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Animals use heuristic strategies to determine from which conspecifics to learn socially. This leads to
directed social learning. Directed social learning protects them from copying non-adaptive information.
So far, the strategies of animals, leading to directed social learning, are assumed to rely on (possibly
indirect) inferences about the demonstrator’s success. As an alternative to this assumption, we propose a
strategy that only uses self-established estimates of the pay-offs of behavior. We evaluate the strategy in
a number of agent-based simulations. Critically, the strategy’s success is warranted by the inclusion of an
incremental learning mechanism. Our findings point out new theoretical opportunities to regulate social
learning for animals. More broadly, our simulations emphasize the need to include a realistic learning
mechanism in game-theoretic studies of social learning strategies, and call for re-evaluation of previous

findings.
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Throughout the animal kingdom, individuals exploit informa-
tion that has been gathered by others. Animals ranging from in-
vertebrates (Reviewed in Leadbeater and Chittka, 2007; Leadbeater
et al., 2006; Fiorito, 2001) to great apes and humans (Tomasello,
1999; Whiten et al., 2007; Bonnie et al., 2006, for example) exhibit
forms of social learning.! The widespread use of social learning
among the taxa is caused by its enormous ecological advantages
under many circumstances (See for example Kendal, 2005; Coolen
et al,, 2005; Bonnie and Earley, 2007, and references therein).
Evolution favored social learning because it allows individuals to
be flexible and adaptive learners while avoiding the dangers as-
sociated with individual exploration (Boyd and Richardson, 1988;
Zentall, 2006). Ecologists typically stress the fact that individu-
als benefit from copying behavior from others because it saves
them the costs of asocial learning (Laland, 2004). Indeed, Zentall
(2006) remarked that the behavior of others has often already been
shaped by its consequences and might therefore be assumed to be
safe to copy.

Unsurprisingly, social learning comes in many flavors. Various
forms of social learning have been identified (Zentall, 2006) and
the underlying physiological mechanisms range from fairly simple
to thoroughly complex (Noble and Todd, 2002). However, when
studying the dynamics and ecology properties of social learning
one can ignore the differences in implementations and consider
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the exchange of information only (Coussi-Korbell and Fragaszy,
1995). This makes it possible to evaluate the advantages of social
learning in theoretical studies focusing on the game-theoretic and
computational aspects (e.g. Voelkl and No, 2008; Schlag, 1998).

This theoretical line of research, supported by empirical find-
ings in animal behavior, has shown that the advantage of social
learning is by no means universal. In contrast to intuition, so-
cial learning is advantageous only if one takes certain precautions
(Laland, 2004; Galef and Laland, 2005; Ihara, 2008). Social learn-
ing can support the spread, the acquisition and the persistence of
maladaptive behavior (Giraldeau et al., 2002). This is because social
learners re-use information gathered by others but do not collect
new information themselves. Therefore they are implicitly assum-
ing that the information they gather from others is reliable. There
are circumstances under which this assumption does not hold
(Giraldeau et al., 2002; Laland, 2004; Leadbeater and Chittka, 2007;
Laland et al., 2005; Galef and Laland, 2005). Second hand informa-
tion can be a.o. incomplete, outdated, biased, utterly wrong or al-
ready overexploited by others.

Theoretical and empirical studies have identified a number of
strategies in animals and humans to determine when and from
whom to learn socially (for a review see Laland, 2004). These
strategies allow to use social learning in a more adaptive fashion,
avoiding its potential pitfalls.

In this paper we focus on the type of strategies that regulate
from which conspecifics animals learn socially (directed social
learning strategies or ‘whom’ strategy according to Laland, 2004).
These strategies are heuristics that allow animals to determine
which animals have information that is interesting to copy.
One class of these heuristics try to evaluate the value of the
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demonstrator’s example indirectly through properties that are
assumed indicative such as the age of the demonstrator (Coussi-
Korbell and Fragaszy, 1995) or its social status (Ihara, 2008).
A second class of strategies depend on a direct evaluation of
the pay-offs of the demonstrator’s actions. Copy-If-Better and
Copy-The-Most-Successful-Behavior are examples of this class of
strategies (see Laland, 2004). The first class of strategies will suffer
if the correlation between the adaptive value of an individual’s
behavior and its personal traits is weak. The second class of
strategies requires animals to be able to evaluate the outcome of
a demonstrator’s actions directly. A feat that might not be easy to
accomplish for non-human learners (Laland, 2004).

