Communicating emotions and mental states to robots
in a real time parallel framework using Laban movement analysis
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Abstract

This paper presents a parallel real time framework for emotions and mental states extraction and recognition from
video fragments of human movements. In the experimental setup human hands are tracked by evaluation of moving
skin-colored objects. The tracking analysis demonstrates that acceleration and frequency characteristics of the traced
objects are relevant for classification of the emotional expressiveness of human movements. The outcomes of the
emotional and mental states recognition are cross validated with the analysis of two independent certified movement
analysts (CMA’s) who use Laban movement analysis (LMA) method. We argue that LMA based computer analysis
can serve as a common language for expressing and interpreting emotional movements between robots and humans,
and in that way it resembles the common coding principle between action and perception by humans and primates that
is embodied by the mirror neuron system. The solution is part of a larger project on interaction between a human and
a humanoid robot with the aim of training social behavioral skills to autistic children with robots acting in a natural
environment.

Keywords: emotion recognition from body movements, real time parallel processing, framework for motion analysis

and synthesis, Laban movement analysis.

1. Introduction

Sociable humanoid robots pose a dramatic and in-
triguing shift in the way one thinks about control of
autonomous robots. The introduction of robots that
have to demonstrate different degrees of autonomy im-
posed different requirements than industrial robots that
have been pre-programmed to work in a fully controlled
environment. Biologically inspired and cognitive ap-
proaches to robotics have been successfully applied to
achieve a degree of autonomy that is determined on the
level of an individual organism. By sociable robots it
is necessary to go beyond sensory-motor interaction by
also taking into account the interplay between constitu-
tive and interactive aspects of autonomy. This implies
that sensory-motor interaction has to be enriched with
intentional, reward, and emotional features [1, 2].

Most of the existing sociable robots are mainly used
in tele-operated or “wizzard of Oz” manner [3, 4], al-
though there are a number of exciting developments in
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robots that interact autonomously in a meaningful for
the human way [5, 6, 7] or use brain like mechanisms or
neural mechanisms [8, 9, 10].

Brain inspired robots have been used for investigat-
ing animal locomotion and motor control, [11, 12, 13,
14, 9], to learn to avoid obstacles [15, 16], produce ac-
curate vision functions [17, 18, 19] generate adaptive
arm movements [17, 20, 13, 9], perform (rat-like) learn-
ing and memory tasks [21, 14, 22, 23, 24], or emulate
the human or rodent reward and value systems [25, 26].

Many of these functionalities are building blocks for
social behavior. Social neuro-robots have been based
mainly on the theories of the mirror neuron system.
Mirror neurons are visuo-motor neurons that fire both
when an action is performed , and when a similar or
identical action is passively observed [27]. Using this
notion of mirror neurons, it has been shown that ob-
serving complex movements such as reaching and lo-
comotion [7, 28, 29, 9] as well as postures, non-goal di-
rected movements, and facial expressions, interacts with
the preparation of similar actions [30], due to common
motor encoding of the observed and the performed ac-
tions. Many studies identify that the mirror neuron sys-
tem for motor imitation is comprised of three main cor-
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tical areas: the premotor cortex (F5), the inferior pari-
etal lobule (PF), and the superior temporal sulcus (STS).
It creates an affordance to first implement goal-oriented
tasks, such as grasping. This system has further evolved
to dynamically represent the sensory and the motor cor-
relates of an action. This way perceiving and perform-
ing an action exploits the same representation i.e. the
action of the conspecifics is represented in the acting
agent. Therefore the mirror neuron system can facilitate
imitation of action, as one of the earliest forms of recip-
rocal interaction observed between infant and caregiver
[31].

Motor imitation is fundamental for infant’s emerging
ability to detect the correspondence between self and
others [31]. The early opportunity for an infant to de-
tect similarities with others leads to later understanding
of other’s intentional behavior and the development of
theory of mind. More general system for social interac-
tion facilitates the emotional aspects of the imitative or
other reciprocal behaviors. The studies of human emo-
tion that are related to observable human behavior in
terms of postures and movement, such as [32], place the
amygdala at the core of a network of emotional brain
structures. The amygdala and STS are directly con-
nected and involved in recognition of emotional body
language. It decodes the affective relevance of sensory
inputs and initiates adaptive behaviors via its connec-
tions to the motor mirror system [33].

