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Abstract. This paper presents a method for spatial navigation performed 
mainly on past experiences. The past experiences are remembered in their 
temporal context, i.e. as episodes of events. The learned episodes form an ac-
tive autobiography that determines the future navigation behaviour. The epi-
sodic and autobiographical memories are modelled to resemble the memory 
formation process that takes place in the rat hippocampus. The method im-
plies naturally inferential reasoning in the robotic framework that may make 
it more flexible for navigation in unseen environments. The relation between 
novelty and life-long exploratory (latent) learning is shown to be important 
and therefore is incorporated into the learning process. As a result, active au-
tobiography formation depends on latent learning while individual trials 
might be reward driven. The experimental results show that learning mediat-
ed by novelty provides a flexible and efficient way to encode spatial informa-
tion in its contextual relatedness and directionality. Therefore, performing a 
novel task is fast but solution is not optimal. In addition, learning becomes 
naturally a continuous process - encoding and retrieval phase have the same 
underlying mechanism, and thus do not need to be separated. Therefore, 
building a “life long” autobiography is feasible.

1 Introduction 

Referring to the memories of experienced events is a usual way to orient in novel situ-
ations. Common feature of an embodied agent (that could be animal, human or robot) 
is that it continuously gathers information about the surrounding world through experi-
encing sequences of events. Such subjectively experienced sequences are encoded by 
episodic and autobiographical memory systems in living organisms [1].
Tulving and Markowitsch [2] at present divide memory into five systems. The most 
complex memory system is the episodic-autobiographical one which requires self-con-
scious reflection and is embedded in the dimensions of time and locus. Semantic mem-
ory, on the other hand, is context-free fact memory. On the more automatic, implicit 
level, perceptual memory, procedural memory and the priming system constitute the 
other three long-term memory systems with perceptual memory allowing the assess-
ment of novelty/familiarity of perceptual stimuli, procedural memory referring largely 
to sensory-motor skills and simple conditioning and priming to an enhanced identifica-
tion of objects.

Many models in computer science and robotics exploit the characteristics of the 
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semantic (factual) memory. However, memory for events and their relatedness is the 
way higher organisms build their knowledge. Many spatial navigation tasks in robotics 
are inspired by navigation behavior of animals. For instance, insects behavior have 
been simulated in [3][4][5][6]. While insects navigation has mainly reactive nature, the 
behavior of mammals is memory-driven [7][8][9][10][11]. We aim at memory deter-
mined behavior that relies on the neural mechanisms underlying episode formation. 
Episodic information encoding is related to the hippocampal modelling and with this 
respect our work is most closely related to [7][8][9][10][11]. We understand episodic 
memory as including event information within its temporal relatedness and direction-
ality, as modelled in theoretical studies. Moreover, our aim is to obtain behaviors that 
are mainly driven by old experiences. The experiences are encoded during exploratory 
learning, a process guided by environmental novelty. 

 Novelty is a known factor that gates learning in natural and artificial systems 
[31][13][14][15][17][18]. The relation between novelty and behaviour has received 
much attention by experimental neuroscientists [12][13][14][15][16][17][18], but there 
is not enough experimental evidence to build a good computational model. The hippoc-
ampus is a brain structure where episodic and perceptual information come together, 
and where environmental novelty is signalled. Therefore we develop a novelty method 
that uses the available experimental evidence from hippocampal functioning and opti-
mized it for robotics implementation. Novelty detection is related to experienced epi-
sodes rather than a novel place in the environment, as in other robotic studies [19] [20].

There is a robotic study that introduces an autobiographical agent as an embodied 
agent which dynamically reconstructs its individual history (autobiography) during its 
lifetime [21]. However, they do not consider the neural correlates of autobiographical 
memory as MTL or prefrontal cortex. Instead, an algebraic model that is not related to 
the brain processes underlying the autobiographical encoding is used. 