In this paper, we propose a new type of strategy that focuses
on the pay-offs of actions rather than on secondary traits of the
demonstrator. In addition, the strategy does not require individuals
to assess the pay-off received by others. In this way, the strategy
reaps the benefits of both classes of strategies leading to directed
social learning while avoiding their respective setbacks. We will
refer to this new strategy as Copy-if-similar.

Summarized, the Copy-if-similar strategy can be stated as
follows:

An animal should trust whoever behaves like it would behave
itself under similar circumstances. This is, an animal i should
increase the trust it has in an animal j if and only if j repeatedly
exhibits behavior in a situation x; that is considered to be
adaptive by i. The trust i places in j should generalize across all
situations x,. The amount of trust an animal i places in j should
be proportional to the extent to which it learns socially from
agentj.

Critically, our Copy-if-similar strategy exploits the opportunities
that arise when a new type of behavior is acquired through a
series of learning experiences instead of in a one-shot learning.
Incremental learning allows animals, at each point in time, to
exploit their limited knowledge of the problem at hand to select the
demonstrators that are most informative to them. This makes our
simulations different from the one-shot learning models typically
used (e.g. Schlag, 1998; Noble and Franks, 2002) when evaluating
social learning strategies. Incremental learning might be the rule
rather than the exception when learning complex or novel types
of behavior. For example, Ottoni et al. (2005) report that it takes
typically up to three years before capuchin monkeys master
nutcracking through social learning.

In what follows, we present the Copy-if-similar strategy and
evaluate its benefits in simulations. For this we compare it directly
to an implementation of the Copy-If-Better strategy proposed
by Schlag (1998) as a strategy that is guaranteed to lead to a high
pay-off (given certain assumptions are fulfilled).

1. Setup

We have investigated the question of how animals can direct
social learning by modeling a simple environment with a number
of agents. The agents in this environment have been equipped
with a mechanism that regulates the extent to which they rely
on social learning. The fundamental risk in social learning is to
act on untrustworthy information. Therefore, we equip the agents
with the possibility to change the level of trust they have in
each of the demonstrators. The level of trust in a demonstrator
in turn determines the agent’s reliance on the demonstrator’s
actions for social learning. The level of trust should be regarded
upon as a theoretical construct that could incorporate a range of
psychological mechanisms allowing animals to direct their social
learning to certain members of the local population.

We investigate the learning behavior of the agents by evalu-
ating their performance in simulations under various conditions

while comparing the Copy-if-similar strategy with a version of the
Copy-If-Better strategy adapted to incremental learning.

In all conditions, we consider two populations of agents that
have the same cognitive architecture. The first population enters
the simulations before the second one, and has therefore already
acquired a high level of experience in the simulated environment
when the second population is initiated.

2. Methods

All agents have the same cognitive architecture (Schematically
represented in Fig. 1). The agents operate in a environment in
which a limited number of percepts p (situations, stimuli, objects,
...) can arise. Agents can respond to each percept using one of
a limited set of actions a. Once this action is performed, the
environment returns a reward to the agent. The agents learn both
individually and socially which action to perform in response to
each percept.

In the simulations, time is represented by an integer. At each
time step, all agents are updated, one by one, in a random order.
In each cycle of the model, each agent performs a single individ-
ual learning trial and performs several social learning trials. This
reflects the assumption that social learning is cheaper than indi-
vidual learning. In the presented simulations, social learning does
not restrict an agent’s opportunity to learn individually. So, in our
simulations, social learning is a mechanism that acts in addition
to individual learning rather than instead of it. This is, individual
learning and social learning are compatible.

The behavior of the agents can be captured by a few simple
rules. When learning individually the following sequence of events
takes place (the numbers between square brackets correspond to
those in Fig. 1):

e Step 1: An agent i is confronted with a randomly chosen percept
p drawn from a limited set of percepts [1].

e Step 2: The agent i chooses an action a with which to respond
to the percept based on its policy P; [2]. The matrix P; gives, for
each percept p and action a, the chance of an agent i choosing
action a when confronted with the percept p. Actions which
have been highly associated with the percept through learning
have a higher chance of being selected.

e Step 3: The environment responds to this action with the
appropriate reward V,, as given by the environment pay-off
matrix V [3].

e Step 4: Based on the returned reward [3], the estimated pay-off
Qipq for choosing the action a given the percept p by the agentiis
adapted according to Eq. (1). In this equation « is a parameter
governing the speed with which Qjp, is updated.

