window
on a signal from which training samples are drawn. The sampling strategy developed
suggests an alternative way for handling cancelation signals by dividing the training set
on intervals, within which the extracted samples will ensure unproblematic training.
This technique gives positive results in a wider range of learning situations. It remedies
certain reliability problems cancelation signals of simple shape, but might be insuffi-
cient in more complex cases.

Additionally, by division of the training, there are risks for the training process to con-
verge to a suboptimal solution. If the location and the size of windows is wrongly se-
lected, it is likely that the weights will degrade to zero. Consequently, the potential for
mapping the dynamics of the internal generator will decrease, even the already learned
information can be forgotten. Though changing the window definition brings the train-
ing process back to its normal function, the question over what the proper choice should
be, remains unanswered. The elaborated KRS–paradigm suggests that there is a high
degree of symmetry at the beginning of a learning process and that guiding the learning
trajectory for a long time in the same direction will not increase the risk of jumping over
a satisfactory minimum. It is advisable that the sizes of windows with non–cancelation
examples shrink at later stages of the training.

As periodic signals naturally imply additional risks for degradation phenomena to oc-
cur, the approach of handling simple cancelation signals is extended to cope with peri-
odicity as well. Simple techniques such as moving the selection interval of the training
examples will not help because periodicity keeps the cancelation content of the exam-
ples at a high level.

Increasing the abruptness of the input/output space is a well–known technique in neural
sensitivity analysis methods. We create abruptness within the input streams in order to
break the symmetrical states. By doing that, the network is forced to learn the variability
of the input streams. This implies that any change in the input stream of examples
should be made in accordance with the variability of the signal. Furthermore, if addi-
tional inputs are introduced, it should be checked whether the information of some input
is not dominant over others. Such a check is easily performed on the basis of the KRS
criterion.

In general, the construction of input strings of examples is synchronized with a feature
of the signal. This way the network task is facilitated considerably. The periodicity of
a signal is often known, although the signal itself should be learned from examples [9].
By using the periodicity in the signal as an additional input, its learnability and speed
should be improved, since (a) extra information is available for the learning process,
and (b) internal symmetries are made explicit, and thus manageable.
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The risks posed by splitting the input space are in choosing input sequences with widely
differing KRS–ratio (the KRS coefficient with respect to one of the inputs is approxi-
mately zero, and the other has a different value), which induce the network to learn the
information from the input with the bigger KRS values while suppressing the other.
Hence the success or failure of the training process can be directly related to the internal
representation.

The comparison of the training performance of the active sampling algorithms created
with the backpropagation algorithm in its standard form are shown for several signals,
which are plotted in appendix A under the corresponding number. For reliability of the
outcomes, trainings with every signal are repeated 100 times. On the basis of these repe-
titions, the median performance and variance of the repetitions are calculated. Since
all the signals have a high cancelation content, their training with equivalent (zero–cen-
tered transfer network) did not bring to the desired approximation quality after exhaus-
tive training. These cases are denoted in the table with a dash. For a comparison, the
results of ad–hoc training with a logistic sigmoid network are drawn beneath. Calculat-
ing the variance of the results, obtained with a logistic sigmoid network is not relevant
for the comparison.

Table 5–1: Median and variance of the training duration of experiments with
100 trials each.
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6 Closing remarks.
This final chapter consists of three parts. Firstly, overall basic ideas and
observations are summarized and the major conclusions of this work are
restated. The contribution of this thesis is listed explicitly next. This summary
underlines the necessity for knowledge engineering in neural learning.
Furthermore, it makes explicit some interesting parallels between the
internal processes, that take place by unreliable training and by on–line
learning. In relation to this finding, we are convinced that further studies on
this topic might lead to find possible ways of applying neural technology in
cases, where learning can not be confined to an off–line phase. The ideas
about future research are summarized in the third section of this chapter.

6.1 Justification.

Theoretical  investigations in neural methodology have shown very promising results.
There are also many successful applications at present. However, the enthusiasm is gen-
erally declining. Although the proven theorems state that every signal can be approxi-
mated with a two–layer feedforward network, it does not detail constructively how to
achieve that. For this reason, some scientists state that a plateau in neural research is
reached. This belief is based on the fact that progress in applied neural network research
is slower than desired. This is undermining the definite potential to obtain better solu-
tions. We conjecture, that neural technology does have the potential to solve a much
wider spectrum of problems. This is demonstrated by a modest attempt to improve the
performance of one class of networks.

Neural operation depends on the neural system as well as on the problem to be learned.
Since learning tasks with similar complexity can cause varying degrees of difficulty for
a particular realization, we have directed our attention to the search for a relation be-
tween the task to be learned and neural performance. The first interesting observation
is that the learnability of a signal is proportional to the replicability (within borders al-
lowed by randomized computations) of the neural experiment. This is the reason why
we have been varying signal structures which show either bad learning or unreliable
performance. An attempt for quantization of this relation is made with the definition
of the cancelation criterion that predicts the learnability of a signal on basis of the ex-
tracted examples. Although this criterion needs some adjustments when applied to dif-
ferent signals (for instance, a reliable relation between the number of training examples
and the cancelation ratio has to be found), it generally provides a good indication of the
learnability  of a signal.

