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Abstract. In 1992 neurophysiologists [20] found a new type of cells in
areas V1 and V2 of the monkey primary visual cortex, which they called
grating cells. These cells respond vigorously to a grating pattern of ap-
propriate orientation and periodicity. Three years later a computational
model inspired by these findings was published [9]. The study of this pa-
per is to create a grating cell operator that has similar response profiles
as monkey grating cells have. Three different databases containing a to-
tal of 338 real world images of textures are applied to the new operator
to get better a insight to which natural patterns grating cells respond.
Based on these images, our findings are that grating cells respond best to
repetitive alternating patterns of a specific orientation. These patterns
are in common human made structures, like buildings, fabrics, and tiles.

1 Introduction

The accidental discovery of orientation selective cells, which they called simple
and complex cells, in the primary visual cortex by Hubel and Wiesel [5,6] trig-
gered a wave of research activities in neurophysiology. Activities where aimed
at a quantitative description of the functional behavior of such cells (e.g., works
form De Valois et al. [17,16,1], and von der Heydt [18]). Computational models
of simple cells that contain linear filters followed by half-wave rectification are
widely accepted, e.g., Movshon [13], Andrews and Pollen [2]. One way of mod-
eling the responses of simple cells is to use Gabor filters [3,7]. Complex cells
behave similarly as simple cells, but modeling these cells requires an additional
step: spatial summation. Morrone and Burr [12] modeled this summation by
taking the amplitude of the complex values of the simple cell operator.

Almost a decade ago, von der Heydt et al. [19,20] reported on the discovery
of a new type of neuron in areas V1 and V2 of the monkey visual cortex, they
called them grating cells, because of their strong responses to grating patterns,
but weakly to bars and edges. They estimated that these cells makeup around 4
and 1.6 percent of the population of cells in V1 and V2, respectively, and that
around 4 million grating cells of V1 subserve the center 4° of vision. The cells



preferred spatial frequencies between 2.6 and 19 cycles per degree with tuning
widths at half-amplitude between 0.4 and 1.4 octaves. They found that the cells
are highly orientation selective and that the response is dependent on the number
of cycles. A minimum of 2-6 cycles is required to evoke a response and leveled
off at 4-14 cycles (median 7.5). In this study we propose a computational model
for these grating cells that meet the response profiles of their measurements.

The paper is organized as follows: in Sect. 2 computational models of sim-
ple and complex cells are briefly introduced. These models are known from the
literature, but since they form part of the grating cells they are included for com-
pleteness and clarity. A computational model of grating cells is given in Sect. 3.
In the same section we will propose a chromatic sensitive class of grating cells,
which is not found (yet) by neurophysiologists, but that is biologically plausi-
ble. The chromatic type of cells is based upon the color opponent theory and
constructed in analogy with color sensitive orientation selective cells. Section 4
elaborates on the results of the model compared to the measured responses by
applying the model to the same test patterns used by von der Heydt et al. In the
same section the results of this model are compared with an existing model for
grating cells. In Section 5 we apply the model to three databases to get better
insights in the response of grating cells to real world images. The last section
gives the conclusions.

2 Simple and Complex Cell Operators

The receptive field profiles of simple cells can be modeled by complex-valued
Gabor functions:
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where £1 = xcosf + ysinf and y; = ycos — xsin f. Parameters o, A, ~y, and 6
represent scale, wavelength ( \/520/\ is the spatial frequency), spatial aspect ratio,
and orientation, respectively. These Gabor functions have been modified such
that their integral vanishes and their one-norm (the integral over the absolute
value) becomes independent of o, resulting in G, x 4,0(x,y), for details we refer
to Lourens [11]. They provide a transform of the image I(x,y) via spatial con-
volution. Afterwards, only the amplitudes of the complex values are retained for
further processing;:

Conmo = [T % Goxqoll - (2)

This representation, which models the responses of complex cells, is the basis
of all subsequent processing. A high value at a certain combination of (z,y)
and 6 represents evidence for a contour element in the direction orthogonal to
0. Orientations are sampled linearly 6; = %,i =0...N — 1, and the scales
are sampled 0; = 0j_2 +0;_1, for j =2...5 — 1, where 0y and o; are known
constants.



