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Abstract This paper presents a parallel real time framework for emo-
tion extraction from video fragments of human movements. Its frame-
work is used for tracking of a waving hand by evaluation of moving
skin-colored objects. The tracking analysis demonstrates that accelera-
tion and frequency characteristics of the traced objects are relevant for
classification of the emotional expressiveness of human movements. The
solution is part of a larger project on interaction between a human and
a humanoid robot with the aim of training social behavioral skills to
autistic children with robots acting in natural environment.

1 Introduction

Sociable humanoid robots pose a dramatic and intriguing shift in the way one
thinks about control of autonomous robots, and are the first generation of robots
where a substantial human-robot interaction is expected. The introduction of
mobile robots that have to demonstrate a certain degree of constitutive au-
tonomy yield different requirements than industrial robots that have been pre-
programmed to work in a fully controlled environment. Sociable robots need to
have even higher level of autonomy, dealing not only with its perceptual, and
behavioral aspects, but also with its interactive aspects, as present for instance
in the emotion system [5,2], but also a mechanism to cooperate with uncertainty
and one for survival to guarantee a degree of autonomy. In many ways such a
system resembles aspects of brain like functional behavior, its evident that such a
robot should be able to process information in real time in a highly parallel way.
We have adopted the approach of functional brain modeling [16] and use graph-
ical software environment TiViPE [12] to realize and integrate these functional
models, in a similar way as in earlier work [19,15,13,14]. Real time parallelism
on a PC has been strongly facilitated by recent developments of graphical pro-
cessing units (GPUs), not only have these GPUs become fast! but they also can
be used as general processing units [8].

We are interested in scenarios involving multiple simultaneous actions per-
formed by different body parts of a human or a robot. We assume realistic

1 A single GPU card is able to process more than one tera (1012) floating point oper-
ations per second (TFLOPS).



imitation scenarios, i.e., scenarios where a human freely behaves and a robot
tracks its actions with the intend to act upon the meaningful ones, for instance
by imitation [3] or by encoding episodes [1]. In this paper the focus is on hand
waving with the aim of detecting different emotional states that can be used
either to imitate or to influence the emotional state.

The paper is organized as follows: Section 2 describes the experimental setup
and gives the implementation of marking a moving hand in an image using
skin color and motion characteristics. For the sequence of images such region
is marked to construct a stream that is used to analyze hand waving behavior.
Section 3 provides insight how these data streams are used to extract social
behavior for interaction with a robot. The paper finishes with a discussion and
future research.

2 Experimental setup

We have been conducting hand waving experiments within scenarios where dif-
ferent emotions has been enacted. waving. Figure 3 depicts four (happy, angry,
sad, and polite) different emotional waving patterns. A camera records images
that are processed using a combination of skin color and motion detection, with
the aim of tracking a single area. This area is associated with the waving move-
ment. A device or robot should be able to extract a simple motion pattern and
interpret the intend or the emotion of this movement behavior, imitate this
movement pattern or eventually adjust its own behavior. The aim of the overall
project is to teach or to influence behavior of the human in order to improve his
or her social skills.

The implementation of detection and tracking a waving hand is given in
Figure 1. It consists of the following functional blocks that can be provided to
the reader upon request:

1. acquiring data from a camera or reading a stored image sequence

2. binarizing an image by marking a pixel either as skin color or other color and
in parallel binarizing an image by marking pixels either as observed motion
or as static element

. marking skin and motion regions by a pyramid decomposition
. selection of these regions that are both skin and motion region
. averaging skin-in-motion regions to a single region

. tracking an averaged skin-in-motion region

. visualization of regions in an image

. visualization of a waving hand
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. classification of waving profiles

The theoretical background and the computational details behind the imple-
mented signal processing is described in more detail in the following subsections.



Figure 1. TiViPE (www.tivipe.com) implementation of handwaving. The icons from
top to bottom at the left-side process skin areas, while motion sensitivity is processed
by the functional blocks at the right-side.