Furthermore, it is shown, that changing the ordering and the structure of the example
streams changes the cancelation ratio and improves drastically the learnability and the
learning reliability of a signal. This result has driven us to search for an optimal ordering
of the example streams in order to improve the reliability for learning particular signals.
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So far a simple example reordering technique has manifested the potential to alleviate
“difficult” training cases. Additionally, example reorderings have shown that the learn-
ing duration and its repeatability can be improved drastically for non–cancelation sig-
nals as well. As a consequence, we have largely used the “difficult” cases to illustrate
the impact of reordering and leave the overall evaluation to the reader’s own experi-
ence.

The summary made so far concerns our work on the task level. Analysis of the internal
mechanisms of the learning process, that lead to bad learning quality, outlines another
line of thought. The interaction between the learning task and the neural system can nat-
urally be expressed by the error landscape paradigm: the multidimensional surface,
constructed according to the features of the neural system and the training task, repre-
sents the information about the current state of their interaction. It is discussed in the
introduction to this thesis, that the neural network adapts itself until it becomes a model
of the task to learn. In the error landscape perspective every point on the landscape cor-
responds to a certain degree of this modeling. The network has become a perfect model
of the task when the zero level of the error energy landscape has been reached.

In the error landscape oriented way of thinking, training difficulties are expressed via
the dynamics of the system – the trajectory, which the learning process follows on its
road of intermediate adaptation to reach the minimal energy state. In practice, optimiza-
tion is performed under the assumption that the error landscape is locally quadratic –
i.e. it can be approximated with up to second–order terms of the Taylor expansion:

E(W) � E(W*) � �E|
W* � �

2E|
W* (6–1)

The optimal point W* can be found when �E and �2E are known. Once the current
adaptation point is located, �E and �2E are recomputed using local information and
the minimum is relocated until the correct one is found. The success of this approach
in finding the minimal energy point depends on the shape of the error function. If the
quadratic approximation is a fair choice, finding good minima is fast and reliable. In
feedforward network training, the error function appears to have a large number of flat
areas: valleys and plateaus of different dimensionality. If the network state is drawn in
such a flatness, most of the parameters are becoming very small – the Hessian matrix
is nearly singular.

We have shown that reordering of the example stream can prevent the training difficul-
ties, that arise from singularities of the Hessian matrix. Additionally, we have con-
cluded that the same kind of example reordering can remedy cancelation problems in
both types of difficult surface reliefs: very curvacious and very flat forms. The reason
is that during cancelation the impact of the target signal on the learning progress is mini-
mal. Therefore the network state (the learning trajectory) changes only in very small
steps. In case of valleys and shallow minima, this leads the optimization to the lowest
local energy point. The optimization progresses scarcely on surface areas with a high
degree of flatness. In both cases the effective length of consequent steps can be enlarged
by forcing them to go in one and the same direction. This way the flatnesses can be tra-
versed faster, and shallow hollows can be jumped over.

Optimal reordering is intimately coupled to signal characteristics. We have pursued a
conflict–resolving approach, not fully unlike resampling in statistical model selection
[37]. In the reordering algorithm, a criterion as previously formulated and experimen-
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tally verified is applied to predict the cancelation potential of an existing example
stream. If the potential is too high, the stream will be recursively k–fold divided until
the potential has dropped enough.

Signal characteristics, such as periodicity and various cancelation substructures, are
often complex cases of unbounded behavior. We have shown that complex cancelation
can be alleviated by division of the input example space, and therefore decreasing the
order of the input–output correspondence and thus decreasing the level of ambiguity
and cancelation in the signal, respectively. Such a spatial division can be computed and/
or generic, leading to a generic feature definition (Figure 6–1). For a class of signals
(or domain of problems), some generic features can be defined that are useful for the
differentiation of the specific signal. In a sense, this can be viewed as implied feature
extraction and leads to concepts in modular neural network design.
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Figure 6–1: The improved neural processing chain.

