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Abstract

It is shown how cortical filters can be used for image anal-
ysis and object recognition. Similarly to previous work in
this area, we compute functional inner products of a two-
dimensional input signal (image) with a set of two-dimensional
Gabor functions which fit the receptive fields of simple cells in
the primary visual cortex of mammals. We propose a method
in which these inner products become the subject of thresh-
olding, orientation competition and lateral inhibition. Each
of the resulting cortical images contains only edge lines of a
particular orientation and a particular light-to-dark transition
direction. In this way, the information which is present in the
original image is split in different channels and we show how
this splitting can be used for object recognition. The method
discriminates between simple geometrical figures, e.g. poly-
gons with different numbers of edges, with reliability of 100%
and a recognition rate of 99% has been achieved when the
method was applied to a large database of face images.

1 Introduction

The insights in the microstructure of the brain provided by
neurophysiological and neurobiological research may open new
opportunities for automatic object recognition. Neurophysio-
logical research has delivered a number of interesting results
which can inspire new image analysis models. It is, for in-
stance, well known that a large amount of neurons, the so
called simple cells, in the primary visual cortex of mammals
react strongly to short oriented lines [1]. A more precise study
has shown that the receptive field functions' of such neurons
can be fitted well by Gabor functions [2, 3], differences of offset
Gaussians or other similar functions [4]. Using these results,
researchers mimic the function of the primary visual cortex
by computing the activation of each individual simple cell for
a given input image projected on the retina. This approach,
sometimes popularly referred to as ‘computing cortical filters’,
has been the subject of intensive research in the recent years.

Previous research in this area has focussed on the precise
type of functions which best model simple cell receptive fields
(see discussion in [4]). The research carried out until now has
given rise to a number of open questions. Among these we
consider as most important the question of how the informa-
tion delivered by cortical filters can be used to analyse images
and recognize objects. A basic problem we encounter in our
attempts to find an answer to this question is that of whether
and how cortical filters have to interact with each other to
facilitate structuring of information in such a way that it can
be used for image analysis and object recognition.

For this purpose, we propose the following scheme: The
pixel values computed by Gabor convolvers are not consid-
ered as the actual activations of cortical cells but rather as
net inputs to the cortical cells and the actual cell activities

1The receptive field of a neuron is the mathematical func-
tion which describes the responce of that neuron to a small
spot of light as a function of position.

are computed by thresholding of the net inputs. The activi-
ties thus computed become the subject of mutual inhibition,
a mechanism which according to the results of neurobiolog-
ical research has almost universal validity in natural neural
networks. We propose two mechanisms of inhibition: (¢) ori-
entation competition between cells whose receptive fields are
centered at the same visual field point and have the same size
but differ in their orientations and (i%) lateral inhibition be-
tween cells which have receptive fields of the same size and
orientation but are centered on different points of the visual
field. The representations obtained in this way exhibit a high
degree of information structuring, in that only edge lines of
a particular orientation and light-to-dark transition direction
are present in each cortical image. The cortical representa-
tions of an input image are used to extract a set of descriptors
which is used to search for a nearest neighbour in a database.
The present work is an extension of our previous work report-
ed elsewhere [5, 6, 7]. By applying the above sketched scheme,
we achieve 100% recognition rate of simple geometrical figures
and 99% recognition rate on a large database of face images.
The rest of the paper is organized as follows: In Section 2
we introduce the reader to two-dimensional Gabor functions
and their relation to natural vision. In Section 3 it is shown
how and for what reason thresholding, orientation competition
and lateral inhibition are made a part of the model. Section
4 outlines the transition from cortical images to descriptor
sets used for image analysis and object recognition. Section 5
presents our experiments and results on object recognition.

