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Efficient episode encoding for spatial navigation
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A method for familiarity mediated encoding of episodic memories for their inferential use
in spatial navigation task is proposed. The method is strongly inspired by the state-of-the-art
understanding of the hippocampal functioning and especially its role in novelty detection and

episodic memory formation in relation to spatial context. The model is constructed on the
presumption that episodic memory formation has behavioral, as well as sensory and
perceptual correlates. In addition, the findings regarding hippocampal involvement in the
novelty/familiarity detection and episodic memory formation, together with the existence

of a straightforward parallel between internal hippocampal and abstract spatial
representations are incorporated in the model. A navigation task is used to provide an
experimental setup for behavioral testing with a rat-like agent. For this purpose, a framework

that connects robot navigation and episodic memory representation is suggested.
The computations are adapted for a real-time application. Simulation results show encoding
of episodes and their use for navigation.
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1. Introduction

Behavioral studies have found a convenient testbed in

robotic simulations due to the embodied nature of

both living organisms and robots. There are three

systems that have to be considered in making this

parallel: a sensory system, an action system, and a

system that connects both. The connecting system can

have arbitrary complexity, ranging from simple coupling

between the sensing and action to a detailed model

of integrative, perceptual, memory, attentional, and

motivational processes.
Many spatial navigation tasks in robotics are inspired

by navigation behavior of animals. Insects’ behavior

have been simulated in Leerink et al. (1995),

Lambrinos et al. (2000), Svennebring and Koenig (2004),

and Wehner et al. (1996). Insects’ navigation is mainly

reactive in nature, while the behavior of mammals

is memory and purpose driven (McNaughton 1989,

Muller et al. 1991, Schmajuk et al. 1993, Burgess et al.

1994, Blum and Abbott 1996, Prescott 1996, Touretzky

and Redish 1996, Trullier and Meyer 1998,

Balakrishnan et al. 1999, Foster et al. 2000).
We propose a model suitable for simulated or

embodied behavior that facilitates inferential reuse

of experienced memories. Many models in computer

science and robotics exploit the characteristics of

the semantic memory – memory for facts. Actually,

animals and robots gather continuously information

about the surrounding world through experiencing

episodes of events. Higher organisms can encode such

subjectively experienced episodes, so their further

actions are determined to a big extension of these

remembered episodes. Therefore, memory determined

behavior that we model relies on the neural mechanisms*Corresponding author. Email: emilia@brain.riken.jp
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underlying episode formation. Episodic information
encoding is inspired by the hippocampal modeling
and with this respect our work is most closely related
to Burgess et al. (1994), Foster et al. (2000), Touretzky
and Redish (1996), Trullier and Meyer (1998).
We understand episodic memory as including

event information within its temporal relatedness and
directionality, as modeled in theoretical studies. To
confine the theoretical neural modeling studies with the
behavioral setup, we argue that episodic memory copes
naturally with the sensory, perceptual, and behavioral
character of learning of an embodied agent. The
memory has to be flexible in both: encoding and retrieval.
Flexibility, as opposed to exact storage, puts forward
the need to selectively store the incoming perceptual
information, judging what is new, or what is very similar
to an experienced one. The criterion of familiarity
determines the behavioral choice in the retrieval phase.
Discrimination of novelty and familiarity is therefore

a central aspect of this work. Novelty is a known factor
that gates learning in natural and artificial systems
(Marsland 2003). The relation between novelty and
behavior has received much attention by experimental
neuroscientists (Knight and Nakada 1998, Bevins and
Bardo 1999, Lisman and Otmakova 2001, Moses et al.
2002, Li et al. 2003, Kemp and Manahan-Vaughan
2004), but there is not enough evidence to build a
good computational model. The hippocampus is a
brain structure where episodic and perceptual informa-
tion come together, and where environmental novelty
is signaled. Therefore we develop a novelty method
that is inspired from hippocampal functioning and
we optimize it for robotics implementation. Novelty
detection is related to experienced episodes rather than
a novel place in the environment, as in other robotic
studies (Pfeifer and Scheier 1999, Barakova and
Zimmer 2000).
The base for thismodel is the hippocampal functioning,

since the hippocampus can effectively perform the follow-
ing functions in parallel: episodic memory encoding, and
novelty judgment, in relation to spatial behavior.
The paper is organized as follows: in section 2

the hippocampal paradigm and the robotics task are
confined in an unified framework. The computational
model, following the proposed framework, is developed
in section 3. Section 4 shows the episode encoding for
memory-based navigation. A discussion of the state
and the perspectives of this research is made in section 5.

