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Imitation learning is a promising way to learn new behavior in robotic multiagent systems and in
human-robot interaction. However, imitating agents should be able to decide autonomously which
behavior, observed in others, is interesting to copy. This paper shows a method for extraction
of meaningful chunks of information from a continuous sequence of observed actions by using
a simple recurrent network (Elman Net). Results show that, independently of the high level
of task-specific noise, Elman nets can be used for learning through prediction a reoccurring
action patterns, observed in another robotic agent. We conclude that this primarily robot to robot
interaction study can be generalized to human-robot interaction and show how we use these results
for recognizing emotional behaviors in human-robot interaction scenarios. The limitations of the
proposed approach and the future directions are discussed. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

An organism is able to learn by imitation if it can acquire new behavioral
skills by directly copying them from others.1 Imitation, like other forms of social
learning,2,48,49 has many roles in animal and human societies. It has, potentially, an
enormous ecological advantage,4 by allowing animals to be flexible learners while
avoiding the dangers associated with individual learning.5 The behavior of others
has often been already shaped by its consequences and can therefore be assumed to
be safe and rewarding to imitate.3

Another property of imitation, together with its ecological value, is that it
can support the spread of behavior through a population of individuals.2,6,7 Several
observational studies8 have provided evidence for this in-groups of primates but
recently experimental evidence has also been reported. For example, Bonnie9 taught
individual chimpanzees to deposit tokens in a box to receive a reward. Subsequently,
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these individuals were introduced into a population of naive animals. After some
time, the rewarding behavior was copied by the other animals and its frequency in the
population increased. Similar findings have since then been reported by Whiten.10

Humans and some primates have been found to imitate.3,8,9,11,12 Experimental
studies of imitation have shown that observing adults is a powerful way of learning
for children.13,14 It has been shown that imitation is instrumental in learning to
interact with objects13,14,17−19 and it increases the interaction between the imitator
and the imitated agent.15,16,21,49

The ecological advantages and the capacity to support the spread of behavior
make imitation a potentially interesting mechanism to support learning in multiagent
robotic systems.20 The role of imitation in learning to communicate (via reproduction
of gestures and speech), and in stimulating the interaction between the imitator and
the imitated agent have made it an interesting topic in human-robot interaction
studies.

In a multiagent setting, agents could search simultaneously for a solution for
a given problem (e.g. how to pick up food or accomplish a common task). Once
a single agent has found a solution, this innovation could be imitated by others
and could be propagated through the population. In this way, learning by imitation
could drastically reduce the total number of learning trials needed for a population
of agents to solve a problem.20

Human-robot interaction scenarios often require robots to learn from humans or
other robots that are not trained to explicitly demonstrate behaviors. A robot without
any a priori knowledge about the task does not know which actions of the person
are important and necessary for the task, while he/she sometimes produces not
only actions directly related to the task but also unrelated ones. Not preconditioned
interaction scenarios are preferred in social training of children with autism21−23,49

where robots have demonstrated to be appropriate educational tools. Moreover, the
idea that robots are used in everyday life and they learn skills from human or other
robots without being explicitly trained to do that is attractive. The mentioned classes
of robot applications, namely spreading of behavior for survival or accomplishment
of a common goal, and learning (social) skills from a trustworthy partner share
the same problem of identifying and learning sequences of actions that have to be
imitated. This problem is also known as learning what to imitate.24

We propose a general framework to address this common problem of identifying
and learning meaningful sequences of actions for both classes of applications. The
framework is as follows. An agent (human, robot or non human primate) sees a
continuous sequence of various kinds of actions. The actions which are, from the
viewpoint of the observed agents, meaningful and can be divided into exploring
and exploiting part, are unordered from the viewpoint of a learning agent. There is
no a priori way for the learning agent to parse the actions of its conspecifics or of
the human companion. Therefore, it cannot know which sequences it should copy
and which are to be ignored. This implies that it should copy the exploiting action
sequences and ignore the exploring action sequences. Moreover, it cannot know
where the exploiting sequences start or end. Even if it is assumed that the imitating
agent can detect when another agent is rewarded (i.e., possible end of an exploiting
sequence), it cannot know where the sequence of events that lead to the reward
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started. This problem can also be stated otherwise: Agents cannot act as teachers
explicitly signaling to others which actions are interesting to learn. In the absence
of teachers that are explicit about what needs to be learned, agents should be able
to autonomously decide what is important to copy.