AQipa = OfQ(Vpa - Qipa)- (1

e Step 5: The agent i updates the value P(a|p) in its policy matrix
P; [4], effecting incremental changes to the probabilities for the
various actions a given the percept p, based on the changed esti-
mates of the pay-offs. The updating of P(a|p) is done according
to Eq. (2). In the literature on reinforcement learning, this form
of updating action policies is known as pursuit learning (Sutton
and Barto, 1998).2 In Eq. (2) a* is the action for which the cur-
rent estimated pay-off is the highest. This is, a* = max,; Qipq.
After updating its policy P;, an agent stores p, a and the reward
Vyq for consultation by other agents during social learning.

{fora =a": AP(alp) = oy(1 — Pi(alp)), 2)
fora # a* : APi(alp) = o;(0 — Pi(alp)).

2 Notice that the equations governing the simulations are agnostic with respect
to the scale of V.
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Fig. 1. The cognitive architecture of the agents in the simulations and its relationship with the environment. Each agent consists of three matrices: Q, P and T.

After all agents have learned individually, they perform a
number of social learning trials during which they serially sample
the behavior of several other agents. When learning socially, the
following sequence of events take place (the numbers correspond
to the those in Fig. 1.):

e Step 1: An agent i consults the latest percept p and the action
a stored by another agent j during individual learning. This is
analogous to perceiving in what situation j finds itself (percept)
and how it reacts (action) [5]. Agent j is chosen randomly from
the set of agents currently in the simulation.

e Step 2: Based on its own estimated pay-offs Q;p. for the given
percept, the agent i updates its trust Tj; in the other j [6]. See
Eq. (3). Eq. (3) increases the trust of agent i in j if j chooses
an action in response to p agent i currently thinks to have a
higher pay-off than the average expected pay-off. Trust values
are constrained to the range [0, 1]. In Eq. (3), d’ denotes the
action demonstrated by agent j. So, Q;y is i’s estimate of the
pay-off for the action a’ chosen by j.

ar if Z[P,(alp) X Qipa] < Ql'pa”

ATy = R
P —ar if ) [Pi(alp) x Qpal > Qipar-
a

(3)

Under the Copy-If-Better strategy, the trust in another agent
is updated based on the reward received by j when it executed
action a in response to percept p. Therefore, when evaluating
the Copy-If-Better strategy, Eq. (3), which is used under the
Copy-If-Similar strategy, is replaced by Eq. (4). Notice that in
this equation the term Q;py is replaced by a term Vjp, referring
to the actual reward received by the observed agent j when
performing action a in response to percept p. Eq. (4) increases
the trust of agent i in agent j if the expected pay-off of agent i,
using its current policy, for the percept p is lower than the
observed pay-off of agent j for this percept.

if D [Pi(alp) X Qipa] =< Vipa,

a
—ary if Z[Pz(am) X Qipa] > Vjpa'
a

o T

AT = (4)

In Egs. (3) and (4), ot is a step size parameter governing the size
of the trust update.

e Step 3: The agent updates its policy P; for the given percept
depending on the trust Tj; it has in the other [7] according to
Eq. (5). The parameter «s is the step size governing the speed of
social learning.

Table 1
The environment pay-off matrices used in the reported simulations.

Actions
Values 1 (V)

Values 2 (V3)

Actions Actions
Percepts 1 2 3 4 1 2 3 4
1 1 -1 -1 -1 -1 -1 -1 1
2 -1 1 -1 -1 -1 -1 1 -1
3 —1 —1 1 —1 —1 1 —1 —1
4 =1l —1 —1 1 1 —1 =1l =1l

fora = a* : APi(alp) = as x Tj x (1 — Pi(alp)), (5)
fora # a* : APi(alp) = as x Ty x (0 — Pi(alp)).

As can be deduced from the equations above, under the Copy-
if-similar strategy, agents increase the trust they have in others if
the perceived behavior is in line with their own estimates of the re-
wards. If an agent perceives another responding to a percept with
an action which it thinks to be rewarding, the level of trust it has
in this agent will rise.