To model the cascade of brain areas or mechanisms
that relate to imitation of motor and emotional actions
is a challenging task. Instead, we model motor imita-
tion and other reciprocal behaviors on a functional level,
by describing the movement in the framework of Laban
movement analysis. LMA is a formal ’language’ for
movement description [34, 35] and emphasizes on how
internal states, feelings and intentions govern the pat-
terning of movement throughout the whole body. Be-
cause of that LMA makes it possible to implement the
common coding principle (i.e. the functional princi-
ple of the mirror neuron system) on a behavioral level.
Similar to common coding/mirroring paradigm LMA is
useful to describe the interaction in the physical world,
through using the same description for expressing and
interpreting of emotional movements [36].

LMA captures both the kinematic as well as the non-
kinematic features of movement. Non-kinematic fea-
tures of movements are the qualitative aspects of move-
ment, characterized by changes in its intensity, shape,
force, flow and rhythm. These changes are more expres-
sive than changes in the spatial-temporal body relations.
LMA detects the changes in several body parts and axes.

Using robots for social training and interaction is con-

cordant with the interest for nonverbal social communi-
cation, expressed via movement, postures and facial ex-
pressions. The robots are required to produce and per-
ceive nonverbal behavior in real time, and in parallel
(i.e. 2 or more simultaneous movement, mimic or pos-
tural behaviors). In this paper we will focus on perceiv-
ing and interpreting nonverbal behavior for the purpose
of modeling reciprocal social behavior on a the robot.
The interpretation of the behavior also through LMA is
rooted in the dynamic and qualitative characteristics of
the movement in real time, and it can be concluded from
observation of parallel movement behaviors.

Real time parallelism on a PC has been strongly facil-
itated by recent developments of graphical processing
units (GPUs), not only have these GPUs become fast!
but they also can be used as general processing units
[37].

We use a standardized humanoid robot NAO (Alde-
bran) and the GPU based parallel processing for more
realistic behavioral applications and have adopted the
approach of functional brain modeling [38]. To real-
ize and integrate these functional models we use graph-
ical software environment TiViPE [39], as suggested in
[40, 18, 41, 19].

More specifically we are interested in scenarios in-
volving multiple simultaneous actions performed by
different body parts of a human or a robot. We as-
sume realistic imitation scenarios, i.e., scenarios where
a human freely behaves and a robot tracks its actions
with the intend to act upon the meaningful ones, for in-
stance by imitation [42] or by encoding and recollecting
episodes of memories [43].

The focus in this paper will be to define the tech-
nical aspects of this architecture, and show detecting
and tracking of multiple behavioral trajectories of differ-
ent body parts with a further aim to detect incongruent,
atypical, or emotional behavior. We demonstrate the
results for emotional and neutral hand waving behav-
ior and guitar playing and demonstrate that both visible
skin colored body parts can be tracked in real time. The
paper also describes Laban movement analysis (LMA)
and elaborates on a method for detection and recogni-
tion of emotional movements using this LMA by evalu-
ating hand waving and guitar playing experiments.

The paper is organized as follows: Section 2 de-
scribes the experimental setup and gives the implemen-
tation of marking a hand in an image using skin color.
For the sequence of images such region is marked to
construct a stream that is used to analyze hand waving

'A single GPU card is able to process up to 5 tera (10'2) floating
point operations per second (TFLOPS).



behavior. This section provides some preliminary ex-
perimental results. Section 3 provides an initial setup
how these data streams can be used to extract social be-
havior for interaction with a robot. Section 4 and 5 de-
scribe Laban movement analysis and the hand waving
experiment from this perspective. Section 6 elaborates
on human emotion recognition while playing guitar and
describes analogies with the hand waving experiment.
The paper finishes with a discussion and future research.

2. Experimental setup
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Figure 1: TiViPE (www.tivipe.com) implementation of hand waving.
The icons from top to bottom at the left-side process skin areas, while
motion sensitivity is processed by the functional blocks at the right-
side.

