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Abstract— This paper presents a method for novelty and
familiarity detection, aiming at inferential use of episodic
memories for modeling behavior in novel situations. The
method is based on the simulation of the hippocampal func-
tion, especially on its aspects, that relate to the memory
formation in spatial context as: (1) the sensory, percep-
tual, and behavioral correlates of the episodic memory for-
mation, (2) its involvement in novelty/familiarity detection
and inferential reuse of old memories, and (3) the natural
way to relate the internal hippocampal and abstract spatial
representations. The study differs substantially from the
existing models, that relate the hippocampal function and
robot exploration, since it focuses on flexible reuse of ex-
perienced episodes rather than on navigation. The model
is build on the experimentally supported hypothesis of the
novelty/familiarity discrimination function of the hippocam-
pal area CA1.

Index Terms—Episodic memory, navigation, robotics, nov-
elty detection.

I. Introduction

Although the aim of robotics diverges with its advance-
ment, in its core it remains to be an attempt to create
machines, that act as living organisms, and are able to re-
place humans in performing different tasks. The tasks can
vary from accomplishing domestic or industrial functions;
making artificial organs that keep the integrity of a living
being, e.g., it can both read neuronal (motor) output and
provide sensory input to brain structures; to even simulat-
ing the functionality of the complete human brain for the
purposes of experimental neuroscience.

At present, the robots are able to perform tasks with
different degree of autonomy. Experimental robotics has
shown, that autonomous systems can be build by simulat-
ing insect-like behaviors. We aim at higher level of intelli-
gent behavior, which has as a bottom line flexibility - the
use of its old experiences in novel situations. At present,
even higher forms of intelligence, derived from imitation
learning, is an object of robotics applications [1], Since the
actual processes underlying this type of behavior are un-
derstood on a very coarse level only, it does not meet our
present research objectives.

The so stated scope puts forward memory based behav-
ior, which includes remembering of past events, distinguish-
ment of what is novel at present, in order to perform se-
lective encoding, and familiarity detection to facilitate the
ability to infer appropriate behavior in a novel environment
or for performing a novel task.
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Therefore, discrimination of novelty and familiarity is
a central aspect of this work. Novelty is a known factor
that gates learning in natural and artificial systems (for a
recent review see [2]). Definitions of novelty vary widely,
due to the many perspectives within the considered multi-
disciplinary research area. In this paper, the novelty and
familiarity discrimination problem is approached from the
perspective of an embodied agent, which imposes two im-
portant aspects: first, that the novelty has to be considered
in relation to behavior; and second, that the information,
that has to be judged for novel or familiar is derived by the
experienced episodes of events.

The relation between novelty and behavior has received
much attention by experimental neuroscientists [3], [4], [5].
From robotics point of view the behavioral correlates of
novelty determine a system that receives input from sen-
sory and behavioral pool of information.

The second aspect of novelty discrimination implies that
the embodied creature continuously gathers information
about the surrounding world through experiencing se-
quences of events. The organisms, which are capable of
making mental representation encode such a subjective se-
quences (episodes). This capability arises with the avail-
ability of a limbic system (e.g. in rats).

The analysis and modeling viewed trough this aspect
have the following specificity. Many models in computer
science and robotics exploit the characteristics of the se-
mantic memory - memory for facts; Actually, memory for
events and their relatedness is the way higher organisms
build their knowledge; moreover, episodic memory copes
naturally with the sensory, perceptual and behavioral char-
acter of learning of an embodied agent.