6.2 Contributions of this thesis.

The major contribution of this thesis is the methodology created for the enhancement
of the learning reliability and learnability in general. Some aspects are considered: (a)
the theoretical analysis of the reasons for unreliable learning; (b) the criterion, that pre-
dicts when bad learning will take place; and (c)  the example reordering strategies with
respect to the input and output example streams and (d) the corresponding algorithms
that train cancelation tasks successfully. In the following, we will list a number of such
advances:

� [Reliability estimation, section 2.3] Among the various ways for neural reli-
ability enhancement we have chosen to analyze and guide the trajectory, that
the learning process draws on the multi–dimensional error surface. Corres-
pondingly, the reliability estimation method have to consider a multitude of
such trajectories. In order to enhance the quality of an arbitrary learning trajec-
tory, the statistical characteristics of the whole multitude have been consid-
ered. The learning reliability is measured by the median and the variance of
this multitude. Although this is not a very compact way of measuring the learn-
ing reliability, it gives a fair idea about the flow of the training process. Later
on, example reordering methods are chosen and optimized further on with re-
spect to the smallest median and variance. It can be observed, that such trajec-
tories correspond to the error rate curve with frequent steep drops.



154

� [Symmetry, section 3.1] The analysis of the possible reasons, causing either
bad training outcomes or results that can not be repeated within the desired
borders, concludes that the major preconditions for reliability problems are
found to be different symmetries in the learning system. Various symmetries
in the neural system can cause indecisiveness of the learning process. They re-
sult in flatnesses of different dimensionality of the error landscape relief. One–
dimensional flatness has the shape of a valley; the higher dimensional flat-
nesses are imagined as planes. Our contribution is in finding an unified method
for fast escaping planes as well as shallow valleys. This unified method sug-
gests that the higher–dimensional flatness should be passed by forcing the al-
gorithm to take steps in one global direction. In the case of shallow valleys and
minima, the same technique will cause the sidewalls of the valley to be
jumped over. To avoid jumping over satisfactory low minima, which can be
met in later stages of the training process, the division on intervals is per-
formed by only decreasing the interval size (or the passages in the same direc-
tion).

� [Neural transfer, section 3.2] The most important symmetry breaking factors
implied in the neural method are the different randomizations and the training
task. Additionally, the asymmetrical adaptation factor, which is a property of
logistic sigmoid networks, contributes to the symmetry breaking process. The
reliability problems due to symmetrical states are more likely to occure if the
integral over the product of the nodal transfer and its derivative �.�� equals
zero over the range of its activation, as it is true for zero–centered sigmoid net-
works. Correspondingly, for zero–centered transfer networks, there is a larger
potential for unreliable learning performance than for logistic transfer net-
works, since there is an increase of the symmetry in the neural system.

� [Internal contradiction , section 3.3] Cancelation in the neural system ap-
pears by a specific aspect of the training task: the training examples cancel
each others impact on the learning process. The behavior of cancelation sig-
nals in particular (stationary) error surface areas has been analyzed. It has been
shown that in such cases the impact of the target signal is negligible. Thus, the
neural system is guided by the input examples only, which are values on the
range [–1...1] (resp. [0...1]), selected in a random manner. Therefore, (a) the
training process in such areas can be described by the laws of random pro-
cesses, and (b) the learning progress is negligible, since the target signal has
no substantial effect on the adaptation, and (c) it causes the weight vectors to
degrade: the effective capacity of the network decreases. Cancelation can ap-
pear if either the complete training set or the particular ordering of the training
examples has cancelation properties.

� [Cancelation criterion, section 4.2] When a presentation set may cause prob-
lems that will lead to lengthened training or even paralysis, it will be of advan-
tage to predict this to happen. When having sufficient prediction at hand, one
may refrain from learning as chances are that this will be to no avail anyhow.
The created cancelation criterion gives a way to predict whether the current
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training set will suffer from cancelation. Up till now learning problems have
been solved either by changing the training algorithm or by restarting the net-
work. Furthermore, the cancelation criterion can be used on–line in the train-
ing process to show whether the current  sequence of training examples (the
training set ordered for the current training iteration, for instance by random-
ization) will prove to be ineffective (degradative training).

� [Example order in presentation set, section 4.3] Pure random selection re-
veals the degrading nature of cancelation signals. We note that even improved
algorithms do not always prevent degradation. We have therefore analyzed
different constructions of a presentation set from the same example set. It is
shown that even difficult examples can be learned using a “windowed sam-
pling” strategy, where the location of the windows can be on–line changed
based on a cancelation criterion.

� [Complexity & periodicity , section 5.1] For more complex signals (for
instance periodic ones), we find that cancelation effects can appear during lat-
er stages of training: when some features of the posed task have already been
learned. In such cases reordering of the training set with respect to the target
stream of examples is insufficient for inputs in the following situations. First,
when samples are with equal absolute x–value but opposite sign or with many
close x–values corresponding to equal target values. Second, when the low dif-
ferentiability  of the input stream does not contribute a lot to the symmetry
breaking process. Since the impact of the target is minimal on cancelation sig-
nals, the input stream(s) should move the neural system from the clearminded
(symmetrical)  state to a model of the training task.

� [Generic features, section 5.2] To handle also complexity and periodicity,
pre–knowledge about the composition of the signal can be used. We solve the
training problem by adding generic features that allow the overall training to
handle the cancelation problems in isolation. An example of such a feature is
the period in periodical signals or the phase of a signal, containing cancelation
structure in itself. Such features need not be artificial, but may sometimes be
created autonomously and therefore still fit the idea of an adaptive model. For
instance, the period indication can be created by a lock–in amplifier (which
in turn can be neurally implemented).