We have been conducting hand waving experiments
within scenarios where different emotions and mental
states has been enacted. Figure 3 depicts four (happy,
angry, sad, and polite) different emotional waving pat-
terns. A camera records images that are processed using
a combination of skin color and motion detection, with
the aim of tracking a single area. This area is associated
with the waving movement. A device or robot should
be able to extract a simple motion pattern and interpret

the intend, the emotion, or the mental state conveyed by
this movement behavior, imitate this movement pattern
or eventually adjust its own behavior. The aim of the
overall project is to teach or to influence behavior of the
human in order to improve his or her social skills, that
is necessary, for instance, for people with autism.

The implementation of detection and tracking a mov-
ing hand is given in Figure 1. It is used for both hand
waving and guitar playing experiment and comprises
the following steps:

1. acquiring data from a camera or reading a stored
image sequence

2. binarizing an image by marking a pixel either as
skin color or other color and in parallel binarizing
an image by marking pixels either as observed mo-
tion or as static element

3. marking skin and motion regions by a pyramid de-

composition

selection of these regions that are both skin and

motion region

averaging skin-in-motion regions to a single region

tracking an averaged skin-in-motion region

visualization of regions in an image

visualization of a waving hand

classification of waving profiles

b
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The theoretical background and the computational
details behind the implemented signal processing is de-
scribed in more detail in the following subsections.

2.1. Skin color detection

An image is defined as a two-dimensional matrix
where a pixel at position (x, y) has an intensity I.(x,y) =
(r,g,b), where r, g, and b € [0,...,255] are the red,
green, and blue component. Segmentation using skin
color can be made independent of differences in race
when processing image pixels in Y-Cr-Cb color space
[44]. The following (r, g, b) to (Y, Cr, Cb) conversion is
used

Y 0.2989r + 0.5866g + 0.1145b
Cr 0.7132(r - Y)
Cb = 05647(b-7),
where threshold values 77 < Cb < 127 and 133 < Cr <
173, see [44] yield good results for classifying pixels
belonging to the class of skin tones.
In our experiments we also excluded the “white area”.

Formally an element belongs to the “white area” if it
satisfies the following:

Ir — bl

Ir — gl lg—b

<0.1A <0.1 A

<01, (1)



where m = min(r, g,b), r > 0.3, g > 0.3, and b > 0.3.
Its implementation given by ‘the “SkinColor” icon in
Figure 1 yields a binary image.

The functional concept as described above contains
similarities with how the brain processes visual data, es-
pecially in the way the primary visual cortex area V4
provides a substantial role in processing color [45].

2.2. Motion detection

A pixel at location (x,y) with intensity I(x,y) = (r +
g + b)/3 will have moved by (6x, dy) over a time span
ot, hence the following image constraint equation can
be given:

I(x,y,1) = I(x + 0x,y + 0y, t + O1). 2)

This is known as the brightness constancy assumption.
The optical flow constraint equation is obtained using a
Taylor expansion on (2), dropping it linear terms, and is
expressed as
LV + LV, =-I, 3)
where (V,, V) = (g—)t‘, %) denotes the flow, I, I, and I,
the derivatives of I at horizontal, vertical, and temporal
direction, respectively. Equation 3 is applied to all loca-
tions (x,y) in image /. The Lucas-Kanade operator [46]
is used, it is a two-frame differential method for opti-
cal flow estimation where the derivatives are obtained
by using a Sobel filter kernel [47]. Instead of using So-
bel kernels the more biologically plausible Gabor ker-
nels can be used as well [48, 49]. Receptive fields of a
cat’s primary visual cortex area V1 and V2, that show
striking similarities with these Gabor kernels, have been
found in the 1950’s by neuroscientists and Nobel laure-
ates Hubel and Wiesel [50, 51]. It is plausible that a sim-
ilar activity flow map might be expected in the middle
temporal are MT, also known as primary visual cortex
area V5 [45].
From (V,,V,) the L-2 norm (top right “Double-
Operand” icon of Figure 1) is taken and thresholded at
5 to obtain a binary “motion classified” image.

