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a b s t r a c t

Common coding is a functional principle that underlies the mirror neuron paradigm. It insures actual

parity between perception and action, since the perceived and performed actions are equivalently

and simultaneously represented within the mirror neuron system. Based on the parity of this

representation we show how the mirror neuron system may facilitate the interaction between two

robots. Synchronization between neuron groups in different structures of the mirror neuron system are

on the basis of the interaction behavior. The robotic simulation is used to illustrate several interactions.

The resulting synchronization and turn taking behaviors show the potential of the mirror neuron

paradigm for designing of socially meaningful behaviors.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recent neurophysiological, cognitive, and developmental re-
search clearly shows that there are shared representations in the
brain between perceived and generated actions, between actions
produced by oneself and others (see for instance [14,15,19,25]).
These shared representations, conveyed by the mirror neuron
system (MNS), underlie the process of imitation, social learning,
and prediction of the behavior of conspecifics. Many attempts
have been made to model the imitation process, for review see
[16,24]. However, the imitation that has been modeled so far does
not go further than one directional demonstrator–imitator
interaction. In this paper, we want to make an attempt to show
the potential of the mirror neuron paradigm for social interaction,
in particular for movement synchronization, entrainment, and
interchangeable turn taking between two agents.

Entrainment of timing of social interaction has been investi-
gated in multidisciplinary research on conversation. Conversation
is an exchange of speech between two or more individuals.
Although at first glance it looks like a chaotic process, conversa-
tion usually proceeds smoothly, by having the two parties take
well timed turns. A number of authors have proposed that the
listeners anticipate an upcoming end of a turn by perceiving eye
gaze, body movement, or other semantic, syntactic, or prosodic
queues from the speaker, for reviews see [8,9]. Conversely,
listeners indicate their desire for turn ending. Speech is, in its
essence, a motor act and it is likely that the mechanisms of speech
and turn taking co-evolved, perhaps building on the same
preexisting structures and mechanisms for motor expression [27].

In their theoretical study Wilson and Wilson [27] argue that turn
taking is likely to be successfully modeled by entrainment of
endogenous oscillators.

Mutual entrainment of rhythmic activities has been theoreti-
cally studied as the basic mechanism of the organization of
temporal order by Pavlidis [17]. Endogenous oscillators have been
implicated in a range of cognitive processes, including perception,
motor control, attention, memory, and consciousness [5].

In a robotic setup turn taking behavior is discussed in [6,11].
The turn taking behavior in these studies takes place as a result of
interaction of two dynamical recognizers—Elman type of recur-
rent neural networks that have widely been used to model
dynamic systems. The training has been replaced by a genetic
algorithm, which aims to produce ‘genetically different’ agents.
This will prevent from the low reliability of the interaction process
based on neural learning [5].

We base our interaction behavior on synchronization between
neural lattices that together simulate the mirror neuron-like
function. The neuron firing in every lattice of neurons is modeled
by an oscillatory model.

This paper is organized as follows. In Section 2, we propose
the biological background of the mirror neuron model and the
common coding paradigm. Section 3 connects the biological
modeling to concrete computational framework and shows how it
is applied in a robot setting. The experimental setting and results
of following and turn taking simulations are shown in Section 4.
The discussion (Section 5) summarizes the results and puts this
work into perspective.

2. MNS model for inter agent interaction

The common coding paradigm postulates parity between
perception and action, i.e. the action and perception arise
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simultaneously [10]. A core assumption of the common coding
paradigm is that actions are coded in terms of the perceivable
effects (i.e. the distal perceptual events) that they should
generate. It has the advantages to an information-processing
paradigm which is unable to explain perception in many cases
related to direct action [1,3]. Common coding paradigm has more
solid foundations than selection paradigm and Gibson’s theory of
direct perception [7] which fail to explain another group of
phenomena like memory and imagination that can certainly
originate an action by themselves [1,2].

A growing body of behavioral and neurophysiological studies
support the grounding principles of the common coding para-
digm. As first evidence for direct matching between action
perception and action execution came the discovery of ‘mirror
neurons’ in the ventral pre-motor cortex (PMv) of the macaque
monkey [20–22]. Mirror neurons fire both when monkey carries
out a goal-directed action and when it observes the same action
performed by another individual [23], i.e. the perception and the
action are likely coded in the same way, by the same structures.
More recently, it was found that a subset of these mirror neurons
also responds when the final part of a previously seen action is
hidden and can only be inferred [26]. Therefore, the observation of
an action activates action representations to the degree that the
perceived action and the represented action are similar [13].
Specific neurons in this region respond to the representation of an
action rather than to the action itself.

It can be inferred that the sensory and the motor activations
that represent the same action or intention are related to the
activation of the same area in the brain. One such area is the PMv.
Since the observed, executed, and imagined actions are related
to an activation in a common representation, we schematically
show this phenomenon like the activation from the three events is
projected to the common representation (Fig. 1, the scheme of the
individual agent). Actually, in case of an executed action the
activation in the pre-motor and motor areas occurs in a very short
time for the behavioral time-scale interval, i.e. practically co-
occurs. In the case of two agents that share perceptual space the
common representation for perception and action for each agent
will create a basis for an interaction behavior, as shown in Fig. 1.