In search for a solution to the problem of identifying and learning meaningful
actions we used the analogy to another problem in cognition; that of segmenting
a continuous input stream of sounds into words. Elman (1990) presented a simple
recurrent neural network that was capable of making good predictions of the un-
folding word based on the co-occurrence statistics available in the data. Taking as
a basis this network, the imitation of meaningful sequence of behaviors involves
prediction of the next movement that constructs the behavior.

While imitation in multiagent settings seems to be a promising learning
paradigm, until now little or no research has been done in this area. To the best
of our knowledge in the context of embodied autonomous multiagent systems the
use of imitation where no explicit teacher is present has been investigated so far only
by Belpeame et al. 25. Most existing research on autonomous imitation in artificial
agents focuses on human-machine imitation (see Ref. 26 for an overview) where
the human is a teacher who clearly marks the boundaries of the behavior that has to
be imitated. In such a setting, there is no need for an agent to detect the boundaries
between meaningful chunks of actions since they are marked by the teacher.25 We
intend to make possible for robots to be used also in scenarios where the explicit
demonstration of meaningful behaviors is not possible, or even harmful to the inter-
action process. In particular, we aim to use the method for letting the robot be used for
social training of autistic children by robots. In such a scenario, explicit demonstra-
tion of behavior may disturb the natural interaction between the robot and the human.

The article is organized as follows. Section 2 outlines the constraints of the
problem that is going to be solved in the light of the application domains. It also
gives more details on the method and the algorithm that was used. Section 3 gives all
necessary details on the data collection, preprocessing, and learning to make possible
for the reader to reproduce the experiments. The results are shown and explained in
Section 4. Section 5 describe the ongoing work on human-robot interaction that is
based on this method. A discussion is provided in Section 6.

2. PROBLEM DEFINITION AND APPROACH

2.1. Problem Definition

Imitating agents in a multiagent setting face a number of fundamental
problems.24,25 A problem of crucial importance of them is how agents can au-
tonomously select the behavior that should be copied.24 Great apes and humans
seem to be very good at determining what behavior should be imitated when they
observe a demonstrator.27 However, for robots in the multiagent scenario sketched
above, determining what they should imitate is no simple task.26

Similarly, the robot that has to take part in realistic human-robot interac-
tion scenarios cannot always be explicitly thought of which actions to imitate
for a successful interaction with the human. The problem of social learning or
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one-directional transfer of skills implies a delicate balance between social mecha-
nisms and motor actions. Detecting social cues that are given implicitly or explicitly
by the teacher during training can serve as a way to determine when the imitation
process starts or stops. In multiple social interaction scenarios, this is not possible.
The robot would try to pick up behavior from the humans and respond to it without
the human to explicitly signal for that.

Usually, more than one meaningful behavior has to be learned. Lets imagine a
number of agents exploring an artificial world. Different types of food and supplies
are available in this artificial world (like in2) and different resources need to be
approached differently to use them. For example, nuts need to be gathered from the
ground and smashed against a rock before they can be eaten while a banana must
be picked from a tree and carefully peeled. It is assumed that originally all agents
are naive concerning the rules governing the world. When the agents are released
in the world they start off generating sequences of behavior in the hope of finding a
sequence that gives access to some rewarding food. Agents that find such a sequence
will remember it for future use. This means that after a while agents will alternate
between generating new behavior (exploration) and exploiting gathered knowledge
(when a food for which a known sequence is stored is encountered).28 Exploitation
behavior will consist of fairly fixed action sequences like picking up a nut, smashing
it onto a rock and eating it. Analogically, robot agent will encounter more than one
meaningful behavior to learn from a human agent.