2.3. Rectangular region marking

The next stage is marking a cluster of “skin tone clas-
sified” or “motion classified” pixels by a rectangular
window. This is performed by decomposing the image
into a pyramid, where every pixel in the next level of the
pyramid is computed as follows:

1
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Figure 2: Marked regions of interest. Red and green areas denote skin
and motion area, respectively. A blue area is the combined moving
skin area that has been averaged over all skin areas that are moving.



where (x,y) is the position in image [;, i denotes the
level in the pyramid. Base level O contains the origi-
nal image Iy. The construction of a pyramid using (4)
provides a strongly reduced search space, since if in
level i + 1 a pixel I;;;(x,y) is found to belong to the
desired region then in level i of the pyramid a cluster of
2x2 pixels (I;(2x,2y), I;(2x + 1,2y), I;(2x,2y + 1), and
I;(2x + 1,2y + 1)) belong to the same region.

The search for regions of interest starts at the highest
level, and decreases until an a-priori known minimum
level has been reached. It is therefore possible that no
regions of interest are found. Taking into consideration
that if a pixel is marked as “skin tone” or “motion” it has
value 1, and O otherwise. We define a pixel to belong to
a unique region j if it satisfies the following:

Ri(x,x+1,y,y+1) = Ii(x,y) = 1. (5)

Regions le in their initial setting are bound by a sin-
gle pixel /;(x,y), and a region growing algorithm is ap-
plied to determine the proper size of the rectangular
region. Lets assume that the initial size of the rect-
angle is R{ (x1, X, Yu, y4) and that the possible growing

areas are left (R{’ = R{ (x; = 1, x1, Y4, ya)), right (R{' =

R,!(xr, Xy + 1syu,yd))s above (R,j = R{()Cl, XrsYu — lsyu),
" '

and below (R! = R/(x;, x,,ya,yq + 1) this region. The

average value of all four growing areas is taken, where

the maximum value determines the direction of grow-
ing. The following procedure

A{X = avg (R{x),x el{l,r,u,d}
7 J*

M; = m;?x (Al. )
Rl = RIUR/iftM/ >T,

is repeated until Mijx < T,,. From experiments T, =
0.67 provides a rectangle that corresponds roughly to
a skin area in the original image and 0.5 gives a suffi-
ciently large motion area, see also Figure 2.

The method described above is able to find all uni-
form skin color and motion regions in an image in real
time.

2.4. Tracking

Two examples of the waving experiment using color
images of 640x480 pixels at a speed of 29 frames per
second are provided in Figure 2. Creating a single re-
gion in the image rather than multiple regions of interest
is accomplished in order to unambiguously track an ob-
ject of interest. These tracked objects are stored as file,
see also icon “StreamTrackRegionToFile” of Figure 1,
and processed further.
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Figure 3: Waving patterns given by acceleration profiles for (a) hap-
piness, (b) anger, (c) sadness, and (d) politeness.



Fifteen recordings of 20 seconds have been made
where a performer was asked to demonstrate happiness,
anger, sadness, or politeness. In each plot the accel-
eration profile has been obtained by taking the second
derivative of the central point of the tracked object. Ex-
amples for all four different emotional states are de-
picted in Figure 3. From this figure the following can
be observed:

1. happy waving provides a regular waving pattern
with a relatively high frequency.

2. anger demonstrates bursts with tremendous accel-
eration

3. sadness demonstrates a profile of low acceleration,
its frequency is relatively low and appears to have a
lower frequency compared to the other three emo-
tions.

4. politeness that demonstrates a queen type of wav-
ing profile is a regular pattern with a high fre-
quency that is obtained by using minimal energy.

In an average acceleration-frequency plot of the
recorded movements four distinctive clusters are formed
(Figure 4). In one of the image sequences the actor was
instructed to perform polite waving, but in the sequence
she seemed to be happy, indicating that there might be a
smooth boundary between these emotional states. The
average energy in one of the five bursts in Figure 3b
shows an average acceleration score of more than 0.07
and gives an indication of the upper bound of used en-
ergy by performing these emotions by the actor.

3. Behavioral Primitives

Understanding motion from waving patterns requires
amechanism that is able to learn to interpret and classify
these sequences, and ideally able to extract the observa-
tions provided in Section 2.4. In the following section
we are attempting to classify motion by so-called La-
ban primitives. Using these primitives we classify the
intend and the mental state of the person that perform
movement behavioral patterns.