2. Confinement of the robotics formalism and the

hippocampal paradigm

Sensed information, together with the memory experi-
ences, goals, and anticipations, form perception in the

brain which in turn determines the behavior of the
animal (Pfeifer and Scheier 1999, Barakova and
Lourens 2002). The expression of the behavior is a
concrete action. This relation can be expressed as

a cycle with two connecting points: the organism and
the environment.

The organism gets sensory information from the
environment, and acts upon it. The world changes
continuously, so every other action is applied on an
ever changing environment. The new sensation forms a

perception in the changed mind, since the preceding
percept might have changed the expectations, the
understanding, the certainty of the mental representa-
tion etc., i.e. the brain has changed as well. Therefore,
the interplay between perception and behavior connects

two changing systems: the mind and the environment.
If expressed graphically, this interplay can be
represented by a spiral, as shown in figure 1. Since the
difference between two perceptions is usually small, it

is easy to reuse the old model of the world by only
distinguishing what has changed, i.e. the novel part.

In addition to the external perception–action loop,
that connects the organism and the environment,
an internal loop associates the current environmental
stimuli with the encoded memories (figure 1). One

possible intersection point of the past and present of
the two systems – the one that stays for the interaction
between the organism and the environment and the
other that is responsible for the changes within the
organisms’ brain – is to be found in the episodic

memory.
Brain studies have shown that the hippocampus,

area CA3 in particular, is primarily involved in episodic
memory encoding (Bunsey and Eichenbaum 1996).
Experimental evidence has also shown that pyramidal
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Figure 1. Spiral model of organism–environment

interaction.
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cells in area CA1 code for spatial location in terms
of environmental queues and memorized episodes.
Others have shown an experience dependent expansion
and shift in center of mass, relative to behavioral
trajectory (McNaughton 1989), as well as finely-tuned
responses to novel/familiar stimuli (Li et al. 2003,
Moses et al. 2002).
The EC II and III are the areas, where spatial location

signaling has closest relation to the sensory representa-
tion. The sensory-bound pattern is further transferred
through the direct and the indirect pathways from the
enthorinal cortex to CA1. During the indirect path the
representation, comes from EC and projects to DG
(not shown in figure 1) and CA3 area, where orthogonali-
zation and episodic memory encoding take place. The
direct pathway carries projections from EC to CA1,
where no substantial processing takes place. Jensen and
Lisman (1996), O’Reilly and McClelland (1994), and
Vinogradova (2001) provide indirect evidence that the
CA1 may have a comparative function in processing
information that comes through these pathways.
Our hypothesis is based on the evidence that sensory,

behavioral, and episodic memory information come
together to form a representation in CA1 area of the
mammal hippocampus. In addition, it is tuned by a
behavioral feedback. This representation determines
the future behavior, and indicates novelty. It would
therefore determine what needs to be remembered and
what can be forgotten.
Based on this hypothesis, we define the computational

scheme as shown in figure 2. The scheme aims to
confine the hippocampal functioning with the robotics
formalism, therefore the model is not neurophysio-
logically precise. The modeled areas are denoted as
superficial EC, CA1, CA3 to indicate this imprecision.
This scheme accentuates on the superficial CA1
(SCA1) area. The representation in SCA1 is formed
under the influence of the sensory-bound representation
from the superficial EC (SEC) area and the formed
episodic memories on the basis of recent sensory history
in the superficial CA3 (SCA3) area. The information
from the learned episode from SCA3 and the sensory-
bound information coming directly from SEC forms
the pattern that controls the upcoming behavior. At
the same time the interplay between the patterns in
SCA1 and SCA3 signals for novelty. This signaling indi-
cates whether encoding has to take place, or the episode
is familiar already. Subsequently, during recall, the
perforant path input initially has a stronger influence
on activity in SCA1. However, for familiar stimuli, the
pattern of the activity arriving from region SCA3 via
the Schaffer collaterals will dominate within region
SCA1, allowing output from region SCA3 to drive
neurons which had previously been associated with the
particular activity pattern in region SCA3.