Based on these contributions, we have suggested an active training algorithm and dem-
onstrate in a number of examples that, where classical training does not succeed or gives
rise to training of variable duration, the use of reordering in the presentation set based
on prediction of potential cancelation with additional generic features will lead to fast
and stable learning. This algorithm is stated here as a condensed notation for the inte-
grated impact of the previously gained insights and created advances. It is clearly not
definitive, as still a large number of research issues needs to be resolved.
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6.3 Suggestions for future research.

Following the previous lines of thought there are two possibilities for further expansion
of this research. First, all the results and observations about the impact of the example
streams on learnability and learning reliability suggest that further progress in neural
learning has to be found in the direction of knowledge construction and representation.
As we claim to have sufficiently uncovered the origin of much that has given neural
networks a bad name (notably unpredictably long learning), it makes sense to rise be-
yond the current insight. On the algorithm level we have shown the effectiveness of
creating a good presentation set from the available examples: (a) adapting the window
size to the level of cancelation or (b) setting the scope of relevance by adding generic
features. Between these extremes, there are many practical opportunities for construc-
tion of presentations. For instance, increasing the training speed and correctness can
simply be done by training with overlapping windows: the origin of the training subin-
terval is chosen arbitrarily, and with this origin the new selection subinterval is spanned
(Figure 6–2).
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 Figure 6–2: a) The training signal. With the lines S1–S13 are shown the first
13 example selection subintervals. Obviously, they overlap. b) Error decay by

training the signal with division of the example space on overlapping (the
solid line and non–overlapping (the dashed line) windows.

Other opportunities are to discard the empirical elements by finding the threshold above
which the cancelation ratio will reliably predict good learning performance. Up until
now it has been concluded that the exact value, above which the KRS–ratio predicts
reliable learning depends on the training signal. More work can be done in defining
ways to divide the input streams, so that they can ensure optimal learning of complex
signals and not force the neural system to false mappings.

The analysis of the internal mechanisms that guide the learning process suggest another
direction for further research. Between the development of the training process by sig-
nals with a high level of cancelation and on–line learning scenarios exists a number of
similarities. First, the pictures of the parameter vectors for both critical training situa-
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tions are similar – a degradation of the effective capacity of the network appears, ex-
pressed by nullification/equalization of the most of the network parameters. Second,
by improving the training performance by cancelation signals, only the example stream
has been manipulated.

Similarly, for on–line training scenarios the only possibility for improving the quality
of the learning development is by transformations of the example streams. It can be ex-
pected that the developed techniques, which can escape the described training difficul-
ties only by reordering the example stream, will help deal with on–line training infor-
mation. The similarities in the internal learning mechanisms of those two problem areas
suggest, that the techniques for improved reliability of learning by cancelation signals
can be used when the training examples are coming on–line from a process and enable
the algorithms of backpropagation type to be used for applications where learning can
not be confined to an off–line phase.

It comes as no surprise, that the presentation set is the key for reliable learning. An infe-
rior presentation set may often go unnoticed if it is used for testing such networks that
are very vulnerable, for instance networks with zero–centered transfer. An optimal pre-
sentation set will always work, even with sensitive networks. Having isolated such sen-
sitive arrangements, we are fully equipped to define optimal example sequences for an
arbitrary training task.

In a sense, we have used a geometrical interpretation for discussing the effect of learn-
ing. Nevertheless, the theory of dynamical systems has not been mentioned here. As
the operation of neural networks is based on the exploitation of non–linear functions,
chaotic behavior is likely to occur. In fact, the conclusion that without further precau-
tions a neural network will seemingly take different routes towards different results has
often been claimed as a sign for such behavior. As we have shown that by proper design
such behavior can be eliminated to the benefit of the engineering issues, it seems that
this claim is ill–founded.

Still, there is reason for caution. The fact that we can eliminate the appearance of ill–be-
havior does not imply that chaos is not there. It only shows that we can direct the training
path at will. The way in which we accomplish this is by a deliberate division of the input
space. For this we regretfully do not have a clear geometrical interpretation. However,
it bears resemblance to the way in which chaotic systems tend to be analyzed. This
brings us to to a last category of research questions (the most speculative ones): is it
possible to formulate the learning process as a dynamic system?

As we have introduced generic features to aid the learning towards a reliable behavior,
it seems reasonable to assume that a chaotic description of the training can be based on
such general signal characteristics. What we have observed as indecisiveness can also
be interpreted as bifurcation. Where we attempt to handle such indecisiveness by add-
ing generic features can then be seen as a pre–selection. Where bifurcation is allowed
for, a dynamical system tends to grow into a state of real confusion. This is apparently
also true for neural networks. Vice versa, the generic features and/or window definitions
can be seen as a labelling of the bifurcations, such that choices in the path selection can
be made.

