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Abstract. Grating cells were discovered in the V1 and V2
areas of the monkey visual cortex by von der Heydt et al.
(1992). These cells responded vigorously to grating pat-
terns of appropriate orientation and periodicity. Compu-
tational models inspired by these findings were used as
texture operator (Kruizinga and Petkov 1995, 1999;
Petkov and Kruizinga 1997) and for the emergence and
self-organization of grating cells (Brunner et al. 1998;
Bauer et al. 1999). The aim of this paper is to create a grat-
ing cell operator G that demonstrates similar responses to
monkey grating cells by applying operator G to the same
stimuli as in the experiments carried out by von der Heydt
et al. (1992). Operator G will be tested on images that
contain periodic patterns as suggested by De Valois and
De Valois (1988). In order to learn more about the role
of grating cells in natural vision, operator G is applied
to 338 real-world images of textures obtained from three
different databases. The results suggest that grating cells
respond strongly to regular alternating periodic patterns
of a certain orientation. Such patterns are common in
images of human-made structures, like buildings, fabrics,
and tiles, and to regular natural periodic patterns, which
are relatively rare in nature.

1 Introduction

With their discovery of orientation-selective cells in pri-
mary visual cortex (simple and complex cells), Hubel and
Wiesel (1962, 1974) triggered a wave of research activities
in neurophysiology. These activities were aimed at a quan-
titative description of the functional properties of these
cells (for reviews see De Valois et al. 1978, 1979; Albrecht
et al. 1980; von der Heydt 1987). Computational models
of simple cells using linear filters, in particular Gabor fil-
ters (Daugman 1985; Jones and Palmer 1987), followed
by half-wave rectification are widely applied (Movshon
et al. 1978; Andrews and Pollen 1979). Complex cell mod-
els require an additional step in processing, namely, spatial
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summation. Morrone and Burr (1988) modeled this sum-
mation by taking the amplitude of the complex values of
the simple cell operator. Simple and complex cells respond
to periodic stimuli and aperiodic stimuli such as sine- and
square-wave grating, bars, and edges of a preferred orien-
tation.

A decade ago, von der Heydt et al. (1991, 1992) reported
the discovery of a new type of cell in areas V1 and V2 of
the monkey visual cortex that responded to periodic stim-
uli. They called these cells “grating cells” because they
responded vigorously to periodic patterns and only weakly
or not at all to aperiodic patterns like bars or edges. They
estimated that these cells make up around 4 and 1.6% of
the population of cells in areas V1 and V2, respectively,
and that in V1 around 4 million of these cells subserve the
central 4◦ of visual field. Grating cells prefer spatial fre-
quencies between 2.6 and 19 cycles per degree with tun-
ing widths at half-amplitude between 0.4 and 1.4 octaves.
They found that these cells are highly selective for the ori-
entation of gratings and the number of cycles included. A
minimum of 2–6 cycles was required to evoke a response,
which then leveled off at 4–14 cycles (median 7.5). In this
study we propose a computational model of grating cells
that reproduces these measurements.

However, having obtained a model that can reproduce
these measurements, the question arises as to whether
these operators also respond to real-world patterns and, if
so, to what kind? This question is important with regard
to embedding the model into an artificial vision system.

This paper is organized as follows. In Sect. 2 compu-
tational models of simple and complex cells as known
from the literature will be introduced and those used to
develop the new grating cell operator will be described. In
Sect. 3 the new grating operator will be constructed and di-
vided into two classes, the first sensitive to achromatic and
the second sensitive to chromatic stimuli. Cortical cells
with functions equivalent to the latter type have not been
described [since stimuli used by von der Heydt et al. (1992)
were achromatic] but are likely to exist, since cortical ar-
eas V1 and V2 are quite responsive to chromatic stimuli
(Engel et al. 1997). In Sect. 4, the output of operator G and
the responses of grating cells will be compared by using the
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same type of stimuli as used by von der Heydt et al. (1992).
In addition the output of the grating operator proposed
by Kruizinga and Petkov (1995) is used for comparison.
In Sect. 5 operator G will be applied to real-world images
in order to obtain better insight into the function of grat-
ing cells in everyday vision. In Sect. 6 conclusions will be
given.