2 Gabor functions and natural
vision

The basic two-dimensional Gabor function we use has the fol-

lowing form:

g(x,y) = %5_(m2+y2)+i7rm (1)

By means of translations parameterized by a pair (£,7),
delations parameterized by an integer number 7 and rotations
parameterized by an angle ¢, one gets the following family of
two-dimensional Gabor functions (in the following L denotes
the sixe of the visual field):
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Fig. 1 shows the real and imaginary parts of one such function.
The oscillations of g; ,(z — €,y — n) are due to the harmonic
irad !

wave factor e with a wavelength

A= — (3)
od
and a wavevector of orientation ¢ and magnitude (the magni-

tude of the wavevector is also referred to as spatial frequency)

ky = mal. (4)



The Gaussian factor e_a2j(ml2 +912) causes the function
95,0(x — &y —n) to be negligible for [z — | > A;. The choice
of taking the scaling factor in the form o? (j € Z) corresponds
to equidistant sampling of a logarithmic wavelength/spatial-
frequency scale that corresponds to the logarithmic dispersion
of spatial frequencies found by neurophysiological research
[2, 3]
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Figure 1: Real (a) and imaginary (4) part of a Gabor func-

tion.

The functional inner product of a two-dimensional signal
(image) s(x,y) with a Gabor function g; ,(z — &,y — 1)

5,0(&m) = /8(1’7 Y)97 (& — &y — n)dedy (5)

may be considered as the amount of a harmonic wave with
wavelength A; and wavevector orientation ¢ in a surrounding
area of linear size \; centered on a point with coordinates
(¢,m). In this way, equation (5) represents local spectral anal-
ysis which is embedded in global spatial coordinates (£,7).
For fixed j and ¢ and variable ¢ and 7, 5; ,(&,n) presents a
two-dimensional function of the same size as the input image.
For ease of reference, in the following we call such a function
Gabor representation. The coefficient o7 /7 in front of the ex-
ponent in (2) is a normalization factor which is chosen in such
a way that for an input signal s(z,y) = emals wigh mag-
nitude one the quantity computed in (5) has also magnitude
one, |55 o(&,m)| = 1.

We now assume that the quantities 5; ,(&,7) computed in
(5) for the various values of the parameters j, ¢,¢ and 7 cor-
respond to the net inputs to individual cortical cells when the
visual system is presented an image s(x,y). Note that the set
of Gabor representations 3; ., (¢,7) comprises more data than
the original image s(z,y). Such data expansion is, however,
actually carried out in the brain as confirmed by the fact that
the visual information is transferred from the retina to the pri-
mary visual cortex via 10° fibers of the optic nerve but in the
primary visual cortex it is encoded by 108 — 10? simple cells
(100-1000 times expansion at cortical level [8]). We suggest
to interpret this data expansion as a means used by the brain
to facilitate image analysis and propose a method for further
enhancement of information structuring in cortical filters and
extraction of representations in a lower-dimension space which
can be used for automatic object recognition.

3 Thresholding,
orientation competition and
lateral inhibition

3.1 Thresholding for distinguishing
light-to-dark transition orienta-
tion

Note that the quantities 5; (£, 7) computedin (5) depend lin-
early on the input image s(x, y) and are complex. For reasons
to become clear below, we do not use the real parts of Ga-
bor representations. We consider the imaginary parts of the
quantities (5) as net inputs to the cortical cells whereby the
output activity a; o, (€,7) of a cell with receptive field centered

on a point with coordinates & and 1 and characterized by main
wavelength A; and wavevector orientation ¢ is determined as
the imaginary part of the complex quantity 3; (&, 7) comput-
ed in (5) if this part is positive and is set to zero if this part
is negative:

aj,e(€n) = (5,0 (&m) i I(55,4(&m) >0 (6)
aje(€,m) =0 if (55,4(&m) <0 (7

The motivation for this transformation is as follows:

(¢) The informationprovided by the real parts of the Gabor
representations is redundant, since the real parts of two
Gabor representations for oposite orientations ¢ and
@ + 7 are identical. Therefore, the real parts of Gabor
representations cannot be used to discriminate between
light-to-dark and dark-to-light transitions. At present
we do not know how the real part can effectively be
used to give information which is additional to that
provided by the imaginary part.

(¢¢) The information provided by the imaginary parts is
also redundant, since the imaginary part of a Gabor
representation 3; ,(&,7) for orientation ¢ is a nega-
tive of the imaginary part of the Gabor representation
35 o+m(&,m) for the oposite orientation ¢ + 7. In con-
trast to the real parts, this redundancy can be alleviat-
ed by dropping values which are negative. This choice
is in part biologically motivated, since negative, i.e. in-
hibitive, input to cortical cells cannot cause them to
fire. Eqgs. (6-7) present a kind of thresholding with a
threshold zero.