All matrices P; are initialized with random values between 0
and 1 with the constraint that each row must sum to 1. The ma-
trices Q;, containing estimates of the matrix V that are progres-
sively constructed by the agents over the course of a simulation,
are initialized containing only zeros. At the start of the simulation
the matrices T; contain only ones signifying that initially trust is to-
tal. However, initiating the matrices T; with zeros leads to similar
results (results not shown).

As experimenters we evaluate an agent’s policy by calculating
the expected performance E according to Eq. (6).

E=) " Pialp) x Vp. (6)

p

3. Results
3.1. Simulation parameters

Both population 1 and 2 contain 40 agents. Population 2 enters
the simulation after time tick 50. Simulations are run for 200 steps.
Parameters «q, as, oy and o are set to 0.1. During each time step
of the model, each agent performs one individual learning trial and
five social learning trials. We used 4 percepts and 4 actions in the
simulations reported below. The environment pay-off matrices V
used in the reported simulations are given in Table 1.
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Fig.2. Results of simulation 1 (averaged across 50 runs). The top panels (a-b) depict the mean performance of the agents using either the Copy-if-similar or the Copy-If-Better
strategy to regulate their trust in others. The bottom panels (c-d) show the mean trust (T), for both strategies, each population has in each other population as a function of
time. The legend annotation ‘1 in 2’ means the trust population 1 has in population 2, etc.

3.2. Simulation 1: Identical learning tasks

In the first simulation the Copy-if-similar strategy is directly
compared with the Copy-If-Better strategy under favorable circum-
stances. The V matrix to be learned by both populations is given as
V; in Table 1. The results of simulation 1 are depicted in Fig. 2.

Simulation 1 is conceived to be a situation that favors social
learning. Social learning allows population 2 to learn faster than
population 1 (and to catch up with it). The main conclusion to be
drawn from the results is that both strategies lead to a high reliance
on social learning. Ultimately, the performance of both populations
reaches the maximum. So, under favorable circumstances, both
strategies lead to a similar learning trajectory.

3.3. Simulation 2: Different learning tasks

In the second simulation, the second population we introduce
is required to learn a different task than the first population.
The pay-offs for population 1 are governed by V; while the pay-
offs for population 2 are governed by V, (see Table 1). This
models a situation in which animals are confronted with unreliable
demonstrators. While unlikely to occur in reality under this form,
this situation poses a good test case for any strategy that directs
social learning to reliable demonstrators.

From the results (Fig. 3) it is clear the Copy-if-similar strategy
can cope with this situation while the Copy-If-Better strategy rely
heavily on the demonstrations by population 1 (because of the high
yields). However, for population 2 this is not adaptive. The Copy-
if-similar strategy allows the agents to assess the quality of the
demonstrator based on their past experience. This enables them
to attach proper weights to the demonstrations.

3.4. Simulation 3: Modeling the trust-matrix as an adjacency matrix

In the two simulations above, we have assumed that there is
an equal probability for an agent to observe every other agent.
Agents learned how much weight they should attach to the
observations. However, this implementation requires animals to
maintain a set of weights corresponding to every other animal
in the population. This might pose somewhat of a memory load.
More importantly, agents were required to be able to perceptually
distinguish between individual members of the population.

The need for individual recognition can be resolved in two ways,
either by assuming that agents can distinguish between a few
different, meaningful, classes of fellow agents. This was simulated
by Vanderelst et al. (2008). Alternatively, it is not required that
the trust matrix is explicitly memorized by the animals. This
information could be partially offloaded to physical behavior of
animals. Animals could try to spend more time in the vicinity
of animals when found trustworthy. In this way, the proximity
of animals to each other would encode the trust they have in
each other. This could lead to self-reinforcing biases in their
observations. This second solution will be explored in this section
of the paper.

To investigate the performance of the strategies with this adap-
tation, we modeled the trust matrix as an adjacency matrix, giving
the chance for each agent i to observe an agent j during a social
learning trial. In simulation 1 and 2, an agent i had an equal prob-
ability to observe each other agent j. The trust value determined
how much weight i should place on the demonstrations ofj. In con-
trast, in simulation 3, we take T to be a matrix of chances giving for
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Fig. 3. Results of simulation 2 (averaged across 50 runs). The top panels (a-b) depict the mean performance of the agents using either the Copy-if-similar or the Copy-If-Better
strategy to regulate their trust in others. The bottom panels (c-d) show the mean trust (T), for both strategies, each population has in each other population as a function of
time. The legend annotation ‘1 in 2’ means the trust population 1 has in population 2, etc.

each agent i the chance of observing j. For this purpose Eq. (5) was
reduced to Eq. (7).