The current study focuses on a simplified interaction setting. We assume that
only a single demonstrating robot is available. This setting mimics the situation in the
cited experiments of Bonnie and Whiten9,10 where a single, well-trained animal is
observed by others or in a variety of human-robot interaction tasks where the human
master a skill that has to be learned by a robot. A second simplification is that in both
tasks, the imitating robot can see unambiguously the actions of the imitated agent.
For this purpose, the following experimental scenario was constructed. Two robots
operate in rectangular arena (Figure 1). The first robot performs interchangeably
exploring (random action sequences) and exploiting (different predetermined action
sequences). The imitating robot observes the actions of the first robot through a top
view camera. The advantage of top view camera in multiagent setting is that the
actions of the first robot will be seen independently from the viewing angle. For
a human-robot interaction task, realistic scenarios can be constructed in which the
robot-observer sees the movement of the human agent via a static camera.

The agent that tries to observe and imitate the action sequences of the others
sees a continuous sequence of various kinds of actions. The actions which are, from
the viewpoint of the observed agents, meaningful and can be parsed into exploring
and exploiting parts, are unordered from the viewpoint of a learning agent. There
is no a priori way for the learning agent to parse the actions of its conspecifics. It
cannot know which sequences it should copy and which are to be ignored. It should
copy the exploiting action sequences and ignore the exploring action sequences.
However, it cannot know where the exploiting sequences start or end. Even if it is
assumed that the imitating agent can detect when another agent is rewarded (i.e., the
end of an exploiting sequence), it cannot know where the sequence of events that
lead to the reward started.
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Figure 1. The overall experimental setup.

2.2. Experimental Approach

Parsing a continuous stream of actions is reminiscent of another problem in
cognition; that of segmenting a continuous input stream of sounds into words. In
a set of seminal articles, Elman29,30 presented a simple recurrent neural network
(Figure 2a) that was able to segment a sequence of letters into words. His network
was constructed to take an input letter n and predict the next letter n + 1 in the
sequence from n. After some training the network was capable of making good
predictions. The network made its predictions based on the co-occurrence statistics
available in the data. Furthermore, segmenting the sequence into words was possible
using the error signal produced by the network while executing this task. Figure 2b
shows an error curve that was produced while the network processed an input
stream of letters. Inspecting the error curve, it can be seen that the error is high at the
boundaries between words while it drops over the course of a word. This is caused by
the fact that while a word unfolds, the next letter becomes more and more predictable
with each new letter. On the other hand, at the boundaries between words, the next
letter is very hard to predict since it is not determined by the previous one (in the
dataset provided to the net). Therefore, the error provides a good clue as to what
are recurring sequences in the input, and these correlate highly with words.31 The
network learned which parts of the input should be regarded as meaningful chunks.

A similar solution might be used to let agents autonomously decide what to
imitate (see32 for a related suggestion). An imitating agent could notice that some
sequences of actions are consistently executed in the same order. These rewarding
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Figure 2. (a) Schematic representation of an Elman net. On each feed-forward sweep, the
activation of the Hidden Nodes is copied to the Context Nodes. The Context Nodes are used as
an additional set of input nodes on the next feed-forward sweep. (b) The error curve produced by
an Elman network that was trained to predict the next letter in a sequence from the previous one.
Here, the sequence “many-years-ago-a-boy-and-a-girl-lived-by-the-sea-they-played-happily” is
given to the network.

action sequences will be repeated often by the demonstrating robot. Using an Elman
network, an observing agent could try to predict the actions of its fellow agents.
After a given amount of training the observer could use the error curve to isolate
the segments of the input that are interesting to imitate (or a least to evaluate
before attempting imitation). Exploiting sequences will be characterized by being
predicable (low predicting error).

3. EXPERIMENTAL SCENARIO

3.1. Data Collection and Preprocessing

All experiments reported in this article were conducted using the e-puck robot
platform (http://www.e-puck.org). The e-puck is a small mobile robot measuring
70 mm in diameter and 55 mm in height. The robot is equipped with infrared distance
sensors that are located around the body at 10◦, 45◦, 90◦, 270◦, 315◦, and 350◦ with
respect to the heading direction of the robot. Two sensors located at the back of
the robot were not used in the reported experiments. The robot was controlled
by a personal computer through a Bluetooth interface. A rectangular arena was
constructed for the robot which measured about 100 cm × 70 cm. The arena was
fenced by cardboard walls which were about 10 cm high. The robots movements
were filmed by a Logitech QuickCam camera (http://www.logitech.com) suspended
about 160 cm above the floor of the arena. The camera captured the entire arena
using 320 × 240 pixels at 10 Hz. The floor of the arena was white. The robot was
fitted with a black cap for maximal contrast so that tracking the robot was easy. All