2 Simple and complex cell operators

The receptive fields of simple cells can be modeled by com-
plex-valued Gabor functions:

Ĝσ,λ,γ,θ (x, y)= exp
(

i
πx1√
2σλ

)
exp

(
−x2

1 +γ 2y2
1

2σ 2

)
, (1)

where x1 = x cos θ + y sin θ and y1 = y cos θ − x sin θ .
Parameters σ , λ, γ , and θ represent scale, wavelength,
spatial aspect ratio, and orientation, respectively.1 These
Gabor functions have been modified such that their
integral vanishes and their one-norm (the integral over
the absolute value) becomes independent of σ , resulting
in Gσ,λ,γ,θ (x, y) = ηĜσ,λ,γ,θ (x, y), where η = η+

Re for the
positive-valued real part of Ĝ, η = η−

Re for the negative-
valued real part of Ĝ, and η=ηIm for the imaginary part
of Ĝ. For details about these constants see Lourens (1998).
A spatial convolution was used to transform input image
I (x, y) by these operators to yield the simple cell opera-
tor, and the amplitude of the complex values (Morrone
and Burr 1988)

Cσ,λ,γ,θ = ∣∣∣∣I ∗Gσ,λ,γ,θ

∣∣∣∣ (2)

was taken to obtain the complex cell operator. This oper-
ator formed the basis of the grating cell operator G to be
described later in this paper. A high value at a certain com-
bination of (x, y) and θ represents evidence for a contour
element (bar or edge) oriented orthogonally to θ . Orienta-
tions are sampled linearly θi = iπ/N, i =0, . . . ,N −1, and
the scales are sampled σj =σj−2 +σj−1, for j =2 . . . S −1,
where σ0 and σ1 represent constants.

3 Grating cells

Von der Heydt et al. (1991) proposed a model of grating
cells in which the activities of displaced semilinear units
of the simple cell type are combined by an AND-type
nonlinearity to produce grating cell responses. This model
responds properly to gratings of appropriate orientation
and not to single bars and edges. However, the model
does not account for correct spatial frequency tuning (the
model also responds to all multiples of the preferred fre-
quency) and responds to, for instance, a bar and an edge
stimulus to which a grating cell would not respond (Petkov
and Kruizinga 1997).

1 The used Gabor function is similar to the one used by Petkov
and Kruizinga (1997) when ξ = η = ϕ = 0 and spatial frequency
1/(2

√
2σλ) are used.

Kruizinga and Petkov (1995) and Petkov and Kruizinga
(1997) aimed at a model that reproduces the properties
known from neurophysiological experiments and pro-
posed a grating cell operator that was based on units com-
parable to simple cell with symmetrical receptive fields.
The responses of these operators were evaluated along
a line segment by a maximum operator M. A quantity
q, which is 0 or 1, was used to compensate for contrast
differences, and a point spread function was used to meet
the spatial summing properties with respect to the num-
ber of bars and length. Except in its spatial summation
properties, this operator differs from the grating cell re-
sponses, and it does not always account for correct spa-
tial frequency tuning; it is unable to discriminate between
alternating light and dark bars of preferred width and
alternating bars of about three times this preferred width.
The origin of this artifact and how it can be avoided will
be demonstrated in this paper.

In this paper, we present an operator G that meets the re-
sponse profiles of the cortical grating cells and their appro-
priate frequency tuning. This operator uses the output
complex cell operators as described in (2). As in the other
models, we evaluate (along a straight line) the responses
of these operators orthogonal to the length of the bars of
a grating. Let us denote the length of the evaluation the
“evaluation-length.” Unlike the other models, we let the
evaluation-length of the evaluation depend on the simi-
larity of the responses of the complex cells, but this eval-
uation-length is at least 2Bmin and at most 2Bmax bars.
Instead of a maximum operator, we use an averaging oper-
ator. No contrast normalization mechanism is incorpo-
rated into the grating operator since we believe that this is
compensated for at the stage of the center-surround cells
in the retina; see, e.g., Kaplan and Shapley (1986). This
implies that the input data are already normalized for con-
trast.