We formalize the functioning for the purposes
of a robotics task by assuming that the representation
D in SCA1 evolves under the action of sensor input,
memory (for episodes), and behavior, denoted by S, E,
and B, respectively.

dD

dt
¼ fðSþ Eþ BÞ � �I, ð1Þ

where f denotes a functional dependence, and �I is a
self-inhibitory term. For a robotic framework it is feasi-
ble to consider discrete processing. Therefore, formally
D is a set of n discrete events d, defined by a considerable
difference in the event representations. A single event d,
that is expressed by a specific firing pattern in SCA1 area
is defined by s, e, and b. In formula

d ¼ fs, e, bg ð2Þ

where the sensory component s introduces the current
influence from the external world and constitutes by
feedforward connections. The episodic memory compo-
nent e represents the temporal impact of the sensory
patterns, and is constituted by the lateral connections.
The behavioral component b represents the influence
that the previous action has caused on the current event.

Superficial CA1
comparison

Contextual
information

R
ep

re
se

nt
at

io
n

B
eh

av
io

ra
l f

ee
db

ac
k

Se
ns

or
y-

re
la

te
d

in
fo

rm
at

io
n

Superficial CA3

episode
formation

Superficial enthorinal cortex
II III V

Sensory areas Motor areas

Figure 2. Computational scheme based on the assumed
functionality of the hippocampal formation. CA1–3 denote
resemblance with areas 1–3 of cornu ammonis within the

hippocampus. The scheme accentuates on the comparative
role of the CA1 area. The sensory bound and episodic memory
related representations are projected to CA1 area, where
novelty/familiarity are signaled. The areas are denoted

as superficial CA1, CA3 or EC to indicate that modeling
may not be biologically precise.
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All three components are multidimensional vectors. A
novel event is determined by a change in at least one
component, that is bigger than an a priori known internal
threshold.
The memory component consists of encoded episodes

of events (memory with a temporal reference) E as
formed in SCA3. E is a set of n discrete events occurring
in a temporal order et, t 2 ½1, . . . , n�, defined by a
considerable difference in the event representations:

E ¼ fetg, where t 2 ½1, . . . , n�: ð3Þ

Learning of an episode means that associations can
rapidly be formed among items presented in temporal
proximity. This is especially valid for events, or routes,
where the temporal order is of importance. Therefore
by episode learning the order or the temporal associa-
tion has appeared important rather than or along with
another common feature, and this has influenced the
encoding. So, the events that have been learned as an
episode will tend to be recalled together and after each
other, even if presentation order is changed. In addition,
the following two dependencies between the temporally
related connections are important: contiguity and
asymmetry. Contiguity means that stronger associations
are formed between stimuli that occur near each other in
time than between those that are separated by a larger
interval. Asymmetry determines that the forward
associations are stronger than backward associations.
Figure 2 outlines the entire computational flow

for encoding within the behavioral setup. It briefly
introduces the sensory and motor areas connecting the
memory system, restricted to the hippocampus. There
are feedforward and feedback/recurrent information
flow. In feedforward track, the environmental sensory
information is gathered and transferred to the hippo-
campus and through its direct and indirect pathways
to CA1; the episodic memory system encodes history
of sensory information, before projecting to CA1; the
navigation system, associated with the motor/behavioral
functionality uses the combined representation in CA1.
The feedback behavioral influence has its impact on
the internal hippocampal representation. The feedback
coupling is also present in the temporal processing for
episode formation.

3. Computational model

It is widely known that particular cells in the rat
hippocampus fire when the rat is at a particular location
of the environment (O’Keefe and Nadel 1978).
Because of this feature, these cells are also called place
cells. If the rat moves through the environment,

at every particular place a number of place cells fire.
Cells that code for places in the nearest vicinity fire
most strongly, while the cells that code for a more dis-
tant location fire less. The activity of the place cell can
be modeled by a Gaussian formula for the open environ-
ments, where place cells show non-directional firing.
Therefore, the movement of a simulated rat at every
place of the environment is characterized by a particular
pattern of firing. The activity of each cell, which corre-
sponds to the sensory representation of a single event,
is as follows:

si, tðrÞ ¼ �
kr� cik

exp 2�2ð Þ
ð4Þ

where ci is the location in the space of the center of the
cell’s i-th place field, r is the position of the simulated
rat, and � represents the width of the place field.