Fig. 2 shows a synthetic input image which is used in the
following to illustrate the proposed method. Fig. 3 shows
the absolute values of the imaginary part of the Gabor rep-
resentations (absolute values have to be taken for graylevel
visualization, although taking two colours to distinguish posi-
tive from negative values would be much more informative) for
fixed magnitude of the wavevector (A & L/40) and different
wavevector orientations ¢ (¢; = 27i/16,¢ = 0...15). Since
absolute values are visualized, the imaginary parts of Gabor
representations computed for ¢ and ¢ + 7 appear as identical
(compare the pairs of images in the first and third and second
and fourth row for each column of Fig. 3). If shown in two d-
ifferent colours used to represent positive and negative values,
they would, however, look different since they are negatives
of each other. This asymmetry becomes explicit by dropping
the negative values in the thresholded representations.

Figure 2: A simple input image.

3.2 Orientation competition for in-
creasing orientation sensitivity

Although the above mentioned redundancy has been removed
by the thresholding, there is still a considerable redundan-
cy left. In particular, each edge line is enhanced in several
thresholded representations. These results seem to be in con-
trast with the high orientation sensitivity of the visual system
of mammals as confirmed by psychophysical and neurophysi-
ological experiments.

Elsewhere [6, 7] we proposed a method to improve the ori-
entation sensitivity of the cortical representations by a winner-
takes-all competition between all quantities a; ,,(€,7) with the
same values of £,  and ;7 but with different values of . One
should point out that there is a certain biologically motivated



Figure 3:

imaginary part of the Gabor representations. The first

Images based on the absolute values of the

row of images correspond, left to right, to orientations
w; = 2mi/16,7 = 0...3. The second, third and fourth row
correspond to orientations ¢; = 27i/16,i=4...7,1=8...11

and 7 = 12...15 respectively.

rationale behind that decision. It is known from neurophysio-
logical research that the simple cells in the primary visual cor-
tex of mammals are organized in columns and hypercolumns in
which they are strongly interconnected. The orientation com-
petition we propose corresponds to inhibitive interconnections
between cortical cells whose receptive fields have the same size
and are centered on the same point of the visual field, but are
oriented in different directions. More precisely, we model this
winner-takes-all orientation competition in the following way

bje(€:m) = aj,6(£,m) (8)
if a]#ﬁ(gvn) = max{aJ@(f,n) | Vo)

bje(&m) =0 (9)
if a]#ﬁ(gvn) < max{aJ@(f,n) | Vo)

whereby the quantities b; ,, (€,7) should be considered as the
new representation (i.e. the new cortical cell activities after
the competition is completed). This scheme better discrimi-
nates among different orientations. The effect of orientation
competition is that if an edge line is enhanced in a represen-
tation corresponding to a given orientation ¢, the same line is
suppressed in the representations which correspond to neigh-
bouring orientations.

3.3 Lateral inhibition for removing
‘shadow’ lines

An interesting effect is that if an edge line is enhanced in a
representations which corresponds to a given orientation ¢,
the same line appears in the representation corresponding to
orientation ¢ + 7 in the form of a pair of parallel lines whose
intensity is weaker and which enclose the actual edge line. We
refer to such lines as shadow lines. To remove this evident re-
dundancy, we next introduce a lateral inhibition mechanism in
such a way that the actual edge line can suppress the shadow
lines. For this purpose, we let a strongly activated cell with
receptive field parameters ;7 and ¢ suppress all less activated

cells having the same receptive field parameters j (size) and
¢ (orientation) but centered on neighbouring positions within
a distance \; along a line with orientation ¢. More precisely,
we compute new representations ¢; ,(€,7n) as follows:

crp(&n) = by o(€,m) (10)
if b5 ,(&n) =maz{b_; ,(&+ vAjcosp,n + vAj sing)

| Yve(-1,1)}

c0(&m) =0 (11)
if b5 ,(&n) <maz{b_; ,(&+ vAjcosp,n + vAj sing)
| Yve(-1,1)}
and refer to them as cortical images. Fig. 4 shows the cortical
images computed in this way for the input image of Fig. 2.
Note that each edge line in the input image is enhanced in a
distinct cortical image and this property of the method can
be interpreted as decomposition of a geometric object into
edge lines. In this way, the cortical images computed with
the involvement of thresholding, orientation competition and
lateral inhibition deliver more structured information than a
traditional edge detector such as a Laplacian operator and the
previously considered representations.

