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Abstract. Imitation learning is a promising route to instruct robotic
multi-agent systems. However, imitating agents should be able to decide
autonomously what behavior, observed in others, is interesting to copy.
Here we investigate whether a simple recurrent network (Elman Net)
can be used to extract meaningful chunks from a continuous sequence
of observed actions. Results suggest that, even in spite of the high level
of task specific noise, Elman nets can be used for isolating re-occurring
action patterns in robots. Limitations and future directions are discussed.

1 Introduction

According to Thorndike [I] an organism is able to learn by imitation if it can
acquire new behavioral skills by directly copying them from others. Imitation,
like other forms of social learning [2I3], has, potentially, an enormous ecological
advantage [4]. It allows animals to be flexible learners while avoiding the dangers
associated with individual learning [5]. The behavior of others has often already
been shaped by its consequences and can therefore be assumed to be save and
rewarding to imitate [2]. Humans and some primates have been found to imitate

Another property of imitation, together with its ecological value, is that it can
support the spread of behavior through a population of individuals [TOITITZ].
Several observational studies [6] have yielded evidence for this in groups of pri-
mates but recently also experimental evidence has been reported. For example,
Bonnie [§] thought individual chimpanzees to deposit tokens in a box to receive
a reward. Subsequently, these individuals were introduced into a population of
naive animals. After some time the rewarding behavior was copied by the other
animals and its frequency in the population increased. Similar findings have since
then been reported by Whiten [13].

The ecological advantages and the capacity to support the spread of behavior
make imitation learning a potentially interesting mechanism to support learning
in robotic multi-agent systems [I4]. In a multi-agent setting, agents could search
simultaneously for a solution for a given problem (e.g. how to pick up food).
Once a single agent has found a solution, this innovation could be imitated by
others and could propagate through the population. In this way, learning by
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imitation could drastically reduce the total number of learning trials needed for
a population of agents to solve a problem [14].

2 Problem Statement

Imitating agents in a multi-agent setting face a number of fundamental problems
[I5/T6]. One of the most important questions in the multi-agent context is how
agents can autonomously select the behavior that should be copie(ﬂ. Great apes
and humans seem to be very good at determining what behavior should be
imitated when they observe a demonstrator [I7]. However, for robots in the
multi-agent scenario sketched above, determining what they should imitate is
no simple task.

To see why this is a problem, imagine a number of agents exploring an artificial
world in which different types of food and supplies are available (like in [IT]).
In this artificial world different resources need to be approached differently to
use them. For example, nuts need to be gathered from the ground and smashed
against a rock before they can be eaten while a banana must be picked from
a tree and carefully peeled. It is assumed that originally all agents are naive
concerning the rules governing the world. When the agents are released in the
world they start off generating sequences of behavior in the hope of finding
a sequence that gives access to some rewarding fruit. Agents that find such a
sequence will remember it for future use. This means that after a while agents will
alternate between generating new behavior (exploration) and exploiting gathered
knowledge (when a fruit for which a known sequence is stored is encountered [19].
Exploitation behavior will consist of fairly fixed action sequences like picking up
a nut, smashing it onto a rock and eating it.

An agent that tries to observe and imitate the action sequences of the others
sees a continuous sequence of various kinds of actions. The actions which are,
from the viewpoint of the observed agents, meaningful and can be parsed into
exploring and exploiting parts, are unordered from the viewpoint of a learning
agent. There is no a priori way for the learning agent to parse the actions of its
colleagues. It can not know which sequences it should copy and which are to be
ignored. It should copy the exploiting action sequences and ignore the exploring
action sequences. However, it can not know where the exploiting sequences start
or end. Even if it is assumed that the imitating agent can detect when an other
agent is rewarded (i.e. the end of an exploiting sequence), it can not know where
the sequence of events that lead to the reward started.

Parsing a continuous stream of actions is reminiscent of another problem in
cognition: that of segmenting a continuous input stream of sounds into words.
In a set of seminal papers Elman [20021] presented a simple recurrent neural
network (figure [Th) that was able to segment a sequence of letters into words.
His network was constructed to take an input letter n and predict the next

! This question has been termed as “What To Imitate?” by Dautenhahn [I5].
2 Even in a setting where humans act as explicit teachers, determining what to imitate
is not easy for a robot [1§].