3.1 Grating cell operator

The complex cell operator responds vigorously and uni-
formly to grating patterns of a preferred frequency. Its
response decreases and becomes less uniform when ap-
plied to grating patterns of a different frequency (see Fig. 3
(C response for λ = 1.00) for a one 1D example). These
response strengths together with the uniformity of these
responses, which are measured along a line perpendicular
to the orientation of the bars, are used to construct the
initial grating response

Gσ,λ,γ,θ,l(x, y)= ρ

2l +1

l∑
i=−l

Cσ,λ,γ,θ (x +xi, y +yi) , (3)

where ρ is a response decrease factor. This factor is a mea-
sure of the deviation from the optimal spatial frequency
and uniformity of the complex cell responses. It will be
discussed below. The evaluation-length, which equals 2l,
is the length over which summation of the complex oper-
ator will take place.
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Since these operations are performed on a discrete grid,
we decompose the maximum length from the center of the
line segment, in x- and y-directions:

lx =Bmax

√
2σλ cos θ and ly =Bmax

√
2σλ sin θ . (4)

Similarly, we decompose the minimum length (Bmin) into
mx and my . The preferred bar width (in pixels) equals√

2σλ.
Depending on the preferred orientation θ , the evalua-

tion will take place in the x- or y-direction. Hence, param-
eters xi , yi , lmin, and lmax are orientation dependent:

if
(∣∣∣∣ lylx

∣∣∣∣≤1 and lx �=0
)

then
xi = i;yi =

⌊
i
ly

lx
+0.5

⌋
;

lmax =|�lx +0.5�|; lmin =|�mx +0.5�|
else
xi =

⌊
i
lx

ly
+0.5

⌋
;yi = i;

lmax =|�ly +0.5�|; lmin =|�my +0.5�| , (5)

where �x� denotes the floor function, i.e., the nearest inte-
ger value smaller than or equal to x. The evaluation-length
parameter l of (3) is determined by the maximum, mini-
mum, and average response of the complex cell operator
along a straight line:

l =min
i

(li); lmin <i ≤ lmax;

if

(
Gmax

σ,λ,γ,θ,i(x, y)−Gavg
σ,λ,γ,θ,i(x, y)

Gavg
σ,λ,γ,θ,i(x, y)

≥� ∨
Gavg

σ,λ,γ,θ,i(x, y)−Gmin
σ,λ,γ,θ,i(x, y)

Gavg
σ,λ,γ,θ,i(x, y)

≥�

)

then
li = i −1
else
li = lmax , (6)

where i ∈ Z and constant � > 0 is a uniformity measure.
We used �=0.25 in all experiments. The minimum, max-
imum, and average G responses are obtained as follows:

G�
σ,λ,γ,θ,l(x, y)=�l

i=−l

(Cσ,λ,γ,θ (x +xi, y +yi)
)

, (7)

where � denotes the min, max, or avg operator.
The determination of the evaluation-length parameter l

depends on the uniformity of responses of the complex cell
operator along a line orthogonal to orientation θ . How-
ever, the evaluation length would have no impact on the
response of the Gavg operator of (7). In (3), therefore, a
response decrease factor ρ =ρlρu that is decomposed into
a length evaluation and a uniformity decrease factor has
been introduced. The decrease factor for the evaluation
length

ρl = l/lmaxBmax −Bmin

Bmax −Bmin
= l − lmin

lmax − lmin
(8)

is a linearly increasing response between Bmin and Bmax.
This ensures a strong decrease for short evaluation-lengths
(it equals 0 for lmin).