This paper is structured as follows: Section 2 proposes a hypothesis based on exper-
imental studies; The computational framework is developed in Section 3. Some results 
are shown in Section 4. A discussion of the state of the research and its perspectives is 
made in Section 5.

2 Motivation and hypothesis

The involvement of the hippocampus in episodic memory encoding has been elaborated 
extensively (see for instance [23]). This encoding is associated with area CA3 of the 
hippocampus, where due to vast recurrent connectivity the past information is repre-
sented in the current representations. 

Although the importance of the hippocampus for episodic memory function is undis-
puted, there is a considerable debate regarding the precise role of this brain region. The 
hippocampus is reported to be involved in encoding and retrieval of event information, 
including item and relational information. It is differentially more involved in memory 
for relational information than in memory for item information. 

Recent works report that the hippocampus is selectively engaged in detecting novel 
ties in the environment. Tulving and Markowitsch [1] argue that perceptual memory al-
lows the assessment of novelty/familiarity of perceptual stimuli. Therefore, our interest 
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is in CA1 area of the hippocampus, to which projections of sensory-bound stimuli come 
together with episodes of recent memories as formed in area CA3 [25][26]. The same 
sensory-bound pattern is transferred through both: the direct and the indirect pathway 
from the enthorinal cortex (EC) to CA1 area, as illustrated in Fig. 1. 

Our computational model follows the general structure and functioning of rat hyp-
pocampus. We make the following hypothesis: If perceptual memory is involved in 
novelty detection of places, and the hippocampus is involved in episodic memory for-
mation, the relational information that comes from CA3 to CA1 area interferes with the 
perceptual information to account for novelty of remembered episodes, rather of novel-
ty of particular places, for which perceptual memory alone is indicative.

Fig. 1.   Computational scheme based on the assumed functionality of the hip-
pocampal formation, accentuating on the comparative role of the CA1 area. 

CA1-3 denote resemblance with areas 1-3 of cornu ammonis within the hippoc-
ampus. The sensory bound and episodic memory related representations are 
compared to indicate the familiarity.The areas are denoted as Superficial CA1, 

CA3 or EC to indicate that modelling is not biologically precise.

3 Computational model inspired by the hippocampal 
paradigm.

The proposed model aims at novelty driven encoding and recall that facilitates inferen-
tial reuse of old memories. Its global functioning is illustrated in Fig. 1. Three struc-
tures, resembling EC, CA1 and CA3 areas form the representation, that is further used 
for navigation. The computations are performed in the superficial CA1 and CA3 areas. 
The final representation is formed in CA1 area, that is activated through two pathways 
one directly from EC area and one through the indirect activation pathway going from 
EC through CA3 areas. The pattern that reaches the CA1 area via the direct pathway is 
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organized on pattern similarity, not on topological principle. Since the same projected 
pattern from the EC area reaches within a small time interval areas CA1 and CA3, the 
connection between the current most active neurons in these two areas is strengthened 
also. This automatically activates the complete episode to which the pattern in CA3 area 
corresponds, and therefore the contextual information from this episode is transferred 
to area CA1. 

The activation of the individual patterns in the superficial EC area is derived by the 
established theory [24] that the cells in the rat hippocampus fire when the rat is at par-
ticular location of the environment. Because of this feature, these cells are also called 
place cells. If the rat moves through the environment, at every particular place a number 
of place cells fire. Cells that code for places in nearest vicinity fire most strongly, while 
the cells that fire for more distant location fire less. The activity of the place cells can 
be modelled by a Gaussian for the open environments, where place cells show non-di-
rectional firing. Therefore, the movement of a simulated rat at every place of the envi-
ronment is characterized by a particular pattern of firing, containing the active place 
cells in its vicinity. The level of activity of every place cell depends on the distance be-
tween the rat position and the place fields centres. The mathematical description of this 
process has been shown in several works before, here we show the outcome of a simu-
lation of two activation patterns formed by simulation of place cells and rat route (Fig. 
2). These patterns are external-world related and are further transmitted through the di-
rect pathway.