Actually, there is more than one representational structure
that gets active by the same event encountered by the sensory
and the motor states. Most of the frontal motor areas receive
robust sensory input (visual and somatosensory) from the parietal
lobe. This pattern of connectivity supports relatively specialized

fronto-parietal area for sensorimotor integration. A posterior area
with mirror neuron properties is located in the rostral part of the
inferior parietal lobule (IPL). Both areas form the MNS. The main
visual input to the MNS originates from the posterior sector of the
superior temporal sulcus (STS). Together, these three areas form a
‘core circuit’ for imitation, one of the basic building components
of social behavior. The information flow from the parietal MNS,
which is mostly concerned with the motoric description of an
action, reaches back to the STS. By macaque, STS and the
equivalent of IPL share patchy connections that overlap particu-
larly well with the locations in which neurons respond specifically
to complex body movements. The STS although considered to be a
part of the ‘mirror system’ [18] do not show any motor activation
itself. In spite of lacking mirror properties, STS neurons seem
to ‘understand’ actions quite well, and it is plausible to assume
that they send (via IPL) preprocessed signals about actions to
the pre-motor areas that include information about the goal or the
meaning of the observed action.

To construct a computational model that can facilitate the
imitation and interaction functionality, we have modeled the
three interconnected structures with lattices of neurons [4].
The direction of the connectivity between the structures differs
while different actions take place. Fig. 2 denotes the information
flow by the observation and the imitation of the same action.
The solid arrows show the part that has been considered in our
model for achieving the imitation functionality.

3. Oscillatory neural dynamics of the MNS and
experimental results

From the framework proposed in the previous section it
becomes apparent that the mirror neuron model that materializes
the common coding paradigm is a useful tool for modeling
interactive behavior. Inter agent interaction is initiated from the
representation of the movement of each robot within the neural
structures of the partner robot. To achieve the imitation
functionality and create a model that is suitable for robotics, we
have to make some simplification. We base our core scheme for
imitation learning on conceptual model of [12], whose experi-
mental work has shown that there are anatomical connections
between the macaque analogous of STS, IPL, and PF areas, and
therefore a Hebbian learning rule can be applied. The particular
network that has been used to simulate the imitation function-
ality is shown in Fig. 3.

In this scheme the role of the STS neurons have the function to
transfer the sensory (visual) stimuli and to account for the
influence of the inhibitory neurons. For a robotic setting, modeling
of the STS area can be reduced to the influence of the inhibitory
neurons. Therefore, the sensory signals project directly to the

ARTICLE IN PRESS

Sensory input

Motor output

Agent 2

Motor output

Agent 1

Excitation Inhibition Coactivation

Memory
system

Memory
system
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IPL area which is associated with multi-sensory integration.
The motor information or the information from the movement
of the wheels is co-activated in the simulated PMv area, which has
sensorimotor integration functionality. The bidirectional projec-
tions between the two areas will insure that both areas represent
the sensory and the motor signals.

The embodied implementation of this model is shown in Fig. 4.
The eight range sensors of each robot project to the sensory
integration area that resembles the functionality of the joined
STS–IPL areas. The two wheels project to the sensorimotor
integration area, which resembles the PMv, as shown in Fig. 4.

Self-organization of rhythmic activity is a fundamental
characteristic of biological systems. In addition, rhythmic activ-
ities are found in any level of the hierarchical structure, i.e. from
the biochemical to the socio-biological level. At neuronal level,
single neurons and networks respond with sequences of spike
bursts to a strong input. From a dynamical point of view, this
means that such neurons generate a limit cycle oscillation in
response to constant stimulation. The natural frequency or
eigenfrequency of the damped oscillation is a result of two
opposing effects, often modeled by the combined effect of
excitatory and inhibitory neurons. Modeling of interacting non-
linear oscillators is a complex problem. Cohen et al. [28] proposed
a simplification of this problem, by making explicit that only the
phase of each oscillator needs to be considered when the coupling
between the oscillators is weak.

We suggest to use entrainment of endogenous oscillators
for modeling turn taking behavior. The mirror neuron paradigm
that allows the behavior of each robot to be represented in the
neuronal structures of its partner makes possible the oscillatory
dynamics of the turn taking process to be modeled through the
individual agents.

The mutual interaction between two robots has to emerge
through self-organizing entrainment of oscillatory neurons.

To check this hypothesis, we construct experimental setting
that consists of two parts. In the first part each robot had to build
sensory-motor experiences by exploring an environment that
comprises a circular arena inhabited by another robot, see Fig. 5a.
In the second part, interactive turn taking behavior emerged,
based on the established oscillatory sensorimotor couplings.

Initially, we constructed the experimental scenario that
performs following behavior for the training phase, see Fig. 5a.
Both robots were consequently taking the role of the follower, in
order to establish adequate ‘mirroring’ couplings between the
lattices that resemble the IPL and PMv areas. IPL served as multi-
sensory integration area and PMv is primarily sensorimotor
integration area.