The sensory signals are encoded into constellations
of the active place cells. The unique pattern of activity
corresponds to a certain position r in the environment.
The level of activity of every place cell depends on the
distance between the rat position and the place field
centers. For the purpose of real-time processing we
have taken the smallest convex contour of the place
cell representation. Figure 3 shows two activation
patterns from the rat route. They represent patterns of
activation in the simulated EC area. These patterns are
dependant on the external-world and are further
transmitted through the direct and the indirect pathways.

This model follows the information flow as suggested
in the scheme of figure 2. In a previous study we have
used a biologically plausible learning rule that accom-
plishes the computations between and within the areas
EC, CA1 and CA3, as shown in figure 4. The activity
of EC area is projected to areas CA1 and CA3 after
Hebbian adaptation on fan-out connections, shown in
figure 4(a). The activation affects also the inhibitory
neurons within CA1 and CA3 lattices. The inhibitory
neurons in turn affect the rest of the lateral neurons,
as shown in figure 4(b). Lateral excitatory connections
and the temporal learning mechanism promote the epi-
sode formation in area CA3, shown in figure 4(c). The
representations in CA1 and CA3 areas that are caused
by the feedforward projections from EC differ consider-
ably because of the different connectivity between areas
EC and CA3 and areas EC and CA1. While the connec-
tions between areas EC and CA3 are assumed to be pre-
dominantly topological fann-out with a small spread,
the EC is fully connected to CA1.

To adapt the computations for a robotics task, several
simplifications of the biologically plausible learning
process are made. The topology preserving learning
between the EC and CA3 layer does not have substantial
contribution to that formed in CA3 representation so
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that it can influence the robot performance. In contrast,
the self-organizing process between EC and CA1, and
the temporal association learning within the CA3 layer
are essential.
Therefore, the learning process ignores the plasticity

of EC to CA3 connections. The lateral connections
within area CA3 are of primary importance for the
learning process, since they provide the intrinsic
capacity for temporal association. This quality is
obtained by applying a Hebbian rule with an asym-
metric time window over the neurons within the CA3
lattice, where the lateral connections are present.
The asymmetric time window has been simulated to

correspond to the experimental measurements as given
by Zhang et al. (1998), Markram et al. (1997).
The lateral excitatory learning rule is adapted from
the initially proposed by Dayan and Abbott (2001), so
that it fits to the practical constraints of the asymmetric
time window function.

�wt ¼
Xbound

�¼0

ATWð�ÞvðtÞuðt� �Þ þ ATWð��Þvðt� �ÞuðtÞ

ð5Þ

where ATW is the asymmetrical time window function

(figure 5), v and u are correspondingly the post, and

presynaptic lateral neurons, and bound is the time

window size. The first term under the sum can be

explained as long-term potentiation. The second term

causes long-term depression and is therefore equivalent

to the effect of the inhibitory connections in the network.
The representation in the superficial CA1 area is

dependant on the afferent connectivity. A biologically

plausible learning rule between the layers, however, is

replaced by an algorithm that includes competitive

Hebbian learning and vector quantization (Bunsey and

Eichenbaum 1996, Lambrinos et al. 2000). The inter-

changeability of the two algorithms is justified by the

following experiment. The evolution of the network

outputs for both algorithms was examined. The plots

of the output evolution in time are shown in figure 6.
In summary, a modified Hebbian learning mechanism

with 20% projections between the EC-CA3 layers

and inhibitory connections promotes topological self-

organization. The EC-CA1 full connectivity promotes a

different learning outcome – the topological projections

are lost, and self-organization takes place.
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Figure 4. Stages of the biological learning process. (a) Afferent excitation. (b) Lateral inhibition. (c) Episode formation.
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The result of this learning process corresponds to the

episodic contribution e of the proposed event definition

given in equation (2).
The actor–critic model of O’Reilly and McClelland

(1994) most closely resembles the behavioral part of

the organism–environment interaction. At any moment

t, the embodied animate is able to choose an action on

the environment, as well as environment provides it

with feedback. In the case considered here, the simulated

animate{ can choose from 8 possible actions, the

directions of movement on an 8-connected discrete

grid. For a robot, in practice, they are restricted to 3,

since the robot will rarely take turns bigger than or

equal to 90�. The critic is the feedback influence,

that reaches area CA1 in this model. The actor–critic

mechanism regards the actions of the animate that are

directed to finding a particular goal.
The familiarity gating is entirely performed in the

feed-forward track and is considered purely as a func-

tion of the hippocampal formation. The goal oriented

behavior will be used only for illustration of the

animate behavior, and not to optimize its performance.