The current method is developed to enable a robot to
interact with a human in realistic scenarios. If a robot
is able to track in parallel regions of interest, a con-
siderable number of interacting scenarios are possible
even without interpreting of the meaning of an object.
Moreover, using an earlier developed technique [52] the
robot recognizes and learns repeating patterns of be-
havior, which it considers important, and discards occa-
sional movements which most often are not important.
For instance, if during waving of the hand a head move-
ment takes place because at this time somebody enters

the room, this movement will be ignored. However, if
a person that interacts with the robot performs repeat-
edly a movement with his/her head while waving, this
will be learned and eventually included in the imitation
behavior of the robot.

Waving behavior
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Figure 4: Distinct emotion profiles are revealed by average frequency
and acceleration.

4. Laban movement analysis

Rudolf Von Laban, a dance theorist, created a prac-
tical method for recording all forms of human motion.
While Laban first refers to his notation, as well as to
other systems as choreography, for its final form he
coined the term kinetography? and initially published it
as “Schrifttanz” (written dance or script-dance) [53, 54],
which also appeared as the Schrifttanz Magazine form
1928-1931. The Laban notation system [34] became
known a Kinetography Laban [55, 56] and Labanotion
[57].

Bartenieff [35], a student of Laban, applied develop-
mental principles and Laban’s theories to her work with
polio patients and dancers, her system is known as La-
ban/Bartenieff movement analysis or Laban movement
studies and comprises:

e Laban movement analysis,

o Anatomy and kinesiology,

Bartenieff fundamentals (BF), and

Labanotation.

2Kinetography is derived from the Greek words kinesis (move-
ment) and graphein (to write).



LMA emphasizes the processes underlying motor
actions rather than the resultant motor action. It
records how the four movement components *Body, Ef-
fort, Shape, and Space (BESS)’ are integrated, or not,
throughout the observed movements. LMA was used
to evaluate fighting behaviors of rats [58], to diagnose
autistic patients [59], to explain the differences in sex-
ual behavior in Japanese macaques [60] and to analyze
the quality of movement by recovery of stroke patients
[61]. We use LMA for description of the kinematic and
non-kinematic movements made by human subjects that
perform emotional actions. The reliability of the non-
kinematic measures in LMA has been validated in pre-
vious studies [62, 63, 60]. In this paper the focus is on
effort [64] or dynamics, it is a system for understanding
the more subtle characteristics about the way a move-
ment is done with respect to inner intention.

For instance, the difference between punching or
reaching for an object is small in terms of body orga-
nization, since both rely on extension of the arm. The
attention to strength, control, and timing of the move-
ment are different. Effort has four sub-categories, each
of which has two opposite polarities:

e Space (direct or indirect). Space effort constitutes
a single-focused or multi-focused approach to the
environment.

o Weight (light and strong). Weight effort determines
how I use the impact of my body weight during a
movement, ranging from delicate to more forceful.

o Time (sustained or quick). Time effort reveals a
deceleration or acceleration within movement.

o Flow (free or bound). Flow effort is responsible
for the continuousness or ongoingness of motions,
varying from uncontrolled to more controlled use
of flow within movement.

Laban considers movement expressions to be almost
always a combination of two or three atoms of move-
ment, i.e. dominant effort factors. A combination of
two effort factors constitutes a state and a combina-
tion of three effort factors constitutes a drive. States
and drives are movement structures, to be considered as
maps in which different motion factors are combined.
These states are

o Awake = space + time
e Dream = weight + flow

o Stable = weight + space

e Mobile = time + flow
e Remote = flow + space
e Rhythm = weight + time
and its distinct drives are
e Action = space + weight + time

e Vision = time + space + flow

Spell = weight + space + flow

Passion = time + weight + flow

Laban described the effort actions or action drive us-
ing the subdivision of time, weight, and space, as pro-
vided in Table 1. While, flow, either free or bound, is re-
sponsible for the continuousness or ongoingness of mo-
tions. A detailed description of action drive is found in
[65].

Action || Time Weight | Space
Punch | quick strong | direct
Dab quick light direct
Slash quick strong | indirect
Flick quick light indirect

Press sustained | strong | direct
Glide sustained | light direct
Wring || sustained | strong | indirect
Float sustained | light indirect

Table 1: Laban action drives, given by combinations of effort factors
time, weight, and space.