Figure 4: Cortical representations computed by applying

thresholding, orientation competition and lateral inhibition.

4 Application to object recog-
nition

Next we use the cortical images for extracting a set of image

descriptors to be used for object recognition. Since we have

no hints from neurophysiological research about how cortical

images could be used in the process of object recognition, we

have to make hypotheses about the further representation and

processing of visual information. Let us consider the following
quantities to be called in the following the descriptors:

Cie = /c;,¢(£,n)d£dn, JET, ¢ €0,27). (12)

Each of them can be interpreted as the cumulative activ-
ity of all cells with the same wavevector orientation ¢ and
main spatial frequency wa’?, independently of their positions
(¢,7) In the visual field. This naive interpretation is based on



the premise that cells doing similar things (in this case cells
with identical receptive fields but responsible for different ar-
eas of the visual field) might contribute in a similar way to
cell activities computed at higher stages. Fach of the quan-
tities (12) might, for instance, correspond to the activity of a
corresponding higher abstraction level cell that receives acti-
vating stimuli from all lower level cells with the same receptive
field form, size and orientation. We have to admit that we are
not aware of neurobiological evidence that would confirm this
hypothesis. Computing the quantities C; ,, according to (12)
might however make sense for one reason: they are not sensi-
tive to the particular position of an object in the visual field,
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Figure 5: The ultimate cortical representations cjo(é5m)
computed using thresholding, orientation competition and lat-

eral inhibition.

Fig. 5 shows a plot of the descriptors C'; ,, for one fixed
value of j (A; & L/40) and different values of ¢, ¢ € [0,27).
Each of the plotted values of C o, p; = 274/16, ¢ = 0...15,
is simply the energy of the respective image in Fig. 4. The
plot exhibits three very clear peaks which can be interpreted
as three dominant edge lines in the original input image.

The developed method is very robust for translations, ro-
tations and scaling. If, for instance, the triangle in the input
image is shifted, it would produce virtually the same plot as
the one shown in Fig. 5. A rotation of the triangle would lead
to a circular shift of the plot. If a triangle of different form
is taken (unequal edge lengths), there will be a change in the
strength and relative positions of the maxima which can be
compensated by dynamic programming.

5 Experimental results

We use the above developed method for the recognition of
simple geometric objects. Input images, each containing one
polygon, were generated and a system implementing the above
described method was requested to classify the objects accord-
ing to the number of edges they have. Position, size, form and
orientation of each polygon were generated at random. In a
very large number of trials, the method discriminated with
100% reliability between polygons with different numbers of
edges. With the same reliability the method allows to reject
objects which do not fall within this class.

An interesting question is whether the method can be ap-
plied to more complex objects. For this purpose, we applied
the method to the problem of face recognition. A database
database of 300 different face images of 40 persons has been
constructed. Technical details on the database can be found
in [5]. For each of the face images, a lower-dimension repre-
sentation has been computed according to (12) and based on
this representation a nearest-neighbour was searched for each
of the face images. The search was considered to be success-
ful if the nearest neighbour turned out to be an image of the
same person and not successful if it was an image of a different
person. A recognition rate of 99% has been achieved. These

results are better than our earlier results on face recognition
based on more simple models [5, 6, 7].

We are rather confident that interaction of cortical filters,
as exemplified above by orientation competition and lateral
inhibition, is needed to facilitate the process of image analysis
and that this might be one of the actual mechanisms used by
the brain in the early stages of the visual system. In spite of
the excellent results achieved in our experiments on recogni-
tion of simple geometric objects and human faces, we have to
note that a lots of work has still to be done. In particular,
better ways for the extraction of lower-dimension (preferably
syntactic) representations have to be found. Further work is
in progress will be reported elsewhere.
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