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-- Abst rac t  - Once a fuzzy controller is specified by a rule-set, it can be implemented in dedicated 
hardware or as a software program. For industrial applications, an inexpensive micro-controller with 
limited resources is often selected. The implementation (or mapping) issue then leads to a trudcoff 
between operation speed and memory usage. This paperpresents a set of  basic transformation rules that 
allows the designer to optirnize such a mapping. 

1. INTRODUCTION 

There are several ways to implement fuzzy rule-sets 
I l ]. Special hardware has been developed in order to 
obtain a high operation speed. Nevertheless most of 
the currently realized fuzzy logic applications are 
based on software implementations running on a PC, 
but most of all on a standard micro-controller. In the 
latter case, one is confronted with a trade-off between 
processing speed and storage capacity. 
A fuzzy logic controller consists of: a fuzzification in- 
ferface, an inference engine, a knowledge base and a 
defuzzification interface as shown in figure 1. 
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Fig. 1 The structure of  a fuzzy controller. 

Consider a very simple fuzzy controller with two in- 

puts, i.e. x = [xl,x2] r, one output and two fuzzy 

rules as follows, 

rt: IFx l  = A  Axe .=  /~THENy = 

r2: IFx l = C' A x  2 = / ) T H E N y  =)~'. 
The required calculations are performed by only five 
different operators: fuzzification (fuz) of the inputs; 
aggregation (agr) of the left-hand side of the fuzzy 

rules; composition (comp) of the right-hand side o f the 
fuzzy rules; combination (comb) of the results of tile 
individual rules and defuzzification (defuz) of the out- 
put values. A straightforward mapping of our simple 

system would require: 4fuz-operations (one per input 
term per rule), 2 agr-operations (one for each rule), 2 
comp--operations (one for each output term per rule), 
1 comb-operation (one for each outpu0 and 1 defuz- 
operation. For an actual mapping the total number of 
executed operations and the actual realization of the 
five different operators may be optimized. 
Section 2 will define the starting point for the map- 
ping. Next in Section 3 mapping rules for optimizing 
the number of required operations are def'med, where- 
as in Section 4 mapping rules for increased efficiency 
of the operators themselves are discussed. Finally 
some conclusions are drawn from the experience to be 

reported in the full paper. 

2. FUZZY CONTROLLER MAPPING 

During the mapping of the fuzzy controller the 
derived specification is translated into a set of prtvccs- 
sor instructions (code) and data constants (data). 'llm 
memory size of a mapping, 

mere(< code, data >) ,  (1) 

is defined as the total amount of memory in bytes that 
is needed for storage of the code, the data and the Icm- 
porary results. The execution time of a mapping, 

time( < code, data > ), (2) 

is defined as the longest (worst--case) period in se- 
conds between the setting of the inputs and the too- 
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ment newly calculated output values become avail- 

able. A mapping operation ~ for a particular target 
hardware is given by 

.At~(code, data) ---, < code', data' > (3) 

The mapping operation changes an initial 

< code, data > -tuple into a new tuple that when 
executed behaves conform the initial specification. A 
mapping sequence is a sequence of mapping opera- 
tions. 

,-/~seq -~ ~/t~kC)..~k-I O ...... O , . . ~  l (4) 

A mapping sequence is acceptable (Jit~acc) if the re- 
suiting <code,data>-tuple meets the memory and 
speed requirements, i.e., 

t ime(< code, data > )  < treq (5) 

and 

mem( < code, data > )  -< mreq. (6) 

The Mapping problem is now defined as finding a se- 
quence of  mapping operations that transforms an in- 
ital <code,data>--tuple into an acceptable one as pic- 
tured in figure 2. 
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Fig. 2 Mapping a fuzzy controller onto a mi- 
cro-processor. Only mappings in the shaded 
region are possible. Boundary A is determined 
by maximum processor speed whereas bound- 
ary B is determined by the specification o f  the 

fuzzy controller itself. 

The <code,data>-tuple contains the colnplete in- 
formation (in machine code) of the initial specifica- 
lion. Each mapping operation wil transform the 
<code,data>--tuple into a new tuple with different 
time and mere values. Depending on our inital posilion 
in the mapping space an acceptable sequence of map- 
ping operations may require a decrease in time wdue 
at the expense of an increased mere value. "Ib be able 
to select a right sequence of  operations a basic set of  
mapping operations have to be defined each having a 
precise definition of its impact on the time and mere 
values. 
The remainder of this paper identifies some of  Ihese 
basic mapping operations. A distinction is made be- 
tween mapping operations that change the number of 
operations involved by inserting additional conlrol-, 
branch- and test-instructions and those mapping op- 
erations that make a trade-off between the meumry 
usage and evaluation speed of the operators them- 
selves. 

3. OPTIMIZATION OPERATIONS 

In a fuzzy controller most of the time is used for tile 
evaluation of the rule base, fuzzification and defuzzi- 
fication. This section will discuss an optimiT~,lion 
technique for the evaluation of  the rule base by ex- 
cluding some rules from evaluation. In general when 
new input is presented a fuzzy controller evaluates 
the whole rule base using the MIN-MAX or MIN-  
PROD operation both taking the minimum of the au- 
tecedents. If one of  the antecedents is zero, both op- 
erations evaluate to zero. On the other hand terms of 
the same set are correlated as far as their values con- 
cern. If two terms, say A and B, are disjunct i.e. non-  
overlapping, and A is activated then B is zero. 
Summarizing : 
- A production rule evaluates to zero whenever one of  
the antecedents is zero 
- If A and B belong to the same set and are disjm,ct 
then A(x) > 0 implies B(x) = 0. 
These two facts give rise to some optimizations, ix'. if 
two terms A and B of the same set are non-overlap- 
ping and A(x) > 0, then all rules including the term 
B(x) can be excluded from computation. So the wdue 
of a term determines which rules have to be comlm!ed 
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and which rules can be skipped. Take for example the 
following rule base and fuzzy sets : 