1200 D. Vanderelst and E. Barakova

A

Output Nodes

7

Hidden Nodes 5’

@y s

/ w 05

Input Nodes Context Nodes | °

Fig. 1. (a) Schematic representation of an Elman net. On each feedforward sweep, the
activation of the Hidden Nodes is copied to the Context Nodes. The Context Nodes are
used as an additional set of input nodes on the next feedforward sweep.(b)The error
curve produced by an Elman network that was trained to predict the next letter in a
sequence from the previous one. Here the sequence “many-years-ago-a-boy-and-a-girl-
lived-by-the-sea-they-played-happily” is given to the network.

letter n+1 in the sequence from n. After some training the network was capable
of making good predictions. The network made its predictions based on the co-
occurrence statistics available in the data. Furthermore, segmenting the sequence
into words was possible using the error signal produced by the network while
executing this task. Figure[Ib shows an error curve that was produced while the
network processed an input stream of letters. Inspecting the error curve, it can
be seen that the error is high at the boundaries between words while it drops
over the course of a word. This is caused by the fact that while a word unfolds,
the next letter becomes more and more predictable with each new letter. On
the other hand, at the boundaries between words, the next letter is very hard to
predict since it is not determined by the previous one (in the dataset provided
to the net). Therefore, the error provides a good clue as to what are recurring
sequences in the input, and these correlate highly with words [20]. The network
learned which parts of the input should be regarded as meaningful chunks.

A similar solution might be used to let agents autonomously decide what to
imitate (see [22] for a related suggestion). An imitating agent could notice that
some sequences of actions are consistently executed in the same order. Rewarding
action sequences will be repeated often by the demonstrating robots to reap the
fruits of their explorations. Using an Elman-net, an observing agent could try
to predict the actions of its fellow agents. After a given amount of training the
observer could use the error curve to isolate the segments of the input that
are interesting to imitate (or a least to evaluate before attempting imitation).
Exploiting sequences will be characterized by being predicable (low predicting
erTor).

The current study focuses on a simplified version of the multi-agent set-
ting sketched in the previous paragraphs. In this study it will be assumed that
the demonstrating agent has already discovered several rewarding sequences at
the start of the experiment and that it does not learn any new behavior in the
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course of the experiment. A second simplification is that only a single demon-
strating robot will be considered. This setting mimics the situation in the cited
experiments of Bonnie and Whiten [8[I3] where a single, well-trained, animal is
observed by others.

The number of studies related to the current one is very limited. While imita-
tion in multi-agent settings seems to be a promising learning mechanism, until
now little or no research has been done in this aread. Most research on imitation
in artificial agents focuses on human-machine imitation (see [I§] for an overview)
where the human is a teacher that clearly marks the boundaries of the to-be-
imitated behavior. In such a setting there is no need for an agent to detect the
boundaries between meaningful chunks of actions since they are marked by the
teacher [16]. To the best of our knowledge only [16] has investigated the use of
imitation in the context of embodied autonomous multi-agent systems where no
explicit teacher is present.

3 Methods

3.1 Experimental Scenario: Selecting Action Sequences

The experimental setting is designed to test whether an Elman network can be
used by an observing agent to select interesting sequences in a continuous stream
of actions. Therefore, an autonomous robot will be observed while it alternates
between exploring (random action sequences) and exploiting (predetermined ac-
tion sequences). It will be tested whether the network can be used to isolate the
predetermined action sequences.

3.2 Data Collection and Preprocessing

All experiments reported in this paper were conducted using the e-puck robot
platform (http://www.e-puck.org). A single robot was used during the exper-
iments. The e-puck is a small mobile robot measuring 70 mm in diameter and
55 mm in height. The robot is equipped with infrared distance sensors that are
located around the body at 10°, 45°, 90°, 270°, 315° and 350° with respect to the
heading direction of the robot. Two sensors located at the back of the robot were
not used in the reported experiments. The robot was controlled by a personal
computer through a Bluetooth interface. A rectangular arena was constructed
for the robot which measured about 100 cm x 70 cm. The arena was fenced
by cardboard walls which were about 10 cm high. The robots movements were
filmed by a Logitech QuickCam camera (http://www.logitech.com) suspended
about 160 cm above the floor of the arena. The camera captured the entire arena
using 320 x 240 pixels at 10 Hz. The floor of the arena was white. The robot
was fitted with a black cap for maximal contrast so that tracking the robot was
easy. All image processing and tracking of the robot was done using RoboRealm