All effort factors are visualized in an effort graph,
as given in Figure 5. The graph should be evaluated
by interpreting four factors each having two polarities,
yielding 8 different line segments. The horizontal axis
is given by free flow on the left and bound flow on the
right. Its vertical axis by light weight on top and strong
weight at the bottom, a secondary plane is given by di-
rect space on the horizontal axis and indirect space on
the vertical axis. The left and right, non-connected, hor-
izontal lines represent sustained and quick time respec-
tively. In this paper a red segment denotes that the re-
spective effort polarity has been found, while black de-
notes that it is not. The diagonal line segment is used to
connect the secondary ’space’ plane.

5. Laban analysis of hand waving experiment

Analysis of videos with a happy waving scenario dis-
plays a clear standard use of accelerated movement that



Light Light
Indirect Indirect

Direct Space Direct Space
Flow Freg=— Bound Flow Freg=—— Bound
Time Sustained Sudden Time Sustained Sudden
Strong Strong
Weight Weight
a) b)
Light Light
Indirect Indirect
g}irect Space &)mct Space
Flow Freg=—— Bound Flow Frog=—— Bound
Time Sustained Sudden Time Sustained Sudden
Strong Strong
Weight Weight
c) d)

Figure 5: Laban effort graphs for (a) happiness, (b) anger, (c) polite-
ness, and (d) sadness. These results have been obtained by taking the
results of the first CMA as provided in Table tab:laban.

travels up along the vertical axis of the body, being a
combination of Quick Time and Light Weight. Most
emotions that are qualified as positive have an affinity
with movement that goes upward in relation to the spine.
The first recording reveals a Passion Drive because the
Free Flow Effort factor is dominant, meaning the enthu-
siasm comes out strong and the mover is -taken over-
by emotion. During the second and third recording a
shift from Free Flow into Indirect Space has been ob-
served. With Indirect Space Effort, the mover uses a
spatial awareness that is multi-focused instead of focus-
ing on one point directly. During the second and third
recording, movement that is more controlled as well as
more connected to the surrounding space has been ob-
served. This shift from Free Flow into Indirect Space
means that the Effort Drive, which is a combination of
three Effort factors, changes from a Passion Drive into
an Action Drive.

Analysis of videos® with an angry waving scenario
reveals a clear standard use of Strong Weight with a ten-
dency towards Direct Space and Quick Time. In terms
of accelerated, less controlled movement (Quick Time
and Free Flow), the first movement is similar to record-
ing 1 of the happy movement. The difference between
the recording of the happy movement expression and
the angry movement expression is the Weight Effort fac-
tor. The negative impulse of the emotion causes an ac-
celerating impulse that travels downward in relation to

3The numbering of these videos is given in Table 2.

the spine. The Effort factors that usually accompany
negative emotions are shown quite clearly in the Ef-
fort graph. One can see that the emphasis in the move-
ment lies on the use of Strong Weight, Direct Space and
Quick Time. The Flow Effort factor diminishes in the
second and fourth example, relating the movement to
an Action Drive instead of the Passion Drive. The third
recording does not show acceleration or deceleration,
meaning the Time Effort factor is not sufficiently domi-
nant to maintain the Action Drive. In this case the Time
Effort is replaced by use of Bound Flow Effort as the
movement is more controlled.

Video analysis of sad waving scenarios show a clear
standard use of Sustained Time Effort and a frequent
use of Bound Flow. The movement recordings contain
Passion Drives and Vision Drives. The difference be-
tween the Passion Drive and the Vision Drive is that
the Passion Drive is less connected to the surrounding
space and the horizontal axis of the mover, whereas the
Vision Drive is less connected to the sense of gravity
and the vertical axis of the mover. Taking into account
that this movement example of sadness does not use a
strong impulse, the combination of Sustained Time and
Bound Flow seems logical. The movement slows down
within Sustained Time Effort and due to the control
that is related to the Bound Flow Effort, the beginning
of the movement is relatively unaccented. One might
be surprised that this movement example is related to
Light Weight instead of Strong Weight as sadness fits
within the realm of negative emotions. In this case the
mover approaches sadness in a very gentle, melancholic
way. These characteristics establish Light Weight Ef-
fort as these movement expressions are more delicate
than brusque.