The uniformity decrease factor is measured by the devi-
ation between the strongest and weakest response of the
C operator along the evaluated line, when the evaluation
length is larger than the minimum number of bars plus
one (otherwise it is ignored, i.e., ρu =1):

if (ls ≤ lmin)
then
ρu =1
else

ρu =1− Gmax
σ,λ,γ,θ,ls

(x, y)−Gmin
σ,λ,γ,θ,ls

(x, y)

2�Gavg
σ,λ,γ,θ,ls

(x, y)
, (9)

where ls = l − lmax/(1 + �Bmax�) is the length that is one
bar shorter in evaluation-length parameter l. The slightly
shorter evaluation-length ensures that both criteria in (6)
are less than �, which implies that ρu ≥0.

A weighted summation is made to model the spatial
summation properties of grating cell operators with re-
spect to the number of bars and their evaluation-length,
which yields the grating cell response:

Gσ,λ,γ,θ,β =Gσ,λ,γ,θ,l ∗g σβ

λ
, (10)

where gs(x, y) = 1/(2πs2) exp(−(x2 + y2)/(2s2)) is a 2D
Gaussian function. In combination with Bmin and Bmax,
parameter β determines the size of the area over which
summation takes place. Parameters Bmin =0.5 and Bmax =
2.5, together with a β between 2 and 4, yield good approx-
imations of the spatial summation properties of cortical
grating cells. In the experiments we used β =3.

3.2 Color-opponent type of grating cells

Achromatic stimuli were used by von der Heydt et al.
(1992); therefore they have not reported on the existence
of color-opponent grating cells. However, evidence of
other experiments suggest that such cells are plausible.
Livingstone and Hubel (1984) already found opponent
color-sensitive cells at the first level of processing after the
photoreceptors. They found orientation-selective cells in
area V1 that were color sensitive too. The receptive fields
of these cells include elongated subregions that give excit-
atory responses to one color and inhibitory responses to
another (opposite) color. The opponent color pairs were
red-green and blue-yellow or vice versa. Cells of this type
are found in area V4 (Zeki 1993) and in area V2, where 21–
43% of the neurons have these properties (Gegenfurther
et al. 1996; Tamura et al. 1996).

For modeling grating cells sensitive to chromatic
stimuli, we used color-opponent complex cell operators
(Würtz and Lourens 2000) defined as follows:

Ce,i
σ,λ,γ,θ = ∣∣∣∣(I e − I i)∗Gσ,λ,γ,θ

∣∣∣∣ , (11)

where (e, i)∈{(r, g), (b, y)} is a red-green or a blue-yellow
color-opponent pair.2 Yellow is obtained by the average

2 The order of a color pair is arbitrary since Ce,i
σ,λ,γ,θ =Ci,e

σ,λ,γ,θ .
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of the red and green component: y = (r +g)/2, I a denotes
color channel a ∈{r, g, b, y} of image I .

In analogy to the initial achromatic grating cell opera-
tor of (3), the initial color-opponent grating cell operator
should be modified to

Ge,i
σ,λ,γ,θ,l(x, y)

= ρe,i

2le,i +1

le,i∑
j=−le,i

Ce,i
σ,λ,γ,θ (x +xj , y +yj ) , (12)

where le,i and ρe,i are evaluated as before, but Gavg,e,i

should be used instead of Gavg. Similarly, the Gmin and
Gmax operators are evaluated by using antagonistic color
channels.

The color-opponent grating cell operator, which is a
modified version of the achromatic grating response from
(10), is as follows:

Ge,i
σ,λ,γ,θ,β =Ge,i

σ,λ,γ,θ,l ∗g σβ

λ
. (13)

The orientations of the grating cells are combined with
an amplitude operator (for G also Ge,i can be substituted):

Gσ,λ,γ,β =
√√√√N−1∑

j=0

(Gσ,λ,γ,θj ,β

)2
, (14)

where N denotes the number of orientations and θj =
jπ/N . The achromatic and two color-opponent (red-
green and blue-yellow) channels are combined by taking
their maxima to yield the final grating cell operator

Gall
σ,λ,γ,β =max

(
Gσ,λ,γ,β , max

(e,i)

(
Ge,i

σ,λ,γ,β

))
(15)

at a single scale. Since Ce,i
σ = Ci,e

σ , and hence also Ge,i
σ,λ,γ,θ,β

= Gi,e
σ,λ,γ,θ,β , one channel for every opponent pair is suffi-

cient. When an achromatic stimulus is applied to (15), it
reduces to (10), because Ge,i =0 for both color-opponent
channels.