3 See the recent ECAL workshop on social learning in robot for some explorative
papers: http://laral.istc.cnr.it/slea/|
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software (http://roborealm.com). Processing the images of the camera in-
cluded correcting for radial distortion. The tracking software provided the ap-
proximate location of the center of the robot in each camera frame and its speed.

In this study the robot could only drive straight on and to turn in place. The
robot was allowed to drive 4 fixed driving distances: 32 mm, 64 mm, 96 mm
and 128 mm. Also 10 turning angles were fixed: -120°, -90°, -60°, -30°, 0°, 30°,
60°, 90°, 120° and 180°. Negative values denote counterclockwise turns. Given
the constraints imposed on the movements, all movement of the robot was an
alternation between turning in place conform to one of the fixed angles, followed
by driving one of the fixed distances. The robot iteratively selected a turning
angle and a traveling distance to execute.

The e-puck executed two different kinds of behavior. First, the robot could
execute exploration behavior. In this mode a turning angle and a traveling dis-
tance were selected at random on each iteration. Second, after each turn and
drive action the robot could, with a probability of 0.3, select at random one of
3 patterns to execute. The patterns are depicted in figure 2l Detailed informa-
tion on the patterns can be found in table[[l While the robot was driving, the
distance sensors were probed each 200 ms to determine whether it was about
to hit the walls of the arena. If the robot detected a wall, it aborted its current
action and moved away from the wall. In case the robot was executing one of the
predetermined patterns of action, the pattern was aborted and a random move
was initiated after the avoidance maneuver.

In the experiment reported here, the robot executed 1500 moves consisting of
turning and driving. This amounted to about 120 minutes and 74702 image frames.

The robot path captured by the camera was preprocessed using R-software
[23]. Preprocessing aimed at reconstructing the actions of the robot from the
camera images as an observing agent could do. Figure [3 illustrates the pre-
processing steps. Note that only a small subset of data have been used for these
plots. Plotting an entire dataset would result in graphs that are too cluttered.

Pattern 1 Pattern 2 Pattern 3
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Fig. 2. These are the three predefined patterns that could be driven by the robot.
Numbers signify the order of execution. See table [Tl for details about these patterns.
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Table 1. This table lists the turning angles and the driving distances that made up
the 3 predefined patterns plotted in figure [2]

Pattern 1 Pattern 2 Pattern 3
Step Angle Distance Angle Distance Angle Distance
(Degrees) (mm) (Degrees) (mm) (Degrees) (mm)

1 0 128 90 32 30 32
2 90 64 -120 64 -30 96
3 90 64 60 32 120 96
4 90 128 180 32 120 96
S -90 64 60 64 -30 32
6 -90 64 -120 32 180 32
7 -90 128

As can be seen in plot Bh-c, the path of the robot consists of random sequences
interwoven with a number of predefined patterns. A cubic smoothing spline was
fitted to the raw robot path. The smoothed path is plotted in figure Bb. The
smoothed track was segmented in order to reconstruct the moves the robot
executed. Segmenting the track was done based on the detected speed of the
robot. Because the top of the e-puck robot is perfectly round, it looks as if
it stands completely still, from the viewpoint of the overhead camera, when it
turns in place. Therefore, local minima in the speed curve signify points in time
when the robot was (probably) executing a turn. The smoothed robot path was
segmented at these points in time. Figure Bk depicts the segmented version of
the robot path. Next, the segmentation points were connected by straight lines
because the robot could only drive straight on between two turning points. From
the segmented path it was trivial to calculate the sequence of the approximate
angles the robot turned and the distances it drove.

The final result of the preprocessing step is an approximate reconstruction of
the program that has been executed by the robot. This is a record of the actions
of the robot as perceived by the camera (or any other onlooker).