Video analysis of polite waving behavior displays a
clear standard use of the Light Weight Effort factor and
the Direct Space Effort factor. As noted with the previ-
ous movement example, the mover has a soft, delicate
approach to politeness and therefore the use of Light
Weight Effort is dominant. The movements are strongly
connected to specific points in the surrounding environ-
ment, establishing a clear use of Direct Space Effort.
The first two movement examples do not contain spe-
cific Time Effort factors, giving the movement a very
stable character. During the third movement example,
the mover does use Time Effort with slight acceleration,
creating a shift from the stable Spell Drive into a more
impulsive Action Drive. In this case the consequence
of using Time Effort means the initial control within the
movement is diminished, completing the sense of Ac-
tion Drive.

The four distinct emotion profiles illustrated in Fig-



Weight Space Flow Time Drive/

Strong  Light | Direct Indirect | Bound  Free | Quick Sustained State
Happy 1 * X x F| ok OF Passion  Vision
Happy 2 X | x X *oOK Action  Action
Happy 3 X | * X X | * Ok Action  Passion
Happy 4 X | * *ooR L Rx Passion  Passion
Angry 5 | * % X X X * Passion  Action
Angry 6 | * % X x ¥ Action  Passion
Angry 7 | * % * * X Spell Passion
Angry 8 | * *ok X * Action  Action
Sad 9 x ¥ X X Passion  Passion
Sad 10 X ¥ X X Vision Vision
Sad 11 x ¥ X X X * Passion  Action
Sad 12 X | X X X X Vision Spell
Polite 13 X FXx X | x Spell Stable
Polite 14 X X X | X Spell Remote
Polite 15 X X ¥ X Action  Remote

Table 2: Laban table of 15 evaluated waving patterns. An asterisk (*) denotes strongly available while a cross (x) denotes available. Marks at the

left and right denote evaluations of two different CMA’s.

ure 4 are described by an energy measure by means of
the average absolute acceleration, and clearly correlates
with the weight effort, as illustrated in Table 2. While
the frequency of hand waving correlates with time ef-
fort and space effort. The Laban movement analysis of
the waving patterns has been performed by two differ-
ent certified movement analysts. Their main difference
was in the interpretation of weight for the four happy
patterns. The first considered happiness in combination
with strong effort still light weight, while the latter con-
sidered the substantial effort as strong weight. When
comparing the this conclusion with the emotion pro-
files of Figure 4 we conclude that this interpretation is a
slight shift in the average amplitude of acceleration.

In the evaluation of video files that expresses the men-
tal state of politeness was analyzed differently by both
analysts. While the first analyst defined it as a drive,
i.e. containing 3 active atoms of movement, which is
typical for emotions, the second analyst defined it as
a state, since she could identify only two active atoms.
The evaluation of video file denoted in Table 2 with “Po-
lite” 13, 14, 15 the second analyst stated that patterns 13
and 14 are in indirect space, and pattern 15 shows direct
space, which explains the higher frequency of the accel-
eration pattern compared to the other two Polite waving
patterns.

6. Emotion retrieval from guitar playing

Human emotions are, apart from other ways, ex-
pressed by our way of moving. Playing guitar, or mak-

ing music for that matter, is a way of expressing your
emotions. The way how these emotions are expressed
and perceived could be different for each guitar player,
but it is likely that there are some general characteristics
of emotions into the movement of guitar players.

Figure 6: Recordings of two guitar players 1 and 2, at top and bottom
row, respectively. On the left happy on the right angry behavior.

The experimental setup is similar to the hand waving
experiment, see also Figure 1, i.e., a camera has been
used to record images at a resolution of 320x240 pixels
at 30 frames per second. These images have been firstly
thresholded at a gray value level of 7 = 64 to avoid skin



color detection on the dark brown guitar:

0 if Zce{r,g,h] [C(x» )’) < 3T
I(x,y) otherwise

O(x,y) = { )
where O and I denote the color output and input image,
respectively. Further processing is exactly the same as
described in Figure 1.
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Figure 7: Acceleration profile of player 1 for (a) sad, (b) happy, and
(c) angry behavior.