In our study, novelty is considered as a gating factor for
forming episodic memories during learning and familiarity
as a mechanism for inferential use of episodic memories
while behaving in a novel environment. We construct a
model of the hippocampus, a part of the brain that is in-
volved in episodic memory formation, novelty detection,
and spatial behavior. The model is meant to be illustrated
through a robotic implementation. It has the potential to
go beyond the state of the art robotic applications since it
intrinsically accounts for the following aspects:
• Robots interact with the environment through a contin-
uous stream of sensory information, eventually forming an
internal representation and acting accordingly. The hip-
pocampus processes sequentially incoming information by
combining various sensory and memory experiences in a
representation that is possibly modulated by behavioral
feedback.
• Many experimental studies suggest the involvement of



the hippocampal formation in novelty and familiarity de-
tection [6], [7] and inferential reuse of old episodes [8], [9].
• Extensive modeling has created a consistent computa-
tional framework that connects the internal hippocampal
and spatial representations.
• Experimental evidence has shown that the pyramidal
cells in hippocampal area CA1 code for spatial location in
terms of environmental queues and memorized episodes;
moreover, it provides a novelty/familiarity distinguish-
ment.

This paper is structured as follows: Section II attempts
to bring a more global framework that makes a parallel
between the robot s representation and hippocampal en-
coding; On this basis a hypothesis is made in Section III.
The framework is further developed in Section IV to lay
a computational ground for further modeling. The actual
model and results are shown in Section V. Section VI offers
a discussion of the state of the research and its perspectives.

II. Spiral model of the organism-environment
interplay

Sensed information, together with the memory expe-
riences, goals, and anticipations, form perception in the
brain which in turn determines the behavior of the animal
[10]. The expression of the behavior is a concrete action.
This relation can be expressed as a cycle with two con-
necting points: the organism and the environment. The
organism gets sensory information from the environment,
and acts upon it. The world changes continuously, so every
other action is applied on a changed environment. The new
sensation forms a perception in the changed mind, since the
preceding percept might have changed the expectations,
the understanding, the certainty of the mental representa-
tion etc., i.e., the brain has changed as well. Therefore, the
interplay between perception and behavior connects two
changing systems: the mind and the environment. If ex-
pressed graphically, this interplay can be represented by a
spiral, as shown in Figure 1.
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Fig. 1. Spiral model of organism-environmental interaction.

Since the difference between two perceptions is usually
small or none, it is easy to reuse the old model of the world
by only distinguishing which is the changed (novel) part.

One possible intersection point of the past and present
of the two systems is to be found in the episodic mem-
ory, where the new experiences are encoded in sequences
of events. The mammals, who are able to form episodic
memories, and especially humans can remember some in-
formation for the whole life span. This fact suggests, that
the episodic memory encoding is an efficient process, i.e.
together with the encoding a decision of the content and
importance of the encoded information is taken. We con-
sider the novelty as the only gating factor for learning, i.e.,
the only factor that determines what to be encoded. In
the spiral model (Figure 1), the novelty is measured by the
change of environmental representation between two per-
ceptions. This discretization is formalized in Section IV.

III. Hypothesis

It is widely known that the hippocampus encodes
episodic memories. In particular, the CA1 area, to which
projections of sensory-bound stimuli come together with
formed episodes of recent memories is an area of interest
[6], [7], [11]. Recent analysis of the data from rat exper-
iments [11] has shown a bi-modal structure of the theta
rhythm, a brain rhythm which appears when exploratory
behavior takes place. The authors conclude, that a possible
reason for bimodality is the different nature of information
that comes at the same time to CA1 area - sensory and
episodic, and the different time it needs to be projected to
this area. Other studies suggest, the function of CA1 as
a comparator [6], [7]. There are slight variations of how
exactly the comparison takes place, but in general they
agree in the following mechanism: the same sensory-bound
pattern is transferred trough the direct and the indirect
pathway from the enthorinal cortex (EC) to CA1 area (as
illustrated in Figure 2). During the indirect path the pat-
tern passes DG and CA3 areas, where orthogonalization,
and episodic memory encoding take place.

The interaction of the information from the learned
episode from CA3 and the sensory-bound information com-
ing directly from EC forms a pattern that controls the up-
coming behavior. At the same time the comparison be-
tween the two patterns produces a novelty signal which in-
dicates whether encoding has to take place, or the episode
is familiar already.