3 Grating Cells

Von der Heydt et al. [19] proposed a model of grating cells in which the activities
of displaced semi-linear units of the simple cell type are combined by a minimum
operator to produce grating cell responses. This model responds properly to
gratings of appropriate orientation and to single bars and edges. However, the
model does not account for correct spatial frequency tuning (the model also
responds to all multiples of the preferred frequency).

Kruizinga and Petkov [9,14] proposed a model based on simple cell (with
symmetrical receptive fields) input. Responses of simple cells are evaluated along
a line segment by a maximum operator M. A quantity ¢, which is 0 or 1, is used
to compensate for contrast differences and a point spread function is used to
meet the spatial summing properties with respect to the number of bars and
length. Except for the spatial summing properties this model does not meet the
other criteria of the grating cells. Also it does not always account for correct
spatial frequency tuning; it is unable to discriminate between alternating light
and dark bars of preferred frequency and alternating bars of about three times
this preferred frequency.

In this paper we propose a grating cell operator that meets both the response
profiles of the grating cells and appropriate frequency tuning. This operator uses
complex cell input responses, modeled by the operator given in (2). Likewise as
in the other models, we evaluate the responses along a line segment perpendic-
ular to the length of the bars of a grating. Unlike the other models, we let the
variable length depend on the similarity of the responses of the complex cells,
but the length is at least 2B, and at most 2B, bars. Instead of a maximum
operator we use an averaging operator. No contrast normalization mechanism
is incorporated in the grating operator, since we believe that this is compen-
sated for at the stage of the center-surround cells already, see, e.g., Kaplan and
Shapley [8]. This implies that the input data is already normalized for contrast.

3.1 Grating Cell Operator

The initial grating response is calculated as follows:
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where p is a response decrease factor. This factor is a measure for the devia-
tion from the optimal frequency and uniformity of the complex cell responses.
This factor will be discussed below. Parameter | denotes the length over which
summation of the complex cell responses will take place.

The variable length 2] over which the responses of the complex cells will
be evaluated is between the minimum number of bars 2B, and maximum
number of bars 2By,,x. Since the operations are performed on a discrete grid we
decompose the maximum length from the center of the line segment, in x- and



y-direction:
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Similarly, we decompose the minimum length (Bmin) into m, and m,. The pre-
ferred bar width (in pixels) equals ov/2).

Depending on the preferred orientation 6, the evaluation will take place in x-
or y-direction. Hence, parameters x;, y;, lmin and l,.x are orientation dependent:
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where || denotes the nearest integer value smaller than or equal to z. Length
{ of (3) is determined by the maximum, minimum, and average response of the
complex cells along the line:
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Constant A, which is a uniformity measure, is a value larger than but near 0. We
used A = 0.25 in all our experiments. The maximum and minimum G responses
are obtained as follows

Gg{z\,’y,@,l(x’ y) = Qé:—l (CUJ\,’Y,Q (x + XY+ yl)) ’ (7)

where {2 denotes the min or max operator.

The determination of length | depends on the uniformity of responses of the
complex cells along a line perpendicular to orientation 6. If the responses of
these cells are not uniform enough the summation will be shorter than I, and
consequently the responses will be less strong. We model a linearly increasing
response between By, and Bpax:
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The modeled response also depends on the uniformity of the complex cell re-
sponses. Since p; gives a strong decrease for short lengths (it equals 0 for Iin),
we do not decrease the response for a length between the minimum number of
bars and the minimum number plus one:
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where [y, =1 — is the length that is one bar shorter in length than .

lmax
1+| Bmax
The evaluation onLa sliéhtly shorter length ensures that both criteria in (6) are
less than A, which implies that p, > 0. Multiplying factors p; and p,, results in
the response decrease factor p = p;p,, from (3).

A weighted summation is made to model the spatial summation properties
of grating cells with respect to the number of bars and their length and yields

the grating cell response:
Gorm0.6 = Goxy00*GBep (10)

where GB is a two-dimensional Gaussian function. In combination with Bpin
and Bpax, parameter 3 determines the size of the area over which summation
takes place. Parameters By, = 0.5 and Byax = 2.5 together with a 3 between 2
and 4 yield good approximations of the spatial summation properties of grating
cells. In the experiments we used 3 = 3.