2.1 Skin color detection

An image is defined as a two-dimensional matrix where a pixel at position (z,y)
has an intensity I.(x,y) = (r,g,b), where r, g, and b € [0,...,255] are the
red, green, and blue component. Segmentation using skin color can be made
independent of differences in race when processing image pixels in Y-Cr-Cb color
space [6]. The following (r, g,b) to (Y, Cr,Cb) conversion is used

Y = 0.2989r +0.5866¢g +0.11450, Cr =0.7132(r—-Y), Cb=0.5647(b—Y).
Threshold values as used by Chai and Ngan[6]
TT<Cb< 127, 133<Cr <173

yield good results for classifying pixels belonging to the class of skin tones.
In our experiments we also excluded the “white area”. Formally an element
belongs to the “white area” if it satisfies the following:
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where m = min(r, g,b), r > 0.3, g > 0.3, and b > 0.3. Its implementation given
by ‘the “SkinColor” icon in Figure 1 yields a binary image.
The functional concept as described above contains similarities with how the
brain processes visual data, especially in the way the primary visual cortex area
V4 provides a substantial role in processing color [20].



2.2 Motion detection

A pixel at location (z,y) with intensity I(x,y) = (r + g + b)/3 will have moved
by (dz,dy) over a time span d6t, hence the following image constraint equation
can be given:

I(z,y,t) = I(x + 0x,y + dy, t + 6t). (2)

In this method the following needs to be solved:
Iafvac + IyVY = _It7 (3)

where (Vx,V,) denotes the flow, I, and I, the derivatives in horizontal and
vertical direction, respectively. The Lucas-Kanade operator [17] is used, it is a
two-frame differential method for optical flow estimation where the derivatives
are obtained by using a Sobel filter kernel [18]. Instead of using Sobel kernels
the more biologically plausible Gabor kernels can be used as well [7,11]. Recep-
tive fields of a cat’s primary visual cortex area V1 and V2, that show striking
similarities with these Gabor kernels, have been found in the 1950’s by neurosci-
entists and Nobel laureates Hubel and Wiesel [9,10]. It is plausible that a similar
activity flow map might be expected in the middle temporal are MT, also known
as primary visual cortex area V5 [20].

From (V,V,) the L-2 norm (top right “DoubleOperand” icon of Figure 1) is
taken and thresholded at 5 to obtain a binary “motion classified” image.

2.3 Rectangular region marking

The next stage is marking a cluster of “skin tone classified” or “motion classified”
pixels by a rectangular window. This is performed by decomposing the image
into a pyramid, where every pixel in the next level of the pyramid is computed
as follows:

Iivi(z,y) = (I;(2z,2y) + [;(2z + 1,2y) + L;(2z,2y + 1) + [;(2x + 1,2y + 1)) /4,

(4)
where (z,y) is the position in image I;, ¢ denotes the level in the pyramid, and
base level 0 contains the original image Iy. The construction of a pyramid using
(4) provides a strongly reduced search space, since if in level i+1 a pixel I; 1 (x, )
is found to belong to the desired region then in level ¢ of the pyramid a cluster of
2x2 pixels (I;(2x,2y), I;( 2z +1,2y), I;(2z,2y+ 1), and I;(2c+ 1,2y + 1)) belong
to the same region.

The search for regions of interest starts at the highest level, and decreases
until an a-priori known minimum level has been reached. It is therefore possible
that no regions of interest are found. Taking into consideration that if a pixel is
marked as “skin tone” or “motion” it has value 1, and 0 otherwise. We define a
pixel to belong to a unique region j if it satisfies the following:

Rf(w,x+1,y,y+1) =IL(z,y) = 1. (5)
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Figure 2. Marked regions of interest. Red and green areas denote skin and motion area,
respectively. A blue area is the combined moving skin area that has been averaged over
all skin areas that are moving.

Regions Rz in their initial setting are bound by a single pixel I;(z,y), and a
region growing algorithm is applied to determine the proper size of the rectan-
gular region. Lets assume that the initial size of the rectangle is RY (z7, ©r, Yu, Ya)

and that the possible growing areas are left (Rf g Rg (1 — 1,21, Yu,Yd)), right

(R} = R(xr,xr + 1,Yu,Yd)), above (R! = R}(x,z,, Yy — 1,yy), and below
d .

(R} = RI(x1,%y,Ya,ya + 1) this region. The average value of all four growing

areas is taken, where the maximum value determines the direction of growing.
The following procedure

Al =avg (R ) o (Lroudy, M) =max (A7), B = RIUR] it > 1T,

is repeated until Mf T rg - From experiments T, = 0.67 provides a rectangle
that corresponds roughly to a skin area in the original image and 0.5 gives a
sufficiently large motion area, see also Figure 2.