Activity pattern, coming through the indirect pathway, represents the episodic in-
fluence to the representation in CA1 area. It is formed within a network structured as a 
two layer lattice of neurons, corresponding to the EC and CA3 layers. There are two 
types of synoptic plasticity, that take place within this network. Between the layers, the 
afferent connections from superficial EC to the superficial CA3 area are trained through 
a modified Hebbian rule:

, (1)

where  is learning rate, notation CA-EC shows the starting and destination layer of 
the connection (coming from EC, reaching CA layer) the indices i and j denote neurons 
on the input and output layer, correspondingly. The CA layer is not denoted as CA1 or 
CA3, because the learning rule is used for EC-CA1 as well as EC-CA3 learning. The 
term  is needed due to internal instability of the Hebbian rule.

The lateral connections within CA3 area are two types: lateral inhibitory and lateral 
connections that provide the temporal context. The lateral inhibitory connections, de-
noted as LI have a sharpening effect on the transmitted to CA3 area activations. Eq.(3).

(2)

where  are learning rates,  is a gating factor.

wij
CA EC–∆ α1g ECiCAj wij

CA EC– CA2
j– 

 =
α1

wij
CA EC– CA2

j–

wj
LI CA–∆ α2g LI· CAj⋅ α3w

j
LI CA– CAj

2– 
 =

α2 α, 3 g
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Fig. 2.   A learned episode in CA3 area. Activation of a single pattern induces 
activation within the whole episode.

By far, the representation made within the layer denoted as CA3 has not the intrinsic 
capacity for temporal association. This quality is obtained by applying a hebbian rule 
with asymmetric time window over the neurons within the CA3 lattice, since in CA3 
layer lateral connections exist between the neurons. Note, that this learning is not af-
fected by the lateral inhibitory connections, denoted as LI in Eq. 3. It concerns the learn-
ing due to the exitatory lateral connections only. The asymmetric time window has been 
simulated to correspond to the experimental measurements as found by [27], see also 
[28]. The lateral excitatory learning rule is:

(3)

where LTP and LTD denotes long term potentiation/ long term depression, respective-
ly, as found by [27][28] and adapted into an asymmetrical time window function.  
shows the length of the temporal interval, considered in episode formation. By intro-
ducing the temporal aspect, learning in CA3 is episodic. Therefore, when a single pat-
tern in the learned episode is activated the whole episode is activated. Figure 4 shows 
this effect for a simplified connectivity within CA3 layer. Individual neurons are con-
nected to their immediate neighbors in the simplification needed for visualization proc-
ess.

The learning in the direct pathway EC-CA1 has the same learning dynamics as de-
scribed in equations (1) and (2). However, the learning outcome differs substantially, 
because of the different connectivity between the EC-CA3 and EC-CA1 layers. In the 
first case, the topological connections are predominant, while in the second, the areas 
are fully connected. Therefore, the EC-CA1 learning does not preserve the topology of 
the pattern activation.
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CA3-CA1 synaptic plasticity has the following dynamics. If k and l are neurons from 
CA3 and CA1 areas respectively, the connection between them is strengthened if both 
of them are simultaneously active and weakened if the activation of one decreases. A 
term that regulates the unbounded growth of the weights is added (Eq. 4). Note that the 
activation of CA3 neurons might not indicate single neuron activation but the influence 
of an active episode.

(4)

The sensory bound representation of the direct pathway, and the episodic representa-
tion of the indirect pathway, come together in CA1 area, where the comparison (nov-
elty/familiarity judgements) takes place. Note, that at the same time, the CA1 area gets 
input from the current pattern of EC area and a pattern from CA3 area, which has not 
been included in an episode yet. 