3.2 Color Opponent Type of Grating Cells

No evidence is given by von der Heydt et al. [20] that there exist color-opponent
grating cells. However, it can be made plausible that such type of cells exist.
Opponent color-sensitive cells are found at the first levels of processing after the
photo receptors. Some of them are orientation selective and have an elongated
area which give excitatory responses to one color and inhibitory responses at
one or two flanks to another (opposite) color. These opponent color pairs are
red-green and blue-yellow or vice versa [10].

Already in the 1960s, Hubel and Wiesel found cells that responded to edges
of a specific orientation, but only recently there is evidence that there are cells
that are color and orientation selective. Cells of this type are found in area V4
[22] and in area V2 where 21-43% of the neurons have these properties [4,15].

Color-opponent complex cell operators (Wiirtz and Lourens [21]) are modeled
as follows

Cco 0= ||IS*G07>\7%9 7Ii*GU,>\7%9H R (11)
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where e, i denotes a “red-green” or “blue-yellow” color opponent pair! red-green
or blue-yellow (yellow=(red+green)/2) and I® denotes the color channel a from
an (r,g,b) image I. In analogy to achromatic grating cell operator of (10), the
color-opponent grating cell operator is

__ (avg,T
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where 7 is color opponent pair “red-green” or “blue-yellow”. The initial grating
response from (3) should be modified to
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where [™ and p” are evaluated as before, but G*®7 should be used instead of
G?v&, Similarly, the maximum and minimum G operators are evaluated by using
antagonistic color channels.

The orientations of the grating cells are combined with an amplitude operator
(for both G and G7)

N-—1
Gallyx 4,5 = (Gorm0.,8)° - (14)
=0
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where N denotes the number of orientations and §; = iw/N. The achromatic
and two color opponent (red-green and blue-yellow) channels are combined by
taking the amplitudes to yield the final grating operator
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at a single scale. Since Cy* = C5°, and hence also G\ _ o 5 = G 5, one
channel for every opponent pair is sufficient.

4 Properties of Grating Cells

Von der Heydt et al. [20] describe responses to different synthetic grating pat-
terns. In this section the properties of our grating cell operator are evaluated for
different settings of parameters A and . The results of this operator for different
settings are compared with the measured data and the response properties of
the model of Kruizinga and Petkov [9,14].

Von der Heydt et al. performed different tests to obtain the properties of
periodic pattern selective cells in the monkey visual cortex. In the first test they
revealed the spatial frequency and orientation tuning of the grating cells. From
the second test they obtained the response properties to an increasing number
of cycles of square-wave gratings. Their third test described the response prop-
erties for checkerboard patterns by varying the check sizes. The fourth experi-
ment tested the responses to so-called “Stresemann” patterns. These patterns
are gratings where every other bar is displaced by a fraction of a cycle.

They also tested the responses to contrast. The contrast profiles of the magno
and parvo cells [8] show similarities with the profiles given by von der Heydt et
al. [20]. In our experiments we will assume that contrast normalization on the
input data took place by means of these magno and parvo cells, i.e. contrast
normalization is applied to the input image, already. Hence, the test for contrast
responses will be omitted in this study.

Von der Heydt et al. also found the so-called end-stopped grating cells which
respond only at the end of a grating pattern. In this study this type of grating
will not be considered.
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Fig. 1. Responses to square gratings with different orientations and frequencies. Top
row gives the stimulus and bottom row the responses of the modeled grating operator.
a) Grating cells respond vigorously to grating patterns of preferred orientation and
frequency. Responses decrease when the pattern differs from this pattern. b) and ¢)
Responses strongly decrease if the gratings are rotated slightly (10 degrees) and com-
pletely vanish at 20 degrees. d) and e) Doubling or halving the frequency results in
zero responses. f) and g) Grating cells hardly respond to single bars or edges. h) and
i) Increasing the checks in a grating pattern results in a response decrease. j) and k)
Stresemann patterns show similar behavior as in h) and i): the stronger the deviation
from a) the weaker its response. The used parameters are A = 1.00, v = 0.25, 3 = 3.00,
Bmin = 0.5, and Bpax = 2.5.

4.1 Responses to Test Patterns

Figure 1 illustrates that the modeled grating cell operator of (10) shows similar
behavior compared to the measurements carried out by von der Heydt et al. [20].
Grating cells respond vigorously to grating patterns of preferred orientation and
frequency, but any deviation from this pattern results in a decrease in response.