International Journal of Intelligent Systems DOI 10.1002/int



FROM SPREADING OF BEHAVIOR TO DYADIC INTERACTION 7

●

● ●

●●

● ●

●

Pattern 1

1

2 3

45

6 7

8

● ●

●

●

●●

●

Pattern 2

1
2

3

4

5
6

7

●

●

●

●

●

●

●

Pattern 3

1

2

3

4

5

6

7

Figure 3. These are the three predefined patterns that could be driven by the robot. Numbers
signify the order of execution. See Table I for details about these patterns.

image processing and tracking of the robot was done using RoboRealm software
(http://roborealm.com). Processing the images of the camera included correcting
for radial distortion. The tracking software provided the approximate location of the
center of the robot in each camera frame and its speed.

In this study, the robot could only drive straight on and to turn in place. The
robot was allowed to drive four fixed driving distances: 32 mm, 64 mm, 96 mm,
and 128 mm. Also 10 turning angles were fixed: −120◦, −90◦–60◦, −30◦, 0◦, 30◦,
60◦, 90◦, 120◦, and 180◦. Negative values denote counterclockwise turns. Given the
constraints imposed on the movements, all movement of the robot was an alternation
between turning in place conform to one of the fixed angles, followed by driving one
of the fixed distances. The robot iteratively selected a turning angle and a traveling
distance to execute.

The e-puck executed two different kinds of behavior. First, the robot could
execute exploration behavior. In this mode a turning angle and a traveling distance
were selected at random on each iteration. Second, after each turn and drive action
the robot could, with a probability of 0.3, select at random one of three patterns to
execute. The patterns are depicted in Figure 3. Detailed information on the patterns
can be found in Table I. While the robot was driving, the distance sensors were
probed each 200 ms to determine whether it was about to hit the walls of the arena.
If the robot detected a wall, it aborted its current action and moved away from the
wall. In case the robot was executing one of the predetermined patterns of action, the
pattern was aborted and a random move was initiated after the avoidance maneuver.

In the experiment reported here, the robot executed 1500 moves consisting
of turning and driving. This amounted to about 120 minutes and 74702 image
frames. The robot path captured by the camera was preprocessed using R-software.33

Preprocessing aimed at reconstructing the actions of the robot from the camera
images as an observing agent could do. Figure 4 illustrates the preprocessing steps.
Note that only a small subset of data has been used for these plots. Plotting an entire
dataset would result in graphs that are too cluttered.
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Table I. This table lists the turning angles and the driving distances that
made up the three predefined patterns plotted in Figure 3.

Pattern 1 Pattern 2 Pattern 3

Angle Distance Angle Distance Angle Distance
Step (Degrees) (mm) (Degrees) (mm) (Degrees) (mm)

1 0 128 90 32 30 32
2 90 64 −120 64 −30 96
3 90 64 60 32 120 96
4 90 128 180 32 120 96
5 −90 64 60 64 −30 32
6 −90 64 −120 32 180 32
7 −90 128
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Figure 4. These plots depict the raw (a), smoothed (b), and segmented (c) path the robot drove
in experiment 1. For reasons of clarity only a small subset moves of the robot have been plotted.

As can be seen in plot 4a–c, the path of the robot consists of random sequences
interwoven with a number of predefined patterns. A cubic smoothing spline was fitted
to the raw robot path. The smoothed path is plotted in Figure 4b. The smoothed track
was segmented in order to reconstruct the moves the robot executed. Segmenting
the track was done based on the detected speed of the robot. Because the top of
the e-puck robot is perfectly round, it looks as if it stands completely still, from the
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Figure 5. (a) The distribution of traveling distances detected by the camera in the dataset
reported in the Results section. Letters a-e refer to five clusters present in this distribution. (b) The
distribution of the turning angles in the same data.

viewpoint of the overhead camera, when it turns in place. Therefore, local minima
in the speed curve signify points in time when the robot was (probably) executing
a turn. The smoothed robot path was segmented at these points in time. Figure 4c
depicts the segmented version of the robot path. Next, the segmentation points were
connected by straight lines because the robot could only drive straight on between
two turning points. From the segmented path, it was trivial to calculate the sequence
of the approximate angles the robot turned and the distances it drove.