Figured depicts the distribution of the angles and distances that were detected
by the camera. As can be seen in this graph, the execution and the perception
of the moves of the robots was liable to noise. The distribution of the detected
distances shows five clusters labeled as a-e. Cluster b-e correspond to the 4
distances the robot could drive in the experiment. Cluster a contains very short
traveling distances. These are caused by over-segmentation of the robot path and
by instances in which the driving of the robot was aborted due to the detection of
the walls. The distribution of the turning angles also shows overlapping clusters.
The fact that both distributions are characterized as a number of overlapping
clusters indicates that the level of noise was relatively high.

Because of the noise, some further processing of the perceived moves was
necessary before the data could be fed to an Elman network. The turning an-
gles and the traveling distances were discretized. Turning angles were mapped
onto the nearest 30°. After this, the data contained 12 different turning angles
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Fig. 3. These plots depict the raw (a), smoothed (b) and segmented (c) path the robot
drove in experiment 1. for reasons of clarity only a small subset moves of the robot

have been plotted.
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Fig. 4. (a) The distribution of traveling distances detected by the camera in the dataset
reported in the results section. Letters a — e refer to five clusters present in this distri-
bution. (b) The distribution of the turning angles in the same data.

(360/12) instead of the 10 used by the robot. Traveling distances were mapped
onto the nearest cluster center (0, 14, 24, 36 or 47). Moves that were classified
as belonging to the first cluster (i.e. 0), were discarded from further process-
ing. These final data cleaning steps can be considered as reflecting categorical

perception.
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3.3 Training the Elman Network

A generic Elman network was implemented (see [20021] for more details about
the structure of Elman networks). The network had 12 input nodes coding the
turning angles and 4 inputs that coded each of the 4 traveling distances present
in the data. The hidden layer of the network consisted of 30 nodes. All neurons
had a sigmoid activation function. The network was trained by presenting it
with a turning angle and a traveling distance by setting the corresponding input
nodes to 1 (other nodes were assigned an activation value of 0). So, an input
vector consisted of 16 values of which 2 were set to 1 to signify the current angle
and driving distance. Importantly, each turning angle and traveling distance was
assigned a coding input neuron at random. In this way, the coding of the moves
was completely abstract. Thus, although the predefined patterns were visually
symmetrical (see figure[2]), from the viewpoint of the network they were not. The
visual symmetry could not be exploited by the network to learn to recognize the
patterns. After the presentation of an angle and distance, the network predicted
the next turning angle and driving distance the robot would execute. Simple
gradient descent (Error Backpropagation) was used to adapt the connection
weights of the network after each presented input. After updating the network
connections, the next turning angle and traveling distance was presented to the
network. In this way the whole data set was presented 10 times to the network
(i.e. 10 epochs of training). This amounted to about 15000 training trials.

4 Results

The experiment and the training of the network were replicated several times
using slightly different parameter settings. However, qualitatively the results
were always similar to the ones reported in this section.

Data about the moves executed by the robot can be found in table 2l These
data show that a large proportion of the patterns were not completed. This
introduced additional noise into the training data.

Figure[lldepicts the most important training results. Plot Bk shows the change
in the prediction error by the network in the form of a density plot. One can see
that after some initial training, there is a bifurcation in the error. After about
2000 trials, most moves of the robot are well predicted (low error) while others
are not (high error). This binomial distribution of the error is also clearly visible
in plot Bb. A Gaussian Mixture Model [24] with 2 components was fitted to the
error distribution across all trianing trials to obtain an objective threshold to
separate trials for which the prediction error was low and trials for the error was
high. At about a value of 0.9, an error value had an equal probability of belong-
ing to either of the two clusters (assuming equal priors for both components).
This value is indicated by an arrow in figure Bb. This value was used as a cut-off
to identify trials in which the network had made a good prediction. Trials in
which the network predicted the next step with an error lower than 0.9, were
considered as trials with a low error. Subsequently, sequences of trials longer
than 2 steps, in which the prediction was better than the cut-off, were identified
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Table 2. This table lists the number of patterns the robot drove while collecting the
data reported in the results section. Also the number of random moves is listed. The
number of patterns and random moves that were terminated because the robot detected
a wall are listed separately.

