
ELSEVIER Microprocessing and Microprogramming 40 (1994) 697-700

Microprocessing
and
Microprogramming

O n the o p t i m a l Mapping of Fuzzy Rules on standard M i c r o - C o n t r o l l e r s .

Jos Nijhuis, Herman van Aartsen, Emilija Barakova, Walter Jansen, and Ben Spaanenburg

University of Groningen, Technical Computing Science
I:O. Box 800, 9700 AV Groningen, The Netherlands
(phone: +31 50--637125, email: jos@cs.rug.nl)

-- Abst rac t - Once a fuzzy controller is specified by a rule-set, it can be implemented in dedicated
hardware or as a software program. For industrial applications, an inexpensive micro-controller with
limited resources is often selected. The implementation (or mapping) issue then leads to a trudcoff
between operation speed and memory usage. This paperpresents a set of basic transformation rules that
allows the designer to optirnize such a mapping.

1. INTRODUCTION

There are several ways to implement fuzzy rule-sets
I l]. Special hardware has been developed in order to
obtain a high operation speed. Nevertheless most of
the currently realized fuzzy logic applications are
based on software implementations running on a PC,
but most of all on a standard micro-controller. In the
latter case, one is confronted with a trade-off between
processing speed and storage capacity.
A fuzzy logic controller consists of: a fuzzification in-
ferface, an inference engine, a knowledge base and a
defuzzification interface as shown in figure 1.

i . !
! !

,,

~ computational flow
~ information flow

Fig. 1 The structure of a fuzzy controller.

Consider a very simple fuzzy controller with two in-

puts, i.e. x = [xl,x2] r, one output and two fuzzy

rules as follows,

rt: IFx l = A Axe .= /~THENy =

r2: IFx l = C' A x 2 = /) T H E N y =)~'.
The required calculations are performed by only five
different operators: fuzzification (fuz) of the inputs;
aggregation (agr) of the left-hand side of the fuzzy

rules; composition (comp) of the right-hand side o f the
fuzzy rules; combination (comb) of the results of tile
individual rules and defuzzification (defuz) of the out-
put values. A straightforward mapping of our simple

system would require: 4fuz-operations (one per input
term per rule), 2 agr-operations (one for each rule), 2
comp--operations (one for each output term per rule),
1 comb-operation (one for each outpu0 and 1 defuz-
operation. For an actual mapping the total number of
executed operations and the actual realization of the
five different operators may be optimized.
Section 2 will define the starting point for the map-
ping. Next in Section 3 mapping rules for optimizing
the number of required operations are def'med, where-
as in Section 4 mapping rules for increased efficiency
of the operators themselves are discussed. Finally
some conclusions are drawn from the experience to be

reported in the full paper.

2. FUZZY CONTROLLER MAPPING

During the mapping of the fuzzy controller the
derived specification is translated into a set of prtvccs-
sor instructions (code) and data constants (data). 'llm
memory size of a mapping,

mere(< code, data >) , (1)

is defined as the total amount of memory in bytes that
is needed for storage of the code, the data and the Icm-
porary results. The execution time of a mapping,

time(< code, data >), (2)

is defined as the longest (worst--case) period in se-
conds between the setting of the inputs and the too-

0165-6074/94/$07.00 © 1994 - 'Elsevier Science B.V. All rights reserved.
SSDI 0165-6074(94)00034-4

698 J. Nijhuis et al. / Microprocessing and Microprogramming 40 (1994) 697-700

ment newly calculated output values become avail-

able. A mapping operation ~ for a particular target
hardware is given by

.At~(code, data) ---, < code', data' > (3)

The mapping operation changes an initial

< code, data > -tuple into a new tuple that when
executed behaves conform the initial specification. A
mapping sequence is a sequence of mapping opera-
tions.

,-/~seq -~ ~/t~kC)..~k-I O O , . . ~ l (4)

A mapping sequence is acceptable (Jit~acc) if the re-
suiting <code,data>-tuple meets the memory and
speed requirements, i.e.,

t ime(< code, data >) < treq (5)

and

mem(< code, data >) -< mreq. (6)

The Mapping problem is now defined as finding a se-
quence of mapping operations that transforms an in-
ital <code,data>--tuple into an acceptable one as pic-
tured in figure 2.

Fuzzy control ler spec.
+

memory requirements
speed requirements

i

i

i

A:

t r n

.

B
I

execution t ime - - 'w

Fig. 2 Mapping a fuzzy controller onto a mi-
cro-processor. Only mappings in the shaded
region are possible. Boundary A is determined
by maximum processor speed whereas bound-
ary B is determined by the specification o f the

fuzzy controller itself.