I: if (x in range(Al)) and (y 

and (y 

and (y 

and (y 

in range(Bl)) then C1 

2: if (x in range(A3)) 

in range(B2)) then C2 

3: if (x in range(A2)) 

in range(B3)) then C3 

4: if (x in range(A2)) 

ill range (BI)) then C4 

Without optimization all rules are computed. Because 
A3 is disjunct from A1, x in range(A1) implies x not in 
range(A3). If  x is in the range of  A1 only rule 1 has to 
be computed and rule 2 can be skipped reducing the 
rules to be computed to three. A solution at hand is to 
take one of  both sets as the main set, for example A, 
and to order the rules according to this set in ascending 
order. We can transform the rules above to the follow- 
ing base. 

1 : if (x in range(Al)) then if 

(y in range(Bl)) then C1 

2 : if (x in range(A2)) then if 

(y in range(B3)) then C3 

3 : if (x in range(A2)) then if 

(y in range(Bl)) then C4 

4 : if (x in range(A3)) then if 

( y  i n  r a n g e ( B 1 ) )  t h e n  C2 
Similarly, we can perform this action on the second set 
- the B set. The only rules that are affected are 2 and 3, 
so they are interchanged. This notation gives rise to a 
direct implementation as follows : 

if (x in AI) and (y in 

BI) then CI; continue 

if (X in A2) and (y in 

BI) then C4; goto labell: 

if (x in A2) and (y in 

B3) then C3; goto label2: 

labell: if (x in A3) and (y in 

BI) then C2; continue 

label2: continue 

In a similar way unneecessary computations of mem- 
bership functions can be avoided. A membership 
function is computed only (if it hasn't been already) 

whenever the whole rule is active (both antecedents 
are true). The algorithm we used is: 
1. Choose one of the sets as the main set. Order the 
rules in ascending order accordingly. Rules with the 
same elements of the sets are grouped in this way. 
2. If groups are formed choose a second set and per- 
form the same action, till no groups are left. 
3. Finally add the jump instructions. Two rules are 
connected if all constituting antecedents are overlap- 
ping. 
Using this algorithm the rules are optimized in an casy 
way. The following section will describe the efficien- 
cy and some improvements of the computation of ccr- 
lain membership functions. 

4. EFFICIENCY OPERATIONS 

In the previous section we described a way to optimize 
the number of  operations that have to be evaluated 
during each inference of  the fuzzy controller. This 
section will take a closer look at the realization of the 
operators themselves. One of these operators is the 
fuzzification of the input values (fuz). The most com- 
mon fuzzy membership functions are staled next, to- 
gether with their informal definitions : 
sinuleton set 

f u z ( x , A )  = else 

~risn 

fuz(x ,  f t )  = else 

traoezium 
fuz(x,A) <- if (x<a I) then 0 else 

if (x<a2) then (x-al)l(a2-a I) else 

if (x<a 3) then 1 else 

if (x<a 4) then l-((x-a 3)/(a4-a3)) 

else 0 

Replacement of  the division results in : 
fuz(x,A) < -  if ( x < a  1) then 0 else 

if (x,a 3) then dummy=(x-al)*s 1 

if d>l then 1 else d 

else dun~y=l-(x-a 3) *s2 
if d<0 then 0 else d 

Dgll-shaped 

f u z ( x , / l )  = f(x) (gauss ian  funct . )  

(7) 

(8) 

O) 
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The fuzzification when using singletons or crisp sets 
needs only a few comparisons so it can be done very 
fast. The fuzzification in case of the trapezium and the 
bell-shaped ~ t  implies the use of some ALU-specific 
operations and is therefore computation-intensive. 
An aitenmtive is to store the overall membership 
fi,nction as a lookup-table in memory. Access can be 
done by using only one register load, one addition and 
one memory load. For example : 

compute fuz (x , / t  ) : 
load x to rl - l oad  thevalue ofx. 

add  r2 , r l , b a s e  - f i nd  reference to A.  
load mem[r2] to r3 - r e a d  results 

"Faking, for example, the computation of a trapezium 
membership function this alternative approach saves 
about 6 comparisons and two ALU-specific opera- 
tions. On the other hand, this approach takes much 
more memory depending on the required accuracy of 
the membership function. An alternative is to store 
only those parts of the membership that are difficult to 
compute as for example the slopes in the trapezium 
membership function. Storing only these sections re- 
sults in evaluating the trapezium membership func- 
tion as follows: 

if x < al then 0 else 

if x < a2 then 

mem[x-al+basepointer_sectionl] else 

if x < a3 then 1 else 

if x < a4 then 

mem[x-a3+basepointer_section2] else 0 

5. DISCUSSION 

The main targets for the optimizing fuzzy rule compil- 
er as presented in this paper are both the AMD 29K- 
and the Hitachi H8-microcontroller family. These 
families comprise a number of different types each of 
them with its specific properties. One general map- 
ping would lead to an inefficient use of the various 
processors. By allowhlg the designer to tune the map- 
ping of the fuzzy controller, on-chip resources can be 
fully exploited. On a H8/500 8Mhz microcontroner a 
2-input, 1 output, 20--rule fuzzy controller can be eva- 

lualed within 0.15 ms for a speed optimized mappi,lg 
and within 2 ms for a memory optimized mapping in- 
dicating tim wide range of operational objectives that 
can be achieved by the proposed method. 
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