Termination
Normal Stopped Total
Pattern 1 39 19 58

Pattern 2 47 21 68

Pattern 3 37 17 54
Total 123 57 180

Random 274 46 320

(a) Learning Curve (b) Estimated Error Density
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Fig.5. These plots depict the training results of the experiment. (a) A density esti-
mation of the prediction error of the Elman network in individual learning trials in
function of the number of trials. (b) A density estimation of the prediction error col-
lapsed across all learning trials. (¢) The cumulative frequency of all different sequences
of actions that were well predicted by the network (see text for details).

in the data. The cumulative frequency of all identified sequences is plotted in
figureBk as a function of the number of training trials. Many different sequences
were identified (n = 141). However, most of these are identified only a few times.
Only 10 patterns were recognized 20 times or more while 54 were encountered
only once. As can be seen in plot Bk, three patterns are clearly encountered more
often than all others. These are the patterns the network was supposed to learn
(see labels in plot Bk). So, by analyzing the error curve produced by the Elman
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Fig. 6. Total frequency of detection of the most frequently detected patterns of actions.
®: Pattern 1, A; pattern 2, ®; Pattern 3. Opened markers signify subpatterns of the
patterns denoted with a similar shape.

network during training, the three predefined patterns could be isolated as being
high frequent sequences the network could predict very well.

The fact that the network reliably isolated the three predefined patterns is
further demonstrated in figure[Gl This plot depicts the frequency of the patterns
that were detected more than 19 times in the course of the training. As stated
before, the most frequently observed patterns were the three target patterns. Of
equal interest is the fact that the other detected patterns were parts of the goal
patterns.

5 Discussion

The reported experiment investigated whether an Elman network could be used
to reliably isolate re-occurring action sequences. The results show that Elman
nets can indeed be used for this task. In contrast to the original simulation
studies of Elman [25I20021], the data collected by observing the robot contained
substantial amounts of task-specific noise. Nevertheless, given enough learning
trials, the error curve could be used to reconstruct the three goal patterns.
Therefore it is possible for an observer to extract the interesting parts of the
behavior of a demonstrator by using a simple recurrent network.

However, while the proposition of the study was confirmed by the data, their
main valor might be to suggest new lines of research and improvements of the
current approach. To this end some issues of the study will be discussed.

A first issue is the learning speed demonstrated in the current study. The
Elman network needs many trials before a reliable extraction of the patterns is
possible (something that was also experienced by Elman in his original studies).
This makes the mechanism, exactly as it is implemented in this paper, an unlikely
candidate to be used in a multi-agent setting. Adaptations to speed up learning
will be necessary.
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The current study is still far away from having a collection of robots learn-
ing from each other through imitation. The current experiment modeled one
robot (the camera) watching another one continuously (from a favorable per-
spective). When implementing the current setup with different demonstrators
and observers, the noise levels in the perception of each and every robot will
rise. Even if robots are allowed to watch each other from the viewpoint used in
this paper. A robot will have to choose between a number of agents to observe.
Some of these will perform very well while others might be still learning them-
selves. If the robot chooses to imitate an under trained co-agent, it will not be
able to learn the task. Instead, it will extract any re-occurring sequences that are
coincidently demonstrated. Furthermore, in absence of any re-occurring pattern
in the demonstrators behavior, nothing will be learned. In short, because any
learner has access to the behavior of trained as well as untrained individuals,
the noise in the perception will increase and the chance of mastering the task
decrease. To avoid such a scenario, more flexible learning mechanisms, adapted
to multi-agent settings, must be researched. One obvious way to extend the cur-
rent mechanism is to add reinforcement (or a similar mechanism) - a source of
information also used by animals and humans.

Adding reinforcement to the learning mechanism will also reduce the number
of learning trials needed. A robot could try out each (partial) sequence of ac-
tions it discovers in the behavior of others. If the action sequence is successful
according to some measure, the behavior should be consolidated. If not, it should
be discarded until further training changes it in some respect. Such a mecha-
nism will speed up learning drastically since a target sequence has to be isolated
only once. Furthermore, this way the number of demonstrations of unadaptive
behavior in a set of robots is kept at bay which reduces the noise level [10].

We are currently carrying out simulation studies to investigate different
options for extending the current research.
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