The <code,data>-tuple contains the colnplete in-
formation (in machine code) of the initial specifica-
lion. Each mapping operation wil transform the
<code,data>--tuple into a new tuple with different
time and mere values. Depending on our inital posilion
in the mapping space an acceptable sequence of map-
ping operations may require a decrease in time wdue
at the expense of an increased mere value. "Ib be able
to select a right sequence of operations a basic set of
mapping operations have to be defined each having a
precise definition of its impact on the time and mere
values.
The remainder of this paper identifies some of Ihese
basic mapping operations. A distinction is made be-
tween mapping operations that change the number of
operations involved by inserting additional conlrol-,
branch- and test-instructions and those mapping op-
erations that make a trade-off between the meumry
usage and evaluation speed of the operators them-
selves.

3. OPTIMIZATION OPERATIONS

In a fuzzy controller most of the time is used for tile
evaluation of the rule base, fuzzification and defuzzi-
fication. This section will discuss an optimiT~,lion
technique for the evaluation of the rule base by ex-
cluding some rules from evaluation. In general when
new input is presented a fuzzy controller evaluates
the whole rule base using the MIN-MAX or MIN-
PROD operation both taking the minimum of the au-
tecedents. If one of the antecedents is zero, both op-
erations evaluate to zero. On the other hand terms of
the same set are correlated as far as their values con-
cern. If two terms, say A and B, are disjunct i.e. non-
overlapping, and A is activated then B is zero.
Summarizing :
- A production rule evaluates to zero whenever one of
the antecedents is zero
- If A and B belong to the same set and are disjm,ct
then A(x) > 0 implies B(x) = 0.
These two facts give rise to some optimizations, ix'. if
two terms A and B of the same set are non-overlap-
ping and A(x) > 0, then all rules including the term
B(x) can be excluded from computation. So the wdue
of a term determines which rules have to be comlm!ed

J. Nijhuis et al. / Microprocessing and Microprogramming 40 (1994) 697-700 699

and which rules can be skipped. Take for example the
following rule base and fuzzy sets :

I: if (x in range(Al)) and (y

and (y

and (y

and (y

in range(Bl)) then C1

2: if (x in range(A3))

in range(B2)) then C2

3: if (x in range(A2))

in range(B3)) then C3

4: if (x in range(A2))

ill range (BI)) then C4

Without optimization all rules are computed. Because
A3 is disjunct from A1, x in range(A1) implies x not in
range(A3). If x is in the range of A1 only rule 1 has to
be computed and rule 2 can be skipped reducing the
rules to be computed to three. A solution at hand is to
take one of both sets as the main set, for example A,
and to order the rules according to this set in ascending
order. We can transform the rules above to the follow-
ing base.

1 : if (x in range(Al)) then if

(y in range(Bl)) then C1

2 : if (x in range(A2)) then if

(y in range(B3)) then C3

3 : if (x in range(A2)) then if

(y in range(Bl)) then C4

4 : if (x in range(A3)) then if

(y i n r a n g e (B 1)) t h e n C2
Similarly, we can perform this action on the second set
- the B set. The only rules that are affected are 2 and 3,
so they are interchanged. This notation gives rise to a
direct implementation as follows :

if (x in AI) and (y in

BI) then CI; continue

if (X in A2) and (y in

BI) then C4; goto labell:

if (x in A2) and (y in

B3) then C3; goto label2:

labell: if (x in A3) and (y in

BI) then C2; continue

label2: continue

In a similar way unneecessary computations of mem-
bership functions can be avoided. A membership
function is computed only (if it hasn't been already)

whenever the whole rule is active (both antecedents
are true). The algorithm we used is:
1. Choose one of the sets as the main set. Order the
rules in ascending order accordingly. Rules with the
same elements of the sets are grouped in this way.
2. If groups are formed choose a second set and per-
form the same action, till no groups are left.
3. Finally add the jump instructions. Two rules are
connected if all constituting antecedents are overlap-
ping.
Using this algorithm the rules are optimized in an casy
way. The following section will describe the efficien-
cy and some improvements of the computation of ccr-
lain membership functions.

4. EFFICIENCY OPERATIONS

In the previous section we described a way to optimize
the number of operations that have to be evaluated
during each inference of the fuzzy controller. This
section will take a closer look at the realization of the
operators themselves. One of these operators is the
fuzzification of the input values (fuz). The most com-
mon fuzzy membership functions are staled next, to-
gether with their informal definitions :
sinuleton set

f u z (x , A) = else

~risn

fuz(x , f t) = else

traoezium
fuz(x,A) <- if (x<a I) then 0 else

if (x<a2) then (x-al)l(a2-a I) else

if (x<a 3) then 1 else

if (x<a 4) then l-((x-a 3)/(a4-a3))

else 0

Replacement of the division results in :
fuz(x,A) < - if (x < a 1) then 0 else

if (x,a 3) then dummy=(x-al)*s 1

if d>l then 1 else d

else dun~y=l-(x-a 3) *s2
if d<0 then 0 else d

Dgll-shaped

f u z (x , / l) = f(x) (gauss ian funct .)