4 Properties of grating cells

Von der Heydt et al. (1992) estimated several properties
of grating cells. First, they determined their sensitivity
to spatial frequency and orientation. Second, they used
square-wave gratings to define the sensitivity of these cells
to the number of bars included in the stimulus (spatial
cycles). Third, they described the response of these cells
to checkerboard patterns. Finally, they used the so-called
Stresemann patterns (gratings in which every other bar
was displaced by a fraction of a cycle). End-stopped grat-
ing cells that responded only at the end of a grating pattern
were found as well, but they will not be considered in this
study.

The contrast profiles of magno and parvo cells (Kaplan
and Shapley 1986) show similarities with the profiles given
by von der Heydt et al. (1992). In our model we assume

that contrast normalization takes place. Hence, we did not
simulate contrast sensitivity in this study.

The properties of the new grating cell operator will be
evaluated by applying the operator to similar input stim-
uli (images). Parameters λ and γ are tuned to resemble the
response profiles of the cortical grating cells. Then, these
results will be compared with the measured data and the
response properties of the model of Kruizinga and Petkov
(1995) and Petkov and Kruizinga (1997).

4.1 Responses to test patterns

Figure 1 illustrates that the grating cell operator of (15)
shows a behavior similar to that of the cortical grating cells.
Grating cells responded vigorously to grating patterns of
a certain orientation and spatial frequency, whereas small
deviations to this pattern reduced this response.

4.2 Orientation and frequency profiles

In this section the properties of cortical grating cells will be
modeled as accurately as possible by adjusting the param-
eters λ and γ of the defined operator. In the figures, these
responses will be labeled using the settings of these param-
eters and those of the cortical cells by the expression “vdH
. . . .”

The orientation bandwidth for grating cells is small;
their half-maximum responses are at ±6◦. In the model
this orientation tuning corresponded to λγ = 0.25 and is
illustrated in Fig. 2a.

Grating cells have different preferred frequency
profiles. The response curves for, e.g., a low- and a high-
bandwidth-sensitive cortical grating cell (Figs. 2b, c) were
somewhat different. After having tested several combina-
tions of parameters, λ = 1.00 and γ = 0.25 were found
to most closely resemble the response profiles of low-
spatial-frequency-sensitive cortical cells, while λ = 0.33
and γ = 0.75 most closely resembled the response profile
of the high-spatial-frequency-sensitive cortical cells. Note
that in both cases the orientation bandwidth (λγ = 0.25)
has been preserved.

However, a problem occurred when the setting of γ was
approximately 0.4 or larger. At a spatial frequency that is
a factor 3 lower than the preferred spatial frequency, the
operator showed a “second” response profile with a local
maximum response of 25% of the maximum response. This
phenomenon is demonstrated in Figs. 2b, c, for 1–2 and
5–10 cycles per degree, respectively. The choice λ = 1.00
and γ = 0.25 avoids this artifact and is still an appropri-
ate choice for high frequency sensitive cortical cells. For
instance, if a preferred bar width of eight pixels corre-
sponds to 19 cycles per degree, then the measured high-fre-
quency bandwidth, which has a response of 50% or higher,
would be between 6.6 and 8.9 pixels, while the modeled
operator would have a bandwidth that is between 5.4 and
12.7 pixels.