A long reaching goal of future research can therefore be seen as using dynamical sys-
tems theory to guide in the selection of useful features, not aimed for providing core
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information on the specific signal but rather aimed to give support in the overall learn-
ing process.
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Appendix A: KRS–experiments.

The following figures represent different training cases, which has been
performed to show the results from sample reordering algorithm. Every case
is described by three figures. The first shows the original training signal; the
second shows KRS plots by different example reorderings. The third plot
represents either a snapshot from the Interact visualizer, or the
generalization curves when testing. Some of the plots also appear in various
places in the thesis. The systematization made here aims to give a quick
overview of more made experiments and an easy way for their comparison
and to allow a easy reference to various experiments, when the pictures are
not really necessary to be plotted within the text. One is refered to table 5–1
for more numerical data.

A.1 Signal No 1.

Sinewave with noise (see also figure 5–2).
It shows, how even the addition of noise on the input signal does not remove the poten-
tial internal cancelation. However, dividing the signal into intervals removes the tend-
ence to paralysis.
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A.2 Signal No 2.

Complex goniometrical signal (see also figure 4–7).
The envelope of the signal is learned very fast, but then the internal cancelation prohib-
its any further progress.
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A.3 Signal No 3.

Not appearing elsewhere in this thesis.
An arbitrary signal with local symmetry and additional noise has learning problems un-
less the input space is divided in small enough intervals.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

2

3

4

5

Ordered examples

KR
S 

ra
tio

random
2 intervals
5 intervals
11 intervals

KRS plotSignal plot

Resulting approximation



180

A.4 Signal No 4.
Power generator signal (see also figure 5–5a).
Approximation for the signalpart corresponding to the first 400 timesteps is limited to
the training of the envelope.
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A.5 Signal No 5.

Power generator signal (see also figure 5–5a).
Approximation for the signalpart corresponding to the first 512 timesteps will not even
learn the envelope for longer time fragments.
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A.6 Signal No 6.

Single QRS signal (see also section 5.3.2).
The signal with some global but foremost local symmetry becomes (better) trainable
when the number of intervals is raised.
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A.7 Signal No 7.

Double QRS signal (see also section 5.3.2).
For the larger signal length the global symmetry is less apparent and training is already
performed for the smaller interval numbers.

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

5

Ordered examples

KR
S 

ra
tio

random
2 intervals
5 intervals
11 intervals

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M
ag

nit
ud

e

Time

KRS plotSignal plot

Resulting approximation



182

A.8 Signal No 8.

Symmetrical signal with second–order problem (see also figure 5–1a).
A complex signal with high global symmetry will have already have problems at the
onset of learning.
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A.9 Signal No 9.

Asymmetrical signal with second–order problem (see also figure 5–1b).
A complex signal with little global symmetry will encounter local symmetries later in
the training process.
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Appendix B: The Random walk.
There are numerous intuitions about the outcome of myriad experiments with
events of a random nature, which happen to be wrong. The random walk
theory reveals this misjudgment and is a basis for more advanced theories.
For the analysis, made in this thesis, several properties of a random walk are
interesting. First, it is of use to know how often the successive cumulative
gains are becoming zero. This quantification is related to getting a notion of
how fast network parameters can degrade to the zero point during
adaptation. Second, it is of interest how the random walk depends on the
length of the step. This gives inside to the problem why the initial symmetrical
phase, when the network parameters has small values, is the most often
encountered degradation problem. The third interesting question is what the
spread and distribution of the endpoints by many random walks is, which will
help to understand how many experiments, which because of the reasons
explained in the thesis are governed nearly by the lows of the random
processes,  have the chance to escape the stationary areas, and how this
chance is related to the number of training examples in a cancelation set.

B.1 The random walk in one direction.

A ideal coin–tossing game is a well accepted way to describe the random walk problem.
The outcomes of individual tosses are represented geometrically on a rectangular coor-
dinate system with horizontal t–axis and vertical  y–axis. Every point on this coordinate
system has as an abscis the number p of the current trial and as an ordinate the partial
sum of the previous coin tossings sp. All the partial sums draw a path (s1,s2, . . . ,sp). Ev-
ery path is the outcome of a random walk experiment. Correspondingly the statistical
characteristics of the multitude of paths can be quantified.

The probability, that at epoch n the path S has reached the point r, is denoted by pn,r.

pn,r � P{ Sn � r} � � n
n � r

2
�2�n (B–1)

To the investigations, made in this thesis, the case is interesting, when the point r is the
zero point. In the theory of random walks, this case is known as a return to the origin.