{for a* : APi(alp) = as x (1 — Pi(alp)), 7)
fora # a* : APi(d'|p) = as x (0 — Pi(d'|p)).

Also, since T contains probabilities, additional equations are
needed to control the correct updating of T in function of ATj;. This
is, ATj; as given by Egs. (3) and (4) must be transformed into a series
of ATi} for every agent j such that the sum Z};l Tjj is equal to one
at all time. If ATj; is positive, T is updated according to ATi} given
by Eq. (8). When ATj; is negative, Eq. (9) is used.

) forj: AT; = ar(1—Ty)
lfATij>0{forj/;éj: AT = ar(0 — Ty) (8)
. forj : ATI-;- =or(0—Ty)
if AT; < 0 {forj/ £Ji AT =ar(1—Tp). 9)

To summarize, in simulation 3, the algorithm outlined under
‘Methods’ is altered in two ways: (1) The agent j from which an
agent i learns socially, is no longer chosen randomly but according
to the probability T; in matrix T. (2) The update of the policy P;
is no longer attenuated by the level of trust agent i has in agent j
(Eq. (5) is replaced by Eq. (7)).

The results in Fig. 4 show that the Copy-if-similar strategy still
copes very well under these circumstances while the Copy-If-Better
strategy fails. As in simulation 2, the agents of population 2 place
too much confidence in population 1. Because a slight bias in T is
reinforced, all agents quickly converge to a situation where they
uniquely observe members of population 1.

Representing the trust matrix containing the chances for each
agent to observe another, as the spatial distribution of agents is

not trivial. The trust matrix does not satisfy the requirements of a
distance matrix: it is not symmetrical and the triangle inequality
is not guaranteed. In fact, the trust matrix, being an adjacency
matrix, can be thought of as a directed graph. Fig. 5 illustrates this
by plotting a directed graph based on an arbitrary matrix T using
the Fruchterman and Reingold’s algorithm (1991) implemented
by Butts et al. (2008).

Kruskal’s Non-metric 2D Multidimensional Scaling (Kruskal,
1964; Venables and Ripley, 2002) was employed to assess
whether the trust matrix could be partially fitted using a spatial
representation of the agents. In effect, this algorithm tries to place
the agents on a 2D plane such that the ordinal distance between
each agent i and agent j was inversely related to the chance of i
observing j. This is, a monotonic non-linear relation between Tj;
and the spatial distance between agents was imposed. Because
the scaling algorithm assumes a symmetrical distance matrix, a
symmetrical matrix S was derived fromT asS = 1 — %(T +TD.
A spatial representation was fitted to S for each time step of the
50 replications of simulation 3. The mean chance for an agent i to
observe an agent j in function of the fitted distance between them
was calculated. The results are depicted in Fig. 6.

From Fig. 6 it can be seen that the trust matrix T can, to a
certain extent, be represented as distances between agents: agents
trusting each other more were placed closer to each other by
the scaling algorithm. Moreover, mean initial stress of the fitted
solutions (using a random spreading of the agents in space) was
58.83 (sd: 6.51). The mean final stress was 35.99 (sd: 3.48). Stress
Ris calculated using Eq. (10) (Kruskal, 1964). In this equation, f (S;)
is the distance fitted to the trust value Sj;.
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Fig.4. Results of simulation 3 (averaged across 50 runs). The top panels (a-b) depict the mean performance of the agents using either the Copy-if-similar or the Copy-If-Better
strategy to regulate their trust in others. The bottom panels (c-d) show the mean trust (T), for both strategies, each population has in each other population as a function of
time. The legend annotation ‘1 in 2’ means the trust population 1 has in population 2, etc.

Population 1

Population 2

Fig. 5. A visualization of the agents and the trust matrix using Fruchterman and
Reingold’s algorithm at time step 150 in a single replication of the model. The circles
represent each of the 40 agents in the simulation. The arrows represent the trust
placed by each agent in other agents. Only trust values equal to or larger than 0.01
are visualized. For example, agent i in population 1 trusts agent j in population 1
and agent i is trusted by two other agents from the same population. Notice that,
at this stage of the simulation, two subnetworks of agents have formed that trust
each other only. As indicated in the figure, these groups correspond to Population
1 and Population 2. This figure illustrates the fact that matrix T can be represented
as a directed graph.