Subsequently, during recall, the perforant path input ini-
tially has a stronger influence on activity in CA1. How-
ever, for familiar stimuli, the pattern of activity arriving
from region CA3 via the Schaffer collaterals will dominate
within region CA1, allowing output from region CA3 to
drive neurons which had previously been associated with
the particular activity pattern in region CA3.

Our hypothesis is, that the CA1 area of the mammal hip-
pocampus is one possible place where sensory and memory-
related information comes together to form a representa-
tion. This representation determines the future behavior,
and indicates the familiarity/novelty of the upcoming in-



formation. It therefore determines what has to be encoded
or what can be ignored.

Based on this hypothesis we refine the computational
scheme as shown in Figure 2. This scheme accentuates on
the CA1 area, as a physical component with comparative
function.
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Fig. 2. Working scheme of the hippocampal formation, accentu-
ating on the comparative role of the CA1 area. CA1-3 denote the
piramidal cells in areas 1-3 of cornu ammonis, the ECII-V denote the
enthorinal cortex. The sensory bound and episodic memory related
representations are compared to indicate the familiarity.

The information from the learned episode from CA3 area
and the sensory-bound information coming directly from
EC forms the pattern that controls the upcoming behavior.
At the same time the comparison between the two patterns
produces a novelty signal which indicates whether encoding
has to take place, or the episode is familiar already.

Several studies have established the opinion, that the
parahippocampal area is responsible for novelty detection
and management, while the hippocampus is involved in en-
coding relational memory. Recently a series of new experi-
mental and neuroimaging evidences [12], [13], [14], [9], [15]
confirmed that the hippocampal formation contributes sim-
ilarly to declarative memory tasks that require relational
or familiarity processing. Therefore, the use of the scheme
shown in Figure 2 appears a plausible one.

IV. Episodic memory formalism within the
robotics framework

Episodic and autobiographical memories have intrinsic
relation with sensory, perceptual, and behavioral events.
By a definition, given by Conway [16], which extends the
widely accepted definition of Tulving [17], the episodic
memory has event specific, sensory-perceptual details of
recent experiences that lasted for comparatively short pe-
riods of time (in the range of a few minutes to a few hours).

Basing our reasoning on the proposed spiral model of
organism-environmental interaction we argue, that episodic
memory has behavioral correlates as well:
• There is not a clear separation between action and per-
ception. Every sensory-perceptual event causes behavior,

which in turn either changes the environment or reflects
the changes that occurred independently of its action;
• Episodic memory is formed during specific experienced
sequence of events, and every event consists of sensing,
binding the sensed information into a coherent perception,
acting accordingly;
• Episodic encoding consists of organizing abstract knowl-
edge derived from goals active during experience.
• Episodic memory represents short time slices, possibly
determined by changes in goal-processing. Goal and action
processing are tightly related.

The computational approach that has been taken in this
work requires a formalization of the episodic memory task.
The computational approach that has been taken in this
work requires a formalization of the episodic memory task.
Let us assume that an episode evolves under the action
of the sensory, perceptual and behavioral competing in-
fluences. Therefore formally an episode E is a set of n
discrete events defined by a considerable difference in the
event representations

E = {et} , t ∈ [1, . . . , n]. (1)

A single event e is defined by

e = {s, p, b}, (2)

where sensory component s introduces the influence from
the external world and constitutes by feedforward connec-
tions. Perceptual component p represents the internal in-
fluences, and is performed by the lateral connections. Be-
havioral component b represents the influence, that the pre-
vious action has brought on the current event. All three
components are multidimensional vectors. The change
from one to another event requires a change in at least one
component, that is bigger than an internal threshold, indi-
cating the detection of a novel event. The distinguishment
among sensory and perceptual influences is very delicate,
since the perception includes sensory as well as memory
related, anticipatory and behavioral components. In our
notation an artificial division between the two is made, by
assuming that perception is a result of changes in internal
state only.