A return to the origin occurs at epoch k, if  Sk � 0.  Here k is necessarily even, and for
k� 2� the probability of a return to the origin equals p2�,0.  Because of its frequent oc-
currence this probability it will be denoted by u2�.

u2� � (2�
�
)2�2� (B–2)

The probability, that the first return to the origin occurs at epoch 2n is given by the fol-
lowing equation:

f2n �
1

2n � 1 u2n (B–3)
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Another quantifiable characteristic for a set of paths is the spread of the endpoints. It
is defined by the probability, that the maximum of a path of length n leading to  point
A� (n, k) and having a maximum � r with k� r is denoted by
pn,2r�k� P{ Sn � 2r � k}.

B.2 Generalizing the random walk.

All the conclusions made in the previous section concern the one–dimensional random
walk by which the step length equals to unity. They can be illustrated with the outcome
of a coin–tossing game. Here generalizations for multi–dimensional random walks as
well as for random walks with unequal step length will be made.

In a two–dimensional random walk it can be imagined, that a particle moves in unit
steps in the four directions, parallel to the t� and y�axes. For a particle which starts
from the beginning of the coordinate system, there are four possible positions which
have real–valued coordinates. Similarly, in three dimensions every point has six neigh-
bors. The random walk is then specified by the corresponding four or six probabilities.
The generalizations will be made for a symmetric random walk, where all four or six
directions are equally probable. The probability of a return to the origin is:

u2� �
1

42n
�

n

k�0

(2n)!

k!k!(n � k)!(n � k)!
�

1
42n
�2n

n � �
n

k�0

�nk�
2

(B–4)

Equation (B–4) can be generalized for a higher dimensional case.

By the generalized one–dimensional random walk the restriction, that the particle
moves in unit steps is avoided. In this case at each step the particle shall have the proba-
bility pk to move from any point x to x� k. where the integer k can be zero, positive
or negative. This generalization is also known as sequential sampling.

B.3 Interpretation.

The theory of random walks is not (or at least not directly) applicable to neural net-
works. On each presentation, the weights will be adapted. In other words, each state of
the neural network represents a different history and therefore a permuted input set will
lead to a different state. Nevertheless, the characteristics of a non–learning neural net-
work seem comparable. This can be interpreted in the following way. When a neural
network is still in a state of infancy, it makes no difference what this state is: by provid-
ing a canceling input stream all that has been learned can be unlearned. It is only when
a neural network has matured and “knows” what to do, that the different streams have
a reduced input.

It is clear, that a neural random walk requires an enhanced theoretical model. The rea-
son why this has not been attempted here, is largely that we intended to eliminate the
occurrence of a longest ruin by construction rather than by analysis. Despite that, such
a model will still be a welcome addition to the theory of neural design.
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Appendix C: Software.
As illustration to the provided algorithms, we supply here the basic routine
that allows for the reordering schemes as discussed in this thesis.

C.1 The Permutation procedure.
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Samenvatting.
Het leren staat centraal in de studie naar de werking van neurale netwerken. In de loop
der jaren zijn vele leeralgoritmen voorgesteld om een optimaal netwerk te verkrijgen,
maar steeds weer blijkt het leerproces van wisselende kwaliteit en tijdsduur te zijn. Dit
proefschrift onderzoekt de oorzaak van dit onvermogen tot experimentele reproduceer-
baarheid en laat zien hoe met geringe ingrepen toch een consistent resultaat verkregen
kan worden.

Neurale netwerken mogen zich in een groeiende populariteit verheugen. Weliswaar is
van de oorspronkelijke verwachtingen om computers in imitatie van de biologie te ma-
ken weinig overgebleven, op andere gebieden heeft zich echter een technologie ontwik-
keld die met minder hoogdravende doelen wel een markt–acceptatie heeft bewerkstel-
ligd. Hiermee hebben zich de neurale netwerken als bruikbare technologie geetableerd,
waarmee een zoveelste  echec in haar bestaansgeschiedenis is voorkomen.

Al in de vijftiger jaren heeft de biologie als inspiratiebron gediend bij de ontwikkeling
van nieuwe rekenconcepten. Een verdere ontwikkeling is tot staan gebracht toen
Minsky aantoonde dat met concurrerende technologieen betere resultaten voor de
toenmalige problemen te verkrijgen waren. De herontdekking van het Error Back–
Propagation   algoritme geeft in de tachtiger jaren aanleiding tot een herbezinning,   met
name als rekenwijze op grote parallelle computers. Begin negentiger jaren lijkt ook dit
in het vergeetboek te komen.

Inmiddels is echter een derde stroom opgekomen die het neurale netwerk   ziet als een
methode om kennis te verwerven uit ongestructureerde gegevens. Met name is de aan-
dacht gericht op beeldgegevens, gedragsgegevens en productie gegevens. Deze gebie-
den worden gekarakteriseerd door een onvolledige kennis, die door voorbeelden aange-
vuld zouden kunnen worden door een reele modellering van de   werkelijkheid.