The final result of the preprocessing step is an approximate reconstruction of
the program that has been executed by the robot. This is a record of the actions of
the robot as perceived by the camera (or any other onlooker).

Figure 5 depicts the distribution of the angles and distances that were detected
by the camera. As can be seen in this graph, the execution and the perception of the
moves of the robots was liable to noise. The distribution of the detected distances
shows five clusters labeled as a–e. Cluster b–e correspond to the 4 distances the robot
could drive in the experiment. Cluster “a” contains very short traveling distances.
These are caused by oversegmentation of the robot path and by instances in which
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the driving of the robot was aborted due to the detection of the walls. The distribution
of the turning angles also shows overlapping clusters. The fact that both distributions
are characterized as a number of overlapping clusters indicates that the level of noise
was relatively high.

Because of the noise, some further processing of the perceived moves was
necessary before the data could be fed to an Elman network. The turning angles
and the traveling distances were made discrete. Turning angles were mapped onto
the nearest 30◦. After this, the data contained 12 different turning angles (360/12)
instead of the 10 used by the robot. Traveling distances were mapped onto the
nearest cluster center (0, 14, 24, 36 or 47). Moves that were classified as belonging
to the first cluster (i.e., 0), were discarded from further processing. These final data
cleaning steps can be considered as reflecting categorical perception.

3.2. Learning

A generic Elman network was implemented (see29,31 for more details about the
structure of Elman networks). The network had 12 input nodes coding the turning
angles and four inputs that coded each of the four traveling distances present in
the data. The hidden layer of the network consisted of 30 nodes. All neurons had a
sigmoid activation function. The network was trained by presenting it with a turn-
ing angle and a traveling distance by setting the corresponding input nodes to one
(other nodes were assigned an activation value of 0). So, an input vector consisted of
16 values of which two were set to one to signify the current angle and driving dis-
tance. Importantly, each turning angle and traveling distance was assigned a coding
input neuron at random. In this way, the coding of the moves was completely ab-
stract. Thus, although the predefined patterns were visually symmetrical (Figure 3),
from the viewpoint of the network they were not. The visual symmetry could not be
exploited by the network to learn to recognize the patterns. After the presentation
of an angle and distance, the network predicted the next turning angle and driving
distance the robot would execute. Simple gradient descent (Error Backpropagation)
was used to adapt the connection weights of the network after each presented input.
After updating the network connections, the next turning angle and traveling dis-
tance was presented to the network. In this way, the whole data set was presented
10 times to the network (i.e., 10 epochs of training). This amounted to about 15,000
training trials.

4. RESULTS

The experiment and the training of the network were replicated several times
using slightly different parameter settings. However, qualitatively the results were
always similar to the ones reported in this section.

Data about the moves executed by the robot can be found in Table II. These data
show that a large proportion of the patterns were not completed. This introduced
additional noise into the training data. Figure 5 depicts the most important training
results. Plot 5a shows the change in the prediction error by the network in the form
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Table II. This table lists the number of patterns
the robot drove while collecting the data reported
in the Results section. Also the number of random
moves is listed. The number of patterns and
random moves that were terminated because the
robot detected a wall are listed separately.

Termination

Normal Stopped Total

Pattern 1 39 19 58
Pattern 2 47 21 68
Pattern 3 37 17 54
Total 123 57 180
Random 274 46 320