In the simulations, the definition of the stimuli in terms
of visual angle (cycles per degree) was arbitrary because
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(a)                (b)               (c)               (d)               (e)                (f)                (g)                (h)                (i)                 (j)               (k)

Fig. 1. Responses to square gratings of different orientations and
spatial frequencies. Top rows show the stimulus and bottom rows
the responses of the modeled grating operator. a Grating cells re-
sponded vigorously to grating patterns of preferred orientation and
frequency. Responses decreased when the stimulus differed from this
pattern. b, c Responses strongly decreased when the gratings were
rotated by 10◦ and completely vanished at a 20◦ rotation. d, e Dou-

bling or halving the spatial frequency also abolished these responses.
f, g Grating cell operators did not respond to single bars or edges. h,
i Checkerboard patterns also reduced the responses of these opera-
tors. j, k Stresemann patterns produced similar results. The settings
of the parameters were λ= 1.00, γ = 0.25, β = 3.00, Bmin = 0.5, and
Bmax =2.5
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Fig. 2. Comparison of responses of cortical grating cells with the re-
sponses of grating cell operators. a Orientation. b, c Low-frequency
and high-spatial-frequency profiles. d Spatial frequency profiles for

different preferred bar width sizes (BW = 4, 7, 11, 18, and 29 pixels).
Parameter settings: λ=1 and γ =0.25
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C response for =0.56
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Fig. 3. Input signal (top). Response profile for symmetrical simple
(SS) and complex (C) cell operators for λ=0.56 (middle) and λ=1.00
(bottom)

this is a biological measure depending on the distance be-
tween the observer and the stimulus. Hence, grating cell
operators with a preferred bar width of eight pixels could
correspond to both 4.2 and 19 cycles per degree. How-
ever, the response profiles for narrow bars demonstrate
small differences. This is due to the discretization proper-
ties of the Gabor filters. Figure 2d illustrates that opera-
tors preferring small bar widths (four pixels or less) pro-
duced responses of over 100%. Also, in such a case, only
seven measurements can be performed because the oper-
ator only responds to bar widths between one and seven
pixels.

Figure 2d illustrates the bandwidths for operators pre-
ferring different bar widths (right to left: 4, 7, 11, 18, and
29 pixels, respectively). This figure illustrates that these five
“scales” cover the full range of preferred frequencies (2.6
to 19 cycles per degree) assuming that a grating with a bar
width of four pixels corresponds to a grating of 19 cycles
per degree. If so, a grating of 2.6 cycles per degree would
have a bar width of 4 ×19/2.6=29.2 pixels. Hence, these
five scales cover well the range of cortical grating cells,
considering that the drop in response strength between
these five preferred frequencies drops at most 25% from
the maximum response.

The grating cell operator of Kruizinga and Petkov
(1995) and Petkov and Kruizinga (1997) is available online
(http://www.cs.rug.nl/users/imaging/grcop.html) and was
used with a bandwidth of 1.0 and a periodicity that equals
two times the preferred bar width. The response profile
(denoted by “K-P” in the figures) of this grating operator
shows two global states, namely, inactivity or vigorous fir-
ing, caused by the built-in normalization quantity q. The
choice of λ= 0.56 gives strong responses to two intervals
(see Fig. 2b at 1–2 and 4–7 cycles per degree and Fig. 2c at
6–8 and 18–30 cycles per degree), which is caused by the
simple cell operators. The higher spatial frequency curves
are due to responses to the bars. The lower spatial fre-
quency response curve is an artifact; it is due to an up-
and-down going edge of a bar. In the middle of such a

low-frequency bar there is still some response from both
edges, causing a response profile that is similar to that
of bars of the preferred frequency. An illustration of this
behavior is given for a 1D signal in Fig. 3. This behavior
does not occur for λ = 1.00, as is illustrated in the same
figure, which motivates our choice for λ, for both lower
and higher spatial frequencies.

4.3 Profiles for different textures

Figure 4a demonstrates the responses of three cortical
grating cells to stimuli that include different numbers of
bars. It shows that the responses of these cells increases
with increasing numbers of bars. For comparison, the cor-
responding responses for the “K-P” operator are shown
together with the responses of our operator, again set with
different parameters. One can see that all responses were
slightly different but nevertheless well within the range of
cortical cells.