Tegenwoordig zien we dat neurale netwerken algemeen geaccepteerd zijn op een aantal
deelgebieden van de industriele praktijk. Voor de sturing van staalwalsen zijn neurale
regelaars wereldwijd in gebruik gekomen, in de voorspelling van consumenten gedrag
worden veel neurale functies toegepast en ook voor de visuele inspectie van productie
processen is duidelijke vooruitgang geboekt. Niet altijd wordt overigens het neurale
model als zodanig ook in gebruik genomen; vaak dient het vooral als een   geschikt be-
ginpunt voor een verdere klassieke ontwikkeling.

Ondanks dit alles blijft vaak de klacht genoemd worden dat de ontwikkelingsgang zelfs
voor de expert onbetrouwbaar is. Met name de leertijd van het netwerk laat een grote
variatie zien, terwijl soms na lange tijd het probleem niet leerbaar blijkt. Het loont dus
de moeite zich verder te verdiepen in de leerproblemen en methoden te ontwikkelen
die een betere garantie bieden op een uiteindelijk resultaat. Het voorliggende proef-
schrift stort zich dan ook op deze problematiek:

Kan het leren van een neuraal netwerk gestabiliseerd en gegaran-
deerd   worden?!

Eerst wordt daarvoor een definitie van betrouwbaarheid ontwikkeld. Betrouwbaarheid
is een bekend begrip in de ingenieurswereld, maar behoeft aanpassing voor het thema
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neurale netwerken. Al in 1991 hebben Nijhuis en Spaanenburg aangegeven dat de be-
trouwbaarheid van een kunstmatig neuraal netwerk anders dan in haar biologische
evenbeeld niet vanzelf tot stand komt. Wij geven aan dat de betrouwbaarheid niet alleen
in de fout–tolerantie maar tevens in de reproduceerbaarheid van het leerproces zicht-
baar wordt.

Vervolgens gaan we op zoek naar de interne fenomenen die deze gebrekkige reprodu-
ceerbaarheid veroorzaken. De oplossing is gericht op het vinden van de interactie tus-
sen de factoren, die het leerproces in zijn algemeenheid bepalen: (a) de symmetrie in
probleem– en oplossingsruimte, (b) de schijnbaar willekeurige keuzes, waarop de spe-
cificering en veralgemenisering van het neurale ontwerp gebaseerd is, en (c) de soort
 en hoeveelheid kennis, die uit de leervoorbeelden afgeleid moet worden.

Uit een vergelijking met het gebruik in een aantal verwante gebieden blijkt dat symme-
trie veelal wenselijk is voor een compacte mathematische   notatie van een verkregen
model, maar dat, als dit model nog tot stand   moet komen (zoals in het neurale systeem),
het creatie proces door een   overmaat aan symmetrie tot een vorm van onbeslisbaarheid
kan worden   gebracht dat een goed resultaat in de weg staat.

Het blijkt dat veel leerproblemen op het symmetrie begrip terug te voeren zijn. Niet al-
leen kan aan het begin van het leren reeds modelvorming onmogelijk worden, maar
blijkt verder in het proces zelfs ”ontleren” niet bij voorbaat uit te sluiten. Ontleren of
gedeeltelijk  leren ontstaat in die gevallen waarbij de systeem symmetrie dominant  aan-
wezig. Bij de meeste leerproblemen lijkt van zo’n dominantie niet direct sprake te zijn.
Maar bij nadere beschouwing blijkt het leren soms merkbaar vertraagd en leidt herhal-
ing van het experiment tot uiteenlopende rekentijden (en soms zelfs van uitkomsten).
De mate van reproduceerbaarheid van rekentijden heeft een directe relatie met de   leer-
baarheid van het probleem en kan gebruikt worden als een indicatie (waarschuwing)
voor intrinsieke leerproblemen.

Het verwerven van kennis kan opflakkeren, branden, smeulen en uitdoven.   Een brand
heeft materiaal, zuurstof  en de juiste temperatuur nodig. Zuurstofgebrek zal de brand
doen uitdoven. Daarentegen voert wind steeds weer nieuwe zuurstof toe en wakkert
daarmee de brand aan, terwijl zij een beginnend brandje eerder door afkoeling tot uitdo-
ven zal brengen. Alles bij elkaar een zeer gecompliceerd samenspel, waarbij iedere fac-
tor   zowel positief als negatief kan werken, en daardoor een wiskundige beschrijving
niet triviaal maakt. In de Griekse natuurfilosofie is dan ook eerst het redeneermodel ge-
formuleerd om later via vele experimenten tot een verdere detaillering te komen.

Voor de kennis uitdoving, die in deze thesis bestudeerd wordt, nemen we dezelfde be-
proefde aanpak. We formuleren eerst het KRS–model: een   denkschema waarin het ver-
band tussen de kennis in het netwerk, de ruis in de keuze van de voorbeelden en de sym-
metrie in de neiging tot leren tot uitdrukking komt. Aan de hand van dit schema kunnen
we een beter inzicht verkrijgen in de wijze waarop voorbeeldkeuze en leren op elkaar
inwerken.