(7)

(8)

O)

700 J. Nijhuis et al. / Microprocessing and Microprogramming 40 (1994) 697-700

The fuzzification when using singletons or crisp sets
needs only a few comparisons so it can be done very
fast. The fuzzification in case of the trapezium and the
bell-shaped ~ t implies the use of some ALU-specific
operations and is therefore computation-intensive.
An aitenmtive is to store the overall membership
fi,nction as a lookup-table in memory. Access can be
done by using only one register load, one addition and
one memory load. For example :

compute fuz (x , / t) :
load x to rl - l oad thevalue ofx.

add r2 , r l , b a s e - f i nd reference to A.
load mem[r2] to r3 - r e a d results

"Faking, for example, the computation of a trapezium
membership function this alternative approach saves
about 6 comparisons and two ALU-specific opera-
tions. On the other hand, this approach takes much
more memory depending on the required accuracy of
the membership function. An alternative is to store
only those parts of the membership that are difficult to
compute as for example the slopes in the trapezium
membership function. Storing only these sections re-
sults in evaluating the trapezium membership func-
tion as follows:

if x < al then 0 else

if x < a2 then

mem[x-al+basepointer_sectionl] else

if x < a3 then 1 else

if x < a4 then

mem[x-a3+basepointer_section2] else 0

5. DISCUSSION

The main targets for the optimizing fuzzy rule compil-
er as presented in this paper are both the AMD 29K-
and the Hitachi H8-microcontroller family. These
families comprise a number of different types each of
them with its specific properties. One general map-
ping would lead to an inefficient use of the various
processors. By allowhlg the designer to tune the map-
ping of the fuzzy controller, on-chip resources can be
fully exploited. On a H8/500 8Mhz microcontroner a
2-input, 1 output, 20--rule fuzzy controller can be eva-

lualed within 0.15 ms for a speed optimized mappi,lg
and within 2 ms for a memory optimized mapping in-
dicating tim wide range of operational objectives that
can be achieved by the proposed method.

ACKNOWLEDGEMENTS

The support of Arcobel b.v. is sincerely appreciated.
Furthermore our gratitude goes to R. Tol (RUG), A.
deGier (CME) and E Paternotte (CME) for stim,lat-
ing discussions.

R E F E R E N C E S

[1] J.A.G. Nijhuis and L. Spaanenburg, "ASIC's voor
Vage Logica op Weg naar Volwassenheid" (in Dutch),
PolyTechnisch lijdschrift, (in Dutch), Vol. 48, No.
617, pp. iA2-iA5, June/July 1993.
[2] II. Eichfeld, M. L0hner and M. MilUer, "Archilec-
ture of a CMOS Fuzzy Logic Controller with opti-
mized memory organization and operator design", in:
Proceedings IEEE International Conference on Fuzzy
Systems, San Diego, CA, pp. 1317-1323, 8.-12
March, 1992.
[3] H. Watanabe, "RISC Approach to Design of F, zzy
Processor Architecture", in: Proceedings IEEE In-
ternational Conference on Fuzzy Systems, San Diego,
CA, pp. 431 A.A. 1, 8--12 March, 1992.
[4] W.D. Dettloff, K.E. Yount and H. Watanabe. "A
Fuzzy Logic Controller with Reconfigurable, Cascad-
able Architecture", in: Proceedings 1989 IEEE In-
ternational Conference on Computer Design: VI_A7 in
Computers & Processors (ICCD'89), Cambridge,
MA, pp. 474--478, 2-4 October, 1989.
[5] C. Hung and B. Fern/mdez, "Minimizing Rulcs of
Fuzzy Logic System by Using a Systematic Ap-
proach", in: Proceedings Second IEEE International
Conference on Fuzzy Systems, San Francisco, CA, pp.
38--44, 28 March - 1 April, 1993.
[6] D.J. Ostrowski, P.Y.K. Cheung and K. Roubaud,
"An Outline of the Intuitive Design of Fuzzy Logic
and its Efficient Implementation", in: Proceedings
Second IEEE International Conference on Fuzzy ,~[vs-
terns, San Francisco, CA, pp. 184-189, 28 March .- 1
April, 1993.