_(F(Si) — Si)?
ij

25
y

R =100-

Thus, agents are able, at least partially, to use distance as a
means of ‘storing’ the trust they have in others. They could restrict
their attention to those agents that are closest to them. This re-
duces the need to recognize all agents individually.

4. Conclusion

The simulations presented in this paper show that a strategy
based on a limited (and readily available) knowledge of the en-
vironment is viable when incorporating a learning mechanism
that requires multiple learning trials. The presented strategy re-
mediates the problems that arise when the Copy-If-Better strategy
is presented with untrustworthy demonstrators while also being
more parsimonious. The Copy-if-similar strategy provides an alter-
native to the Copy-If-Better strategy for animals to choose whom
to copy. Simulation 3 showed one possibility for implementing the
strategy while reducing the need for detailed perception of others.

In summary, the Copy-if-similar strategy might be considered as
a more robust variant of the Copy-If-Better strategy.

The parsimonious approach of not relying on the observation of
the outcomes of the action of others, also makes the Copy-if-similar
more robust with respect to time constraints. Under the Copy-If-
Better strategy, animals need to observe pay-offs that might be
delayed. In this case, animals must be present when the pay-off
finally arrives in order to observe it. Additionally, they must be able
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Fig. 6. The chance of an agent i to observe and agent j in function of the distance between them as fitted by Multi Dimensional Scaling (in rank order). The results are split
according to different time slices of the simulation. Results averaged across 50 replications.

torelate it to the (right) previous actions of the demonstrators. This
might be assumed to be harder as more time passes between action
and pay-off. By only taking into account the actions of others, the
Copy-if-similar avoids these timing issues.

Importantly, in the spatial analysis presented in simulation 3,
fitting a perfect spatial model to the matrix T proved impossible.
Mathematically, this follows directly from the properties of adja-
cency matrices. Therefore, while the spatial aggregation of animals
might support the current implementation of the presented strat-
egy, it can not do so completely. Some reliance on memory and per-
ception (individual recognition) will be necessary to complement
this.

Two broader conclusions can be drawn from the simulations.

First, computational studies of social learning should model the
temporal dynamics of learning realistically. Schlag (1998) choose
explicitly to model agents without internal temporal dynamics.
However, as far as learning is concerned, incremental changes over
time in the internal states of agents seem to occur often. This is
demonstrated by the learning curves for a wide range of learning
tasks. As shown in the simulations, when allowing for incremental
learning, opportunities arise that might be exploited by animals
that go unnoticed when modeling learning as a one-shot process.

Second, as noted in the introduction, authors have typically
been ignoring the underlying implementations when evaluating
social learning strategies by focusing on the information trans-
mission only (Voelkl and No, 2008; Schlag, 1998). However, when
evaluating the plausibility of these strategies, it is necessary to
evaluate the possible implementations of the strategies (Laland,
2004). Strategies requiring less resources can be assumed to be
more likely to evolve and to be more common in nature. For this
reason, we have included an analysis showing how the cognitive
and perceptual load of the presented strategy can be partially
offloaded to the physical aggregation of animals. This shows that
the complexity of learning strategies should be considered in
terms of implementations rather than in terms of computational
complexity. The physical world - here the location of the agents
in space - might allow for simpler implementations of an algo-
rithm (See Veelaert and Peremans, 1999; Lee, 1994, for analogous
examples in perception and action control).

While the presented strategy was proposed purely on theoret-
ical grounds, some predictions about which species might use this
type of strategy are possible. In particular, animals capable of learn-
ing complex tasks requiring a long learning process and living in
stable groups that allow for multiple encounters between the same
animals are possible candidates. Primates might be the group of
animals in which the occurrence of this strategy is most likely (for
example, see the data reported by Ottoni et al., 2005). Indeed, some
evidence for the existence of the usage of the Copy-if-similar strat-
egy exists in humans. Koenig and Harris (2005) report experiments
in which children from the age of 4 learned the names of novel
objects from people who have shown to be trustworthy earlier in
the experiment. They do not endorse names supplied by people
who earlier misnamed objects known to them (e.g. naming a ball
as a shoe). Language is probably the best example of a skill that

is learned socially through repeated observation. Therefore, this is
exactly the sort of social learning that could benefit from the strat-
egy presented in this paper. It remains to be seen whether other
animals exploit the theoretical opportunities pointed out in this

paper.
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