With regard to checkerboards, our operator was not as
robust as the cortical cells (Fig. 4b) but showed a similar
response profile when a checkerboard stimulus at different
orientations was given (Fig. 4c). By contrast, the modeled
cells are slightly less sensitive to shifts of bars (Fig. 4d).
The responses to different orientations depended on the
orientation bandwidth. With λγ = 0.25 the orientation
bandwidth was similar to that of the cortical cells, but the
response was lower (by about three times) than the corre-
sponding responses of cortical grating cells. On the other
hand, with λγ =0.35 the responses were comparable, but
the orientation bandwidth became wider than that of the
cortical cells.

5 Examples of responses to oriented periodic patterns

The grating cell operator has been implemented in the
visual programming environment TiViPE (Fig. 5a). In this
figure, the “GratingResponses” icon performs (14) for the
achromatic and two opponent-color channels separately.
The two “DoubleOperand” icons perform the maximum
operations as given in (15). The “Threshold” icon, with a
thresholding value of 7, which avoids responses to noise,
results in a binary response image. The “FeaturesOnIm-
age” icon overlays these results (in red) on the monochr-
omized input image. The same parameter settings were
used for all experiments (Fig. 5b).

Most plants have highly repetitive patterns; the leaves
of bushes, ferns, and trees tend to be numerous. De Valois
and De Valois (1988) argued that a periodic pattern is eas-
ier for a plant to encode genetically because of its redun-
dancy; for the same reason it should be easier for the visual
system to decode such a pattern. The grating cell oper-
ator was applied to several naturally occurring periodic
patterns of ferns, flowers, snakes, sand, and a few human-
made periodicities (initially text of the manuscript and a
ceiling) (Fig. 6). The grating cell operator showed weak
or moderate responses to plants and animals. An excep-
tion was the strong response to the diamond python image
(column 8 of Fig. 6), since its pattern closely resembles that
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Fig. 4. Measured and modeled properties of grating cells. a Response
profile for increasing number of bars. b Response to checks. c Sensi-

tivity to different orientations of checkerboard patterns. d Responses
to the so-called Stresemann pattern with increasing shift of bars

of a checkerboard. Response to sand patterns created by
wind and water can be strong if the patterns are regular.

Responses to human-made periodic patterns such as
a ceiling or printed text are strong. The accuracy of re-
sponses to the latter was striking, but details of marking
text are beyond the scope of this paper. Many other images
that contain natural periodic patterns of grass, plants, and
flowers were applied, but the grating cell operator did not
respond to those patterns. These findings suggest that grat-
ing cells do respond moderately to natural regular periodic
patterns but strongly to the human-made periodicities.

The new operator has been applied to images contain-
ing textures, human-made (periodic) patterns inclusive,
from three (Brodatz, ColumbiaUtrecht, and the VisTex)
freely available databases. The Brodatz database contains
111 images D1 to D112, where D14 is missing. The cen-
tral part (512×512 pixels) of the grayscale images that were
sized 640×640 was used. The ColumbiaUtrecht database
contains 61 images (sample 01 to sample 61). The central

part (256×256 pixels) of the color images that are sized
640×480 was used. In the VisTex database 166 color im-
ages with a size of 512×512 pixels were used.

The grating cell operator was used with N = 16 orien-
tations, which was necessary because the half-maximum
response of the grating cells is at ±6◦ (see also Fig. 2a). Five
different preferred spatial frequencies (scales) were used
that cover the whole spectrum (2.6–19 cycles per degree)
of cortical cells. These scales were combined using a max-
imum operator to yield one response per stimulus:

Gallλ,γ,β = S−1
max
i=0

(Gallσi ,λ,γ,β

)
, (16)

where S =5 is the number of scales and σ0 =4λ/
√

2, σ1 =
7λ/

√
2, and σj = σj−2 + σj−1 for j ≥ 2 (as given earlier).