In the initial experiment the robot-follower determined its
shortest distance reading, which signaled the presence of the
partner robot, as shown in Fig. 5b. The angle between the heading
direction of the follower robot and the placement of the sensor
that detects the shortest distance to the partner robot served as a
sensory input signal. The angle of the change of direction of the
same robot calculated by the detected torque on its wheels is the
motor output value that is fed as a motor input to the PMv area.

If there are two neurons that are activated by the sensory and
motor signals, they will synchronize in a time slot dependent on
the input activation values and the connection strength. In Fig. 6 it
is shown that the stronger the coupling between the neurons, the
earlier synchronization takes place. In this simulation, for
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demonstration purposes only, more realistic but relatively com-
plex model of a neuron was used.

For the robot simulations the neurons of each robot’s mirror
system are simulated as oscillators:

yðtÞ ¼ otðmod 2pÞ (1)

The above equation determines the change of rate of the phase
with the time. o is the frequency of the limit cycle oscillation.
The phase is periodic over the range 2p. If a synaptic coupling H

connects two neurons, their phase equations will be represented
in the following way:

dy1

dt
¼ o1 þH1ðy2 � y1Þ (2)

dy2

dt
¼ o2 þH2ðy1 � y2Þ (3)

where indexes 1 and 2 refer to the first and the second neurons,
respectively. H1 and H2 are periodic with period 2p. We initiate
all the neurons with equal coupling strengths. The rate of change
of the phase by which the oscillators will synchronize is
determined by the following equation:

dy1

dt
¼ o1 þ a1 sinðf� sÞ (4)

We used lattices of neurons with

ai ¼ bi � Ii ðtÞ (5)

where Ii denoted the sensory input and bi represented the native
frequency and the stabilization coefficient, respectively. The
connections between the neurons that receive sensory stimula-
tion and the neurons that receive motor stimulation are adapted
by Hebbian rule. As illustrated in the experiment depicted in
Fig. 6, the lower synaptic strengths do not result in synchroniza-
tion, and the higher the value of the synaptic strength gets, the
synchrony occurs faster. The adaptation of the connection
strengths between these lattices are adapted in a way that after
training both areas will reflect the common sensorimotor
representation that is the basis for interaction behavior:

DwPM�IPLlk ¼ aðPMl � PMlÞðIPLk � IPLkÞ (6)

where PMl and IPLk are the average activation values of units l
and k over a certain time interval. IPL–PMv synaptic plasticity has
the following dynamics: the connection between them is
strengthened if both of them are simultaneously active and
weakened if the activation of one decreases.

In the first experiment the robot-follower tends to synchronize
its motion direction with the motion direction of the leading
robot. Since this is only a computer simulation, we assume that
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the distance sensors are positioned at an equidistant angle around
the robot, so we can have smoother trajectory of the follower.

After neurons from the two lattices synchronize, the two
simulated robots express a simple form of social behavior. The
leader robot performs movements with different complexity, and
the follower (dashed lines) imitates it from its movement
perspective, as shown in Fig. 7.

At the second part of the experimental scenario, the emergent
turn taking was observed. The role of the robot, being follower or
leader at the present moment depends on which robot is ‘within
the visual field’ of its partner. For the training phase, the tag game
is simulated, by which the runner and the tagger functions change
between the robots once the tagger reaches the runner.

After training, the emergent turn taking has to take place
which is expressed by symmetry breaking process after a period of
synchronization. This way the leading robot can become a
follower and later take the lead again. The turn taking, in analogy
to humans, takes place as a result of some subtle or explicit
external stimulation. For the case of the tag game, the external
stimulation is usually caused by losing the runner robot from the
perceptual field, caused by reaching the end of the arena or other
reason for escape of the runner robot.

Fig. 8 shows the neural activation during turn (the left plot)
and in the period of turn taking (the plot on the right).
The desynchronization of the neurons in central part of the right
plot corresponds to the moment of losing the runner robot from
the perceptual field. At that period previous follower changes its
role to a runner, and vice versa.

4. Discussion

Social interaction has wide spectrum of expressions as
synchronous movements, turn taking, gaze sharing, following,
imitation and conversation. We have simulated simple interaction
behaviors of following and turn taking. In the training phase, the
simulated following and the simulated tag game helps to gather
examples and establish the sensorimotor couplings between the
two robots. In the test runs, there is not an external control that
will cause the turn taking behavior. The turn taking is caused by
changing of synchronous firing of the oscillatory neurons.
Although external events are initiating turn change, turn taking
does not take place only by the same conditions as during the
training—turn taking has emergent properties due to nonlinear
oscillations and their interaction. These results resemble turn
taking in speech: an upcoming end of a turn is anticipated by
perceiving eye gaze, body movement, or other queues by the
speaker, or indicated in a subtle manner by the listener.

Important questions for designing a movement interaction lies
in the respective computational role of each brain area that
subserves the internal simulations and shared representations
between self and others. We based our model on the simplified
mirror neuron network, in which the mirroring functionality
is obtained via the self-organization of synchronized neural firing
in two robots that share perceptual space. The emergence is an
important element, but better understanding of underlying
processes and computations will increase the possibilities and
reliability of the interaction behavior.
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