of a density plot. One can see that after some initial training, there is a bifurcation
in the error. After about 2000 trials, most moves of the robot are well predicted (low
error) while others are not (high error). This binomial distribution of the error is
also clearly visible in plot 5b. A Gaussian Mixture Model34 with two components
was fitted to the error distribution across all trianing trials to obtain an objective
threshold to separate trials for which the prediction error was low and trials for which
the error was high. At about a value of 0.9, an error value had an equal probability of
belonging to either of the two clusters (assuming equal priors for both components).
This value is indicated by an arrow in Figure 6b. A Gaussian Mixture Model35 with
two components was fitted to the error distribution to obtain an objective threshold
to separate trials for which the prediction error was low. At about a value of 0.9,
an error value had an equal probability of belonging to either of the two clusters.
This value is indicated by an arrow in Figure 6b. This value was used as a cutoff to
identify trials in which the network had made a good prediction. So, trials in which
the network predicted the next step with an error lower than 0.9, were considered
as trials with a low error. Subsequently, sequences of trials longer than two steps,
in which the prediction was better than the cutoff, were identified in the data. The
cumulative frequency of all identified sequences is plotted in Figure 6c as a function
of the number of training trials. As can be seen, a lot of different sequences were
identified (n = 141). However, most of these are identified only a few times. Only
10 patterns were recognized 20 times or more while 54 were encountered only once.
As can be seen in plot 6c, three patterns are clearly recognized more often than
all others. These are indeed the patterns the network was supposed to learn (see
labels in plot 6c). So, by analyzing the error curve produced by the Elman network
during training, the three predefined patterns could be isolated as being high frequent
sequences the network could predict very well.

The fact that the network reliably isolated the three predefined patterns is
further analyzed in Figure 7. This plot depicts the frequency of the patterns that
were detected more than 19 times over the course of the training. As stated before,
the most frequent patterns were the three predefined patterns. However, of equal
interest is the fact that the other detected patterns were parts of the goal patterns.
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Figure 7. Total frequency of detection of the most frequently detected patterns of actions;
pattern 1, pattern 2, pattern 3. Opened markers signify subpatterns of the patterns denoted with a
similar shape.

5. WORK IN PROGRESS

At present, simulation studies to support human-robot interaction experiments
are carried out. The aim of these experiments is teaching of socially relevant behav-
iors to children through games with robots. Especially, we target autistic children,
since they are marked by delays in social development21 and will benefit most of
such training.

There is evidence that individuals with autistic spectrum disorders do not in-
terpret social messages that motion conveys as typical people do. Moore, Hobson,
and Lee36 found that 14-year-old individuals with autism have deficits in perceiv-
ing emotion-related attitudes and subjective states, given the motion cues of a
point-light-walker display.36,37 This finding reveals a deficit in perceiving mental
states based on motion cues. Klin37 found autism-specific differences in people’s
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descriptions of the Heider and Simmel task.38 Heider and Simmel38 showed to sub-
jects actions of simple geometric figures. The subjects were asked to narrate the
perceived actions. The subjects reported to see that geometric figures had goals, de-
sires, intentions, and emotions. Klin39 conducted an experiment with 60 participants
with autism that were asked to provide narratives describing Heider and Simmel’s
animation. He found differences at interpreting social motion in autistic people, sug-
gesting the important developmental question of whether people with autism would
have typical precursors to this ability to perceive social information in motion
cues.

A study by Pierno et al40 concludes that visuomotor priming proceeds normally
in children with autism when primed by a robot. This finding is consistent with other
results demonstrating that people with autism perform at normal to superior levels
at tasks presented in a repeatable and predictable formats established by a robot or
a computer.41,42

To involve autistic and typical children in social training with robots we created
emotional behaviors and behavioral analysis system that determines the emotional
state of an agent50,51. For this purpose, the Laban movement analysis method was
used50,51. The Laban Movement Analysis35 is a well-established, effective method
for observing, describing, annotating, and interpreting human movement. It provides
descriptors for the content of human body movements in terms of four factors.
We identified the effort factor as being related to the dynamic characteristics of
the movement. These characteristics can be translated to measurable movement
characteristics such as trajectory, velocity, and acceleration. When three Laban
motion factors are combined, they fall into categories called externalized drives. Of
special interest is the so-called Passion drive, which combines Time, Weight, and
Flow. Using these motion determinants the movement that body takes in space gives
a way to detect, express, and model emotional actions.

This method was used to both analyze human movement patterns and create
emotional movements for robots. We designed several emotional behaviors and
these behaviors were tested with a group of 42 typically developing children. The
outcome of the tests showed a good recognition of these basic emotions by the
children. For a human observer, the trajectory, the direction with respect to the
observer, the speed, and the acceleration of the movement were the determining
factors to conclude on the kind of emotion that the robot is expressing. For the
response behavior of a robot observer, acceleration profile and the intensity of the
movement is essential50. The trajectories of two emotional movement behaviors,
expressing anger and fear are shown in Figure 8. The trajectories of movements that
represented different emotional states, were more complicated and unsuitable to be
learned with Elman net. The trajectories resemble the simplicity of the patterns in
Figure 3, and the recognition by the robot was a straightforward application of the
method proposed in this article.