V. Novelty detection and the hippocampal
paradigm

The proposed model aims at novelty driven encoding and
recall, that facilitates inferential reuse of old memories. It
is based on the established theory, that the cells in the rat
hippocampus fire when the rat is at particular location of
the environment. Because of this feature, these cells are
called also place cells. If the rat moves trough the envi-
ronment, at every particular place a number of place cells
fire. Cells that code for places in nearest vicinity fire most
strongly, while the cells that fire for more distant location
fire less. The activity of the place cell firing can be modeled
by a Gaussian for the open environments, where place cells
show non-directional firing. Therefore, the movement of a



simulated rat at every place of the environment is charac-
terized by a particular pattern of firing, containing of the
active place cells in vicinity of the animate. The activity
of each cell can be represented in the following way:

si,t(r) = −‖ r − pci ‖
e2σ2 , (3)

where pci is the location in the space of the center of the
cell i-th place field, r is the position of the simulated rat,
and σ represents the width of the place field.

Therefore, the sensory signals are encoded into constel-
lations of active place cells. The unique pattern of activity
corresponds to a certain position r of the environment. The
level of activity of every place cell depends on the distance
between the rat position and the place fields centers. Fig-
ure 3 shows two activation patterns from the rat route.
These patterns are external-world related and are further
transmitted through the direct pathway.

Fig. 3. Samples of sensory bound patterns.

The pattern, coming trough the indirect pathway, rep-
resents the perceptual (memory related) influence to the
representation in CA1 area. It is formed within a network
structured as a two layer lattice of neurons, corresponding
to the EC and CA3 layers. The feedforward connections

from a EC area, that contain patterns as the ones shown
in Figure 3, to the superficial CA3 area are trained trough
a modified Hebbian rule:

∆wCA−EC
ij = α1g

(
ECiCAj − wCA−EC

ij CA2
j

)
, (4)

where α1 is the learning rate, g is a gating factor, and
notation CA−EC shows the starting and destination layer
of the connection (coming from EC, reaching CA layer).
Indices i and j denote neurons on the input and output
layer, correspondingly. The CA layer is not denoted as
CA1 or CA3, because the learning rule is used for EC-CA1
as well as EC-CA3 learning. The term wCA−EC

ij CA2
j is

needed due to internal instability of the Hebbian rule.
The topological connections are predominant - the sim-

ulation is done as the neurons from the first layer project
to a topologically adjacent area, in a way that every in-
put neuron is connected to 20% of the output neurons.The
lateral inhibition connections, denoted as LI have a sharp-
ening effect on the transmitted to CA3 area activations.
Equation 6, i.e. they promote self-organization

∆wLI−CA
j = α2g

(
LICAj − α3w

LI−CA
j CA2

j

)
, (5)

where α2 and α3 are learning rates and g is a gating factor.
The biological and computational plausibility of the

learning process performed in Equations 4 and 5 have been
shown previously in [18] where the learning parameters
choices is explained in detail. A plot of a sample learned
episode is given in Figure 4.

Fig. 4. Examples of 3 formed episodes in a two dimensional array of
neurons.

The result of this learning process corresponds to the per-
ceptual contribution of the proposed event definition. The
behavioral influence is represented by a neuromodulator-
like gating signal:

∆bCA
i = βg

(
CAi

CAd
− 1

)
, (6)



where β, CAi, and CAd denote correspondingly the learn-
ing rate, current, and desired state of CA1 output. Due to
the scope of this paper, this influence will not be elaborated
further on.

The sensory bound representation of the direct pathway,
and the episodic representation of the indirect pathway,
come together in CA1 area, where the comparison (nov-
elty/familiarity judgments) takes place. Note, that at the
same time, the CA1 area gets input from the current pat-
tern of EC area and a pattern from CA3 area, which does
not have processed yet (incorporated into an episode) the
pattern that EC area currently projects.