4.2 Orientation and Frequency Profiles

In this section the properties of grating cells will be modeled as accurate as
possible by tuning parameters A and v to yield similar responses as measured
by von der Heydt et al. [20]. In this paper these profiles are denoted with “vdH
..” in the legends of the figures.
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Fig. 2. Measured and modeled response profiles of grating cells. a) Orientation, b) low
frequency, and c¢) high frequency profiles. d) Frequency profiles for different preferred
bar width sizes (BW = 4, 7, 11, 18, and 29 pixels). Cycles per degree have arbitrary
units. Parameters used for d are A =1 and v = 0.25.

The orientation bandwidth for grating cells is small, von der Heydt et al. [20]
found that the half-maximum responses are at £6°. In our model this orientation
tuning corresponds approximately to Ay = 0.25 (Fig. 2a).

Von der Heydt et al. found grating cells with both low and high frequency
bandwidth. The response curves of these cells (Fig. 2b and ¢) are different. Hence,
it might be appropriate to model multiple grating cell operators to cover the main
bulk of grating cell responses. The modeled grating operators have a smaller
bandwidth than the measured grating responses for the low frequency sensitive
grating cell, while the same operators (with preferences for higher frequencies)
show bandwidths that are similar or slightly larger than the measured responses
of grating cells with high frequency preferences. Most appropriate for the low
frequency is the model with parameters A = 1.00 and v = 0.25 while for the high
frequency sensitive grating cells A = 0.33 and v = 0.75 seems a good choice.

However, a problem that occurs for models with ~ larger than approximately
0.4 is the response to frequencies that are about a factor 3 larger than the
preferred frequency (Fig. 2b and c¢). If we assume that the preferred bar width is
8 pixels than all bars with a width between 5 and 14 pixels have a response that
is stronger than 10 percent of the maximum response (A = 1). For A = 0.33, bars
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Fig. 3. Input signal (top). Response profile for symmetrical simple and complex cell
operators for A = 0.56 (middle) and A = 1.00 (bottom).

with widths from 6 to 12 and from 20 to 29 pixels have a response stronger than
10 percent of the maximum response. Hence, we suggest to use A = 1.00 and
v = 0.25 for the high frequency sensitive cells also, even though the responses in
the second interval never exceed 30 percent of the maximum response.

The frequencies (in cycles per degree) are arbitrary units for the model, since
the frequency is determined by the size of the image and the distance of the
observer to the image. Hence, modeled grating cells with a preferred bar width
of 8 pixels can correspond to both 4.2 and 19 cycles per degree. However, when
the preferred bar width is small differences occur in the profile. This is due to
the discretization properties of the Gabor filters. Figure 2d illustrates that when
the preferred with is 4 pixels the maximum response is over 100 percent. Also,
in such case, only 7 measurements can be performed, since it only responds to
bars with a width between 1 and 7 pixels.

Figure 2d illustrates the bandwidths for different preferred bar widths, re-
spectively 4, 7, 11, 18, and 29 pixels. The left figure illustrates that these 5
“scales” cover the full range of preferred frequencies (2.6 to 19 cycles per degree)
found by von der Heydt et al. If a preferred bar width of 4 pixels is equivalent
to 19 cycles per degree than 2.6 cycles per degree corresponds to a bar width of
4 x 19/2.6 = 29.2 pixels. The use of these five scales covers the full range well,
since the lowest response, between two preferred frequencies, drops at most 25
percent from the maximum response.

The grating cell operator of Kruizinga and Petkov, is available online (http: -
//www.cs.rug.nl/users/imaging/grcop.html) and was used with a bandwidth
of 1.0 and a periodicity that equals two times the preferred bar width. The re-
sponse profile (in our figures denoted by “K-P”) of this grating operator shows
globally two states: inactive or vigorously firing, which is caused by their nor-
malization quantity q. The choice of A = 0.56 gives strong responses to two
intervals, which is already caused by the simple cell operators. The interval with
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Fig. 4. Measured and modeled properties of grating cells. a) Response profile for in-
creasing number of bars. b) Response to checks. ¢) Sensitivity to different orientations
of a checkerboard pattern. d) Responses to increasing shift of a pair of bars, the so-
called Stresemann pattern.

the highest frequency (5-11 pixels if the preferred bar width is 8) responds to
bars indeed, while the simple cell operator responds to an up and down going
edge of a bar in the low frequency interval (19-29 pixels). In the middle of such
a low frequency bar there is still some response from both edges, causing a re-
sponse profile that is similar to that of gratings with preferred frequency. An
illustration of this behavior is given for a one-dimensional signal in Fig. 3. This
behavior does not occur for A = 1.00, as is illustrated in the same figure.