At present, we are trying to extend the results to trajectories recorded by a
three-dimensional human movement using a combination of Wiimote controller
and a camera that is positioned in front of the human. These behaviors are to be
recognized and imitated by a humanoid robot.
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Figure 8. The trajectories of two sample emotional robot behaviors. The upper plot denotes the
trajectory of a joyful or happy movement, while the lower plot is derived from fearful behavior.

6. DISCUSSION

We proposed a practical solution for the problem of what to imitate, i.e. which
part of the behavior of an agent is relevant and must be learned by another agent,
in our case a robot. After revising the animal studies we found out that repetition
of a behavior in one or group of agents is a good indication for the importance
of the behavior and we show how a simple recurrent network can learn to predict
the re-occurence of simple behavioral sequences. We also showed that behavioral
sequences with such a simplicity are for instance the movement trajectories of
persons and robots expressing some emotional behaviors through whole body mo-
tion. Our method is especially suited to work with behavioral sequences that are
divided by noisy or undefined behavioral data between the meaningful behavioral
sequences. We have used very well defined behavioral sequences, but such can be
learned beforehand by a clustering algorithm. The experimental work completed
so far showed that an Elman network can be used to reliably identify reoccurring
sequences of actions, which have not explicitly been indicated beforehand. In con-
trast to the simulation studies of Elman,29−31 the data collected by observing the
robot contained substantial amounts of noise (Figure 5). Nevertheless, given enough
learning trials, the error curve could be used to reconstruct the three goal patterns.
Therefore, it is possible for an observer to extract the interesting parts of the behavior
of a demonstrator by using a simple recurrent network.

However, while the proposition of the study was confirmed by the data, their
main valor might be to suggest new lines of research and improvements of the
current approach. To this end some issues of the study will be discussed.

A first issue is the learning speed demonstrated in the current study. The Elman
network needs many trials before a reliable extraction of the patterns is possible
(something that was also experienced by Elman in his original studies). This makes
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the mechanism, exactly as it is implemented in this paper, an unlikely candidate to
be used in a multiagent setting or in human-robot interaction scenarios. At present,
we are implementing more advanced recurrent learning algorithms. Recent devel-
opments by the personal computers ensure substantial computing power of several
tera-floating point operations per second (TFLOPS), if graphical processing units
(GPUs) are used. Therefore, we are working on a GPU-based parallel implementa-
tion of these algorithms.

In the described experiments, one robot is watching another agent (robot or
human) continuously (from a favorable perspective). When implementing the current
setup with different demonstrators and observers, the noise levels in the perception
of each and every robot will rise. In a multiagent task, a robot will have to choose
between a number of agents to observe. Some of these will perform very well while
others might be still learning themselves. If the robot chooses to imitate an under
trained co-agent, it will not be able to learn the task. Instead, it will extract any
reoccurring sequences that are coincidently demonstrated. Furthermore, in absence
of any reoccurring pattern in the demonstrator’s behavior, nothing will be learned. In
short, because any learner has access to the behavior of trained as well as untrained
individuals, the noise in the perception will increase and the chance of mastering
the task will decrease. To avoid such a scenario, more flexible learning mechanisms,
adapted to multiagent settings, must be researched. One obvious way to extend the
current mechanism is to add reinforcement (or a similar mechanism)—a source of
information also used by animals and humans.

Adding reinforcement to the learning mechanism will also reduce the number
of learning trials needed. A robot could try out each (partial) sequence of actions it
discovers in the behavior of others. If the action sequence is successful according to
some measure, the behavior should be consolidated. If not, it should be discarded
until further training changes it in some respect. Such a mechanism will speed up
learning drastically since a target sequence has to be isolated only once. Furthermore,
this way the number of demonstrations of nonadaptive behavior in a set of robots is
kept at bay which reduces the noise level.7
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