For the novelty detection, similarity between the constel-
lations as found in already encoded episodes and those of
the incoming couples of sensory experiences is used. The
sensory bound patterns are simplified in order to suit to
the representation of the encoded episodes, some samples
are shown in Figure 5. The predominant topological con-
nections preserve the relative structure of the environment.
The comparison is made by a modification of the algorithm,
initially proposed in [19]. This modification preserves the
connections between events within an episode and allows
on-line comparison of the incoming sensory-bound patterns
with those encoded into the episodes.

As a result of training two episodes given in Figure 6 have
been distinguished: after the presentation of the third pat-
tern, the novelty signal gradually increases, which results
in encoding of a new episode.

VI. Discussion

This study proposes a hippocampal model applicable
to behavioral simulations, that incorporates novelty gated
learning and episode formation. The impact of novelty is
two-fold: it allows an efficient encoding (exploration) phase
and it is a basis for flexible reuse of memories in the recall
(exploitation) phase. The same computational paradigm
is used in both cases, which makes possible on-line imple-
mentation.

The paper accentuates on the methodological part. The
simulations of episodic memory encoding and novelty de-
tection are inspired by an algorithm as proposed in [19].
For the actual simulations, however, the algorithm has been
substantially changed to cope with novelty detection be-
tween individual patterns and such that are involved in
episodes. The reuse of memories based upon the familiar-
ity principle is in an experimental phase.

Exploiting the novelty detection properties of the hip-
pocampus for behavioral modeling and a navigation task
in particular distinguishes this approach from the existing
models, that relate hippocampal modeling and robot nav-
igation tasks.

References

[1] J. Triesch, J. Wieghardt, C. von der Malsburg, and E. Mae,
“Towards imitation learning of grasping movements by an au-
tonomous robot,” Lect. Notes Artif. Intell., vol. 1739, pp. 73–84,
1999.

[2] S. Marsland, “Novelty detection in learning systems,” Neural
Computing Surveys, vol. 3, pp. 157–195, 2003.

Fig. 5. Some training patterns, based on the place field activation
patterns.

Fig. 6. Learning of two episodes with an overlap. After the two
trajectories show discrepancy, the novelty signal is issued.



[3] R. A. Bevins and M. T. Bardo, “Conditioned increase in place
preference by access to novel objects: antagonism by mk-801,”
Behav Brain Res, vol. 99, pp. 53–60, 1999.

[4] R. Galani, I. Weiss, J-C. Cassel, and Kelche C, “Spatial memory,
habituation, and reactions to spatial and nonspatial changes in
rats with selective lesions of the hippocampus, the entorhinal
cortex or the subiculum,” Behav Brain Res, vol. 96, pp. 1–12,
1998.

[5] R. N. Hughes, “Food deprivation and locomotor exploration in
the white rat,” Anim Behav, vol. 13, pp. 130–142, 1965.

[6] O. Jensen and Lisman, “Hippocampal ca3 region predicts mem-
ory sequences: accounting for the phase precession of place
cells,” Learning and Memory, vol. 3, pp. 279–287, 1996.

[7] R. C. O’Reilly and J. L. McClelland, “Hippocampal conjunctive
encoding, storage, and recall: avoiding a trade-off,” Hippocam-
pus, vol. 4, no. 6, pp. 661–682, 1994.

[8] H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, and
H. Tanila, “The hippocampus, memory, and place cells: Is it
spatialmemory or a memory space?,” Neuron. Cell Press, vol.
23, pp. 209–226, 1999.

[9] E. Wood, P. Dudchenko, and H. Eichenbaum, “The global record
of memory in hippocampal neural activity,” Nature, vol. 397, pp.
613–616, 2004.

[10] E. I. Barakova and T. Lourens, “Prediction of rapidly changing
environmental dynamics for real time behavior adaptation using
visual information,” in 4th Workshop on Dynamic Perception,
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