The method described above is able to find all uniform skin color and motion
regions in an image in real time.

Formally such a feature f can be described by its region, type, and time:
f(xl, zr, yu, yd, regiontype, t). This f in turn could be further processed by other
visual areas or passed on to both STS and PFC.
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Figure 3. Waving patterns. First row shows acceleration profiles for happiness, and
anger. The second row provides sadness, and politeness profiles.

2.4 Tracking

Two examples of the waving experiment using color images of 640x480 pixels at
a speed of 29 frames per second are provided in Figure 2. Creating a single region
in the image rather than multiple regions of interest is accomplished in order to
unambiguously track an object of interest. These tracked objects are stored as
file, see also icon “StreamTrackRegionToFile” of Figure 1, and processed further.

Fifteen recordings of 20 seconds have been made where a performer was
asked to demonstrate happiness, anger, sadness, or politeness. In each plot the
acceleration profile has been obtained by taking the second derivative of the
central point of the tracked object. Examples for all four different emotional
states are depicted in Figure 3. From this figure the following can be observed:

1. happy waving provides a regular waving pattern with a relatively high fre-
quency.

2. anger demonstrates bursts with tremendous acceleration

3. sadness demonstrates a profile of low acceleration, its frequency is relatively
low and appears to have a lower frequency compared to the other three
emotions.

4. politeness that demonstrates a queen type of waving profile is a regular
pattern with a relatively high frequency that is obtained by using minimal
energy.



In an average acceleration-frequency plot of the recorded movements four
distinctive clusters are formed (Figure 4). In one of the image sequences the
actor was instructed to perform polite waving, but in the sequence she seemed
to be happy, indicating that there might be a smooth boundary between these
emotional states. The average energy in one of the five bursts in Figure 3b shows
an average acceleration score of more than 0.07 and gives an indication of the
upper bound of used energy by performing these emotions by the actor.

3 Behavioral Primitives

Understanding motion from waving patterns requires a mechanism that is able
to learn to interpret and classify these sequences, and ideally able to extract the
observations provided in Section 2.4. In a complementary study we are attempt-
ing to classify motion by so-called Laban primitives [2]. Using these primitives
we classify the intend and the mental state of the person that perform movement
behavioral patterns.

The current method is developed to enable a robot to interact with a human
in realistic scenarios. If a robot is able to track in parallel regions of interest, a
considerable number of interacting scenarios are possible even without interpret-
ing of the meaning of an object. Moreover, using an earlier developed technique
[4] the robot recognizes and learns repeating patterns of behavior, which it con-
siders important, and discards occasional movements which most often are not
important. For instance, if during waving of the hand a head movement takes
place because at this time somebody enters the room, this movement will be
ignored. However, if a person that interacts with the robot performs repeatedly
a movement with his/her head while waving, this will be learned and eventually
included in the imitation behavior of the robot.

4 Discussion and Future work

In this paper we have shown that a device or robot is able to detect a waving
hand in real time by using a combination of skin tone and motion. Tracking a
hand motion provides clear insight about the emotional state of a person when
displayed in frequency-amplitude domain. The four tested emotions are clearly
clustered and segregated in this domain making the current approach suitable
for emotion recognition. In a complementary study these regions are transfered
into behavioral primitives. These primitives are used by the robot to socially
interact with a human.

It is obvious that we have barely touched the surface of the overall research
that we would like to conduct. Even a simple experiment like hand waving elicits
a number of questions:

— Could any type of waving be predicted?
— How to respond to a waving pattern?
— Does it lead to adaptive or predictive behavior?
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Figure 4. Distinct emotion profiles are revealed by average frequency and acceleration.

— How does the design of simple interaction behavior look like?
— How to design imitation, such that it appears natural and distinctive on a

humanoid robot?

An important design aspect of a humanoid robot will be how closely human

movement can be emulated on it. The emulation will be restricted by the under-
standing the physical limitations of the robots, and the mechanism that cause
the movement behavior. Next, a basic set of motion primitives needs to be de-
rived that independently of the physical embodiment emulates body movements
that are interpreted by humans as emotional and social.
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