The mechanism of actor–critic optimization,

based on place cells representation is suggested in

Foster et al. (2000).
A mechanism of actor–critic optimization, based

on place cells representation is suggested in Foster

et al. (2000). It refers to place cells formation in

CA3 area.

Critic b indicates the behavioral feedback

bðrCA1Þ ¼
X

i

wifiðrCA1Þ ð6Þ

where r is the animate’s position, wi is the weight
between the output cell and the i-th place cell as
formed in area CA1. The critic learns the value function
by updating the weights (of the critic) by

�ðtÞ ¼ Rðtþ 1Þ þ�bðrðtþ 1ÞÞ � bðrðtÞÞ: ð7Þ

This reduces the prediction error, that drives learning.
Constant � denotes a discounting factor and R is the
reward at time tþ 1.

At the experiments shown below, the actor makes
use of 8 action cells aj, j 2 ½1, . . . , 8�. At position r, the
activity of the each action cell is:

ajðrÞ ¼
X

i

vji fiðrCA1Þ ð8Þ

where aj is the j-th action cell, and v is the adaptive
weight between the action cell and the i-th place
cell. The first step for the movement direction is taken
randomly with a probability, Pj. However, the next
movement direction is chosen in a random way, but
the possibilities are restricted according to the choices
made in the previous movements Pjðt� 1Þ and
Pjðt� 2Þ, so there is not a random walk-like trajectory,
but smoother orbits with eventual sudden turns.

The actor weights are adapted according to:

�vij / �tfiðrtÞgjðtÞ ð9Þ

where gjðxÞ ¼ 1 if action j was chosen at preferred time
t ¼ tp, and 0 otherwise.

Once a learned episode has been encountered, the ani-
mate follows the episode instead to continue optimizing
its path on the basis of experienced rewards.

4. Results

The experimental setup that shows the applicability
of the proposed episode encoding method for spatial
navigation is set on a two-dimensional (2D) environ-
ment. Some target positions are set that can be reached
by the robot. The robot is positioned at random places
in the environment. The path of the robot from
random initial position to a goal position is defined

{An animate is defined as a simulated animal, a rat in our case.
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different goal locations. (b) Three experienced episodes (D, E, F) that reach a single goal location. (c) The encoded episodes,
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Figure 6. Temporal evolution of the weights. (a) Biologically plausible algorithm. (b) Computationally efficient learning algorithm.
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as an episode. The encoding of an episode depends on its
familiarity. Episodes, that are considered as familiar are
not encoded again. Figure 7 depicts several peculiarities
of the episode learning method. Figure 7(a) shows
episodes that reach two different goal locations, G1
and G3. Figure 7(b) depicts three episodes that reach
a third location – G2. Since two of the experienced
episodes on this plot are very similar as perceived by
the algorithm, they are encoded as a single episode
(figure 7c). Figure 7(c) shows the final encoding, after
all these episodes have been presented to the network.
The dashed line gives the episodes that reach goal G1
and goal G3. The solid line shows the encoding of the
episodes, that reached goal position G2. Episode E
is considered familiar, after episode D was learned.
Episode B (from figure 7a) and episode D from
figure 7(b) are very similar by encoding (this is not
obvious in the particular learning trial). However,
since the two episodes are encoded from a different
direction, both episodes are encoded. From a temporal
point of view this is obvious, although one could argue
that the spatial order of the encoding is reversed only.

5. Discussion

This study aims to show the relevance of
novelty/familiarity discrimination method for robotics
exploration. The algorithm is based on the parallel
between animal and robot exploration that was inspired
by the operation of the rat hippocampus on a very coarse
level. The embodied nature of an animal and robot
makes this parallel useful, and the functional
efficiency of the hippocampal encoding, while per-
forming both tasks — episodic encoding and novelty
detection — suggests an optimal computational scheme.
The model is not biologically precise, but might be
attractive from the perspective of functional behavior.
The impact of novelty is two-fold: it allows an efficient

encoding in the exploration phase and it is a basis for
flexible reuse of memories in the recall (exploitation)
phase. The same computational paradigm is used in
both cases, which makes it suitable for on-line
applications. The obtained results show the applicability
of the novelty-mediated memory encoding method
for spatial navigation. The behavior and the underlying
episodic encoding and retrieval process are analyzed
together, so that the remembering of episodes provides
contextual background for the behavior.
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