The minimum bar width at σ0 is 4, since smaller widths
lead to strong inaccuracies due to the discreteness of the
Gabor filters.
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(a)

(b)

Fig. 5. a Grating cell simulation in TiViPE. The three display icons
yield input image, grating cell operator responses, and grayscale in-
put image with grating responses (red) as illustrated in the next two

figures. b Parameter settings of “GratingResponses,” our imple-
mented grating cell operator

Fig. 6. Images of repetitive patterns (first row). Respective responses
of the proposed grating cell operator. The results are normalized for
better visualization; white denotes strong response, black no response

(second row). Thresholded results (set to 7 where the response of the
operator is between 0 and 255) in red as image overlay (third row)
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Fig. 7. Images from different databases (odd rows) and their response profiles as defined in (16), (even rows)

The grating cell operator was very selective and re-
sponded in only 5 (samples 38, 46, 49, 51, and 57) images
in the ColumbiaUtrecht database and to 32 images of the
Brodatz database. With the VisTex database the operator
responded to 3 out of 18 categories of images (buildings,
fabric, and tile), and within these categories it responded
to about half of the images.

Figure 7 presents examples. These results suggest that
cortical grating cells may respond well to the surface tex-
tures of human-made objects that include oriented peri-
odic patterns.

6 Conclusions

In this paper, we presented a new model of cortical grat-
ing cells that produces response profiles similar to that
of monkey grating cells (von der Heydt et al. 1992). Un-
like previous models of grating cells (von der Heydt et al.
1991; Kruizinga and Petkov 1995; Petkov and Kruizinga
1997), the new model accounts for accurate spatial fre-
quency tuning.

The model of Kruizinga and Petkov (1999) is an ori-
ented texture operator since it responds well to oriented
texture. The model is inspired by cortical grating cells, but
response profiles differ rather strongly from that of these
cortical cells.

Brunner et al. (1998) proposed a neural network model
for the emergence of grating cells. The model considers
developmental issues and activity-dependent self-organi-
zation and is from this perspective attractive. However, the
results do not closely resemble the responses of cortical
grating cells. For instance, this model is moderately ori-
entation sensitive (the half-maximum response is around
±30◦, in contrast to the highly orientation-sensitive cor-
tical grating cells where the half-maximum response is
at ±6◦). The model showed similarities in response to
the numbers of bars but did not demonstrate how cells
developed to different preferred spatial frequencies, nor
were other characteristics of cortical grating cells demon-
strated.

Our model was applied to 49 different images with
repetitive patterns from nature such as ferns, flowers, and
animals as suggested by De Valois and De Valois (1988)
and to 338 real-world images of textures from three da-
tabases. The results of these simulations show that the

grating cell operators respond to oriented textures that in-
clude periodic patterns but are insensitive to many other
textures. These patterns occur frequently in human-made
patterns, but regular natural periodic patterns are rela-
tively rare in nature.

The grating cell operator responds well if the complex
cell responses perpendicular to the preferred orientation
show similar strong responses. In such cases it is impos-
sible to detect or extract relevant edges in these areas by
using complex cells, since they respond to all locations of
these grating patterns. We conclude, therefore, that cortical
grating cells play a key role in separating form from tex-
ture, for example by giving inhibitory feedback to complex
cells. Comparing a complex cell response that is strongly
inhibited by grating cell responses demonstrates, upon first
impression, similar results to the bar operator proposed by
Petkov and Kruizinga (1997). However, the bar operator
fully inhibits the overall grating pattern, while in our case
the positions where the grating pattern begins and ends
are not inhibited, nor are the positions where the gratings
themselves end. In this respect the form of an object that
contains a grating pattern is preserved, as demonstrated
by Lourens et al. (2003). The positions where the gratings
end are less uniform, but this could be compensated for
by the so-called end-stopped type of grating cells, which
were found by von der Heydt et al. (1992) as well.
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