For robotics learning task, several simplifications of the biologically plausible learn-
ing algorithm are made. The place cell formation process was replaced by recordings 
with an omni-directional distance sensor, since the two patterns look similar and 
uniquely represent a position in space. Fig. 3. shows couples of similar patterns. The 
patterns shown above are obtained by simulating the place cell formation by an explo-
ration process, while the plots below are recorded by an omnidirectional distance sen-
sor. 
The simplification in the learning process are derived from the observation, that topol-
ogy preserving learning between the EC and CA3 layer does not have substantial con-
tribution to the learning outcome. In contrast, the self-organizing process between EC 
and CA1, and the temporal association learning within the CA3 layer are essential.

Therefore, the learning process ignores the plasticity of EC to CA3 connections and 
the inhibitory lateral connections. The hebbian learning rule between the layers fol-
lowed by lateral inhibition is replaced by a modification of the competitive hebbian 
learning algorithm [8][16], adapted for processing of sequences. 

4 Active autobiography through exploration. 

The mammals, who are able to form episodic memories, and especially humans can re-
member a particular experience for the whole life span. This fact suggests, that episodic 
memory encoding is an efficient process, i.e. together with the encoding a decision of 
the content and importance of the encoded information is taken. 

Autobiographical memory overlaps with the concept of episodic memory. It is a 
memory of one’s personal past, but concerns a longer time span. With this respect an 
analogy can be made with the robotics paradigm of life-long learning. This paper inves-
tigates autobiography formed by remembered episodes only. We call it active autobi-
ography to accentuate on its dynamic character. 

clk
CA3 CA1–∆ θ CA3lCA1k clk

CA1 CA3– CA12
k–( )=
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Fig. 3.   Samples of sensory patterns. a) Simulation of the place cells formation 
process. b) Record by omnidirectional range sensor of a robot.

For building an active autobiography, a latent learning scenario is used. Latent learn-
ing is an association of indifferent stimuli or situations with one another without 
immediate reward. The phenomenon is clearly exemplified in exploratory behavior, 
and is also known as exploratory learning [24][29][30]. In robotics research the term 
exploratory learning is preferred, while latent learning is mostly used in animal stud-
ies. To compare the results, however, target locations are marked. 

To illustrate the active autobiography formation, the episodic encoding when the 
robot reaches a sample location are shown in Fig.4a). The learning outcome is shown 
in Fig. 4b). It indicates, that trajectories (episodes) that are considered similar are not 
remembered. 

Furthermore, the goal reaching by free exploration is shown. To connect the neural 
representation with the goal reaching navigation behavior, an algorithm we showed in 
[31] is used. Once a position in the environment is recognized, the robot behavior is 
guided by the remembered episode. This behavior is illustrated in Fig. 4c. Initially, 
starting from the beginning of the coordinate system, the reactive behavior is shown. 
The non-smooth part of the trajectory shows navigation guided by the remembered 
episode.

a)

b)
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Fig. 4.    a) 3 experienced episodes. b) Representation of the encoded episodes. 
c) Reaching a target location by encountering a known path.
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5  DISCUSSION 

This study shows spatial navigation that is enhanced by robots memories. Formation of 
the remembered episodes is mediated by novelty/familiarity discrimination method 
based on the hippocampal modelling for robotics exploration. The embodied nature of 
an animal and robot makes this parallel useful, and the functional efficiency of the hip-
pocampal encoding, while performing both tasks: episodic encoding and novelty detec-
tion, suggests an optimal computational scheme. 

The impact of novelty is two-fold: it allows an efficient encoding in the exploration 
phase and it is a basis for flexible reuse of memories in the recall phase.The same com-
putational paradigm is used in both cases, which makes possible on-line implementa-
tion. The paper accentuates on the methodological part and shows simulations of 
episodic memory encoding and navigation that uses the remembered episodes. A com-
parison of the method with exploration that uses actor critic learning is made and the 
advantages of our method for larger environment is obvious. However, the results need 
good explanation of the method and why this comparison is plausible. Because of that 
they will be shown elsewhere. The navigation trajectories become more efficient with 
enriching the autobiography of the stored exploration episodes, since the optimal tra-
jectory is recorded. 
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