Vanuit de experimentele ervaring kunnen we aan dit model het begrip   KRS–verhoud-
ing toevoegen. Het geeft verdere informatie over de omstandigheden waarin kennis
verwerving binnen het netwerk plaatsvindt en met name wanneer deze omstandigheden
minder gunstig zijn voor het   beoogde doel. Daarmee is het begrippenarsenaal gebouwd
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en is het inzicht gescherpt waarmee getracht kan worden om zulke omstandigheden
generiek te verbeteren.

In een eerste aanpak worden relatief eenvoudige signalen behandeld waarbij een oplos-
sing nagestreefd wordt door bij voorbaat de onzekerheid   in de leerproces ten gevolge
van symmetrie effecten te verbreken. We concluderen vervolgens dat daarmee nog
geen alomvattend resultaat verkregen is. Leerproblemen kunnen immers ook pas later
ontstaan.

De vele resultaten in ons onderzoek ondersteunen de conclusie, dat de interne opbouw
van het signaal een belangrijkere rol spelen in de leer proces dan het neurale systeem
zelf. Dat is terug te zien in experimenten met signalen van vergelijkbare ingewikkeld-
heid die een verschillende betrouwbaarheid tonen als de mogelijkheid tot uitdoving
aanwezig is. We komen dan tot een algemene benadering, waarin het signaal (de signa-
len) zelf behandeld te worden voor een beter leerresultaat. De voorgestelde methodiek
is gebaseerd op een stelselmatige lokalisatie van de problematiek door gebruik te ma-
ken van de KRS–verhouding. D.w.z. in de veelheid van keuzes voor de presentatie   vol-
gorde van de voorbeelden kiezen we bij voorkeur die volgorde die   potentieel de minste
problemen zal geven.

Het onderzoek aan signalen met een hoge ingewikkeldheid wijst erop dat   de tijdsinfor-
matie (of positie van het voorbeeld) vanuit het signaal   uitdovingseffecten kan veroor-
zaken. Dat gebeurt bij voorbeeld vaak bij   periodieke signalen. We komen daarmee tot
een derde bijdrage aan de verbetering van het leerproces. Vanuit de algemene aard van
signalen   kunnen karakteristieken afgeleid worden, die als ”feature” bij het   leerproces
het interne gebeuren zullen verbeteren. Ze dienen er vooral toe om een ongebreidelde
proliferatie van uitdoving bij voorbaat een   halt toe te roepen.

Door het proefschrift heen wordt een aantal probleemgevallen van diverse   kanten be-
licht. Het betreft daarbij zowel academische speeltjes,   realistische artefacten als daad-
werkelijke realiteit. Regelmatig hebben   we eenvoudige voorbeelden gebruikt, die spe-
ciaal ontworpen zijn voor de experimentele verificatie van de oorspronkelijke
werkhypothese. Deze   zijn zo ingericht dat, als het verwachte fenomeen zou bestaan,
dit   onmiddellijk en saillant tot uitdrukking zou komen. De moeilijkheid daarbij is dat
zelfs de geringste afwijking van de beoogde experimentele inrichting al tot minder dui-
delijke resultaten kan leiden.

Verder zijn praktijksituaties op sterk gereduceerde schaal gebruikt om in te zien of en
in hoeverre de bevestigde hypotheses in werkelijkheid   niet door andere effecten dusda-
nig overschaduwd zouden worden, dat van daadwerkelijke realiteitswaarde geen
sprake zou zijn. De opgedane   ervaring doet vermoeden dat ons probleem ten grondslag
zou kunnen liggen   aan een aantal reeds eerder gerapporteerde probleemsituaties, waar-
van tot nu toe slechts aan verbetering via alternatieve leeralgoritmes was gedacht. In
een enkel geval is zelfs door de betrokken onderzoeker geconcludeerd dat het probleem
onoplosbaar is.

Tenslotte wordt het betoog geverifieerd in zowel de diagnose van een   turbo–generator
als in de herkenning van een QRS–signaal. Dit zijn voor ons slechts willekeurige voor-
beelden, die voornamelijk gekozen zijn om   hun algemene belang en brede bekendheid.
Op beide gebieden zijn voldoende en werkzame oplossingen gepresenteerd in de
breedte van de toegepaste literatuur. Hier illustreren deze voorbeelden slechts, hoe
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werkzaam de door ons voorgestelde wijze van omgaan met voorbeelden is. Het laat zien
dat het proefschrift een bijdrage levert aan de verdere verdieping van het inzicht in de
werking van kunstmatige neurale netwerken, gericht op het bouwen van kwalitatief
hoogwaardige en betrouwbare intelligente systemen.
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