All participants were asked to play 3 songs on an
electric guitar. One song which they perceived to be
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happy, one to be sad, and one to be angry. They were
completely free in which songs they wanted to play for
each emotion. Single images of some of the videos are
illustrated in Figure 6.

Guitar players make repetitive movements with their
hands while playing and are therefore suitable to com-
pare with hand waving. However the frequency com-
ponent depends on the type of songs that are played
and do not necessarily reveal characteristic information
about the emotion. The acceleration profiles illustrated
in Figure 7 show that the acceleration profiles in verti-
cal direction look similar in different songs. However,
when computing the average amplitude of acceleration
there was a difference between sad, happy, and angry,
the ratio in energy was 1:1.4:1.7 for the profiles given
in Figure 7, yielding a similar energy ratio profile com-
pared to hand waving emotions as given in Figure 4.

Most striking differences are seen in horizontal di-
rection, and due to the posture the backward swing is
the only degree of freedom where substantial higher ac-
celeration of the hand can be observed. The main dif-
ference between the emotions is the number of occur-
rences of such a backward swing. The number of times
this happens is 0, 4, and 7 times respectively for sad,
happy, and angry, over a period of 25 to 30 seconds, as
illustrated in Figure 7.

7. Discussion and Future work

In this paper we have shown that a robot or other de-
vice with a simple camera is able to detect and track
a waving hand in real time by using a combination of
skin tone and motion. We have shown that the display
in frequency-amplitude domain of the tracked moving
hand of a person who enacts emotional or mental states
provides a clear indication of the expressed emotion.
The movements that express emotions performed by a
single person are unambiguously clustered and segre-
gated in this domain making the current approach suit-
able for emotion recognition. The distinctive acceler-
ation patterns for the different emotions are indepen-
dent from the trajectory of the movement. For instance
for angry movement the performer was enacting angry
mother calling for her child or a person who wanted to
push away an annoying fly. Despite of the very different
trajectories the acceleration patterns were looking sim-
ilar and were clustered in the same class. That makes
possible to extract emotional primitives that are imple-
mented in robot movements so the robot can socially
interact with a human.

It is obvious that we have barely touched the sur-
face of the overall research that we would like to con-



duct. The experiments with hand waving were partially
confirmed with guitar experiments, but still the number
of tested subjects is not representative in order to con-
clude that the extracted emotional primitives are valid
for most people and cultures. We have some success
in expressing emotional behaviors by robots [2] but our
aim is to create reciprocal interactive behaviors that ap-
pear natural and are not restricted to simple imitation.
Questions, such as: Do the simulation of emotional
primitives lead to adaptive or predictive behavior; How
does the design of simple interaction behavior look like;
and How to design interaction, such that it appears nat-
ural and distinctive on a humanoid robot; remain to be
answered.

It is clear that the observed results for guitar play-
ing are merely an indication what to expect rather than
a proof. The experiment conducted involved 5 differ-
ent players, and each player was asked to play a song
with a sad, happy, and angry emotion setting. An ex-
tensive user experiment is required to evaluate a single
player over a longer period of time. It is a fact that emo-
tions can not be invoked on command. When the partic-
ipants were asked to play 3 songs linked with a certain
emotion, they were not feeling those emotions at that
moment, but they were performing a song which they
believe expresses that emotion. To validate whether the
emotion is really felt by the player a feedback mecha-
nism provided for instance by the heart-rate variability
measurement might be useful. Furthermore, another as-
pect that influences the validity of our results is the di-
versity of the character of the players. For example, an
introvert person could express his/her emotions differ-
ently then an extrovert person. Therefore it is impor-
tant to look between the relative difference and define a
range of the characteristic of the emotions, rather then
absolute patterns of emotions.

An important design aspect of each humanoid robot
is how closely human movement can be emulated on
it. The emulation is restricted by the understanding the
physical limitations of the robots, and the mechanism
that cause the movement behavior. Moreover, the emo-
tion is not expressed by an individual body part. We
assume that by negative emotions the coordination of
the movement between different body parts becomes
worse. Our parallel architecture makes possible to con-
duct such experiments and robot emulations.
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