4.3 Profiles for Different Textures

Figure 4a illustrates that the measured results of the grating cells show in-
creasing response with increasing number of bars. In the same figure only one
modeled curve is shown, and although modeled grating cells with different pa-
rameters show different response curves they all are similar to the responses of
the measured cells.

The modeled cells are not as robust to checks as the measured cells as illus-
trated in Fig. 4b. On the contrary the modeled cells are slightly less sensitive
to shifts of bars (Fig. 4d). The responses to different orientations depends on



the orientation bandwidth. If Ay = 0.25 the orientation bandwidth is similar to
that of a measured grating cell, but its response to a checkerboard pattern is
low (about three times less) compared to that of the measured grating cells. On
the other hand when Ay = 0.35 the responses are comparable, but in this case
the orientation bandwidth is wider than that of the measured cell.

5 Oriented Repetitive Alternating Patterns

It is clear that the model for grating cells responds to grating patterns, but the
question that rises is to what kind of real world patterns these cells respond.
The latter is important will the operator be successfully applied in an artificial
vision system. We used three (Brodatz, ColumbiaUtrecht, and the VisTex) freely
available databases containing different textures.

The Brodatz database contains 111 images D1 to D112, where D14 is missing.
We cut the central part (512x512 pixels) from the grey scale images that are
sized 640x640. The ColumbiaUtrecht database contains 61 images sample01 to
sample61. Here we used the central part (256 x256 pixels) from the color images
that are sized 640x480. In the VisTex database we used 166, 512 square sized
color images.

The grating cell operator was applied for N = 16 orientations, this number
is necessary since the half maximum response of the grating cells is at +6°, see
also Fig. 2a. We combined all scales with a maximum operator:

Gally .5 = max Gally, .5, (16)

where S = 5 is the number of scales and o¢ = 4\/V/2, 01 = TA\/V/2, and 0; =
oj_o+0;_1 for j > 2 (as given earlier). The minimum bar width at oy is 4, since
smaller widths lead to strong inaccuracy due to the discreteness of the Gabor
filters.

The grating cell operator is very selective and responded in only five (samples
38, 46, 49, 51, and 57) images in the ColumbiaUtrecht database. The operator
responded in 32 images of the Brodatz database. In the VisTex database the
operator responded to three (buildings, fabric, and tile) out of 18 categories and
within the categories it responded to about half of the images.

Based on the results from the three databases we conclude that grating cells
respond well to man-made objects that have oriented alternating repetitive pat-
terns. A few of these examples are illustrated in Fig. 5.

6 Conclusions

We presented a new model for grating cells that has similar response profiles as
monkey grating cells measured by von der Heydt et al. [20]. Unlike the previous
models of grating cells (von der Heydt et al. [19] and Kruizinga-Petkov [9,14])
the new model accounts for proper spatial frequency tuning. The Kruizinga-
Petkov model is an oriented texture operator, since it responds well to oriented
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Flg 5. Images from the databases (odd row) and their response profile (even row)
the grating cells from (16).

texture. Although it is inspired by the work of von der Heydt et al. [20], it is
not an accurate model of grating cells because the response profiles differ rather
strongly from that of the measured grating cells.

We applied the new model to 338 real world images of textures from three
databases. Based upon these results we conclude that grating cells respond to
oriented texture, to oriented repetitive alternating patterns to be precise, but
are insensitive to many other textures. In general, grating cells are not suitable
for texture detection. The grating cell operator responds well if the complex
cell responses perpendicular to the preferred orientation show similar strong
responses. In such case it is impossible to detect or extract relevant edges in
these areas by using complex cells. It therefore seems that grating cells could
play a key role in separating form from texture by giving inhibitive feedback
responses to the complex cells. A field which we want to explore in the near
future.
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