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Abstract

An approach to symbolic contour extraction will be de-
scribed that consists of three stages: enhancement, detec-
tion, and extraction of contours and corners. Contours and
corners are enhanced by models of monkey cortical complex
and endstopped cells. Detection of corners and local con-
tour maxima is performed by selection of local maxima in
both contour and corner enhanced images. These maxima
form the anchor points of a greedy contour following algo-
rithm that extracts the contours. This algorithm is based
on an idea of spatially linking neurons along a contour that
will fire in synchrony to indicate an extracted contour. The
extracted contours and detected corners represent the sym-
bolic representation of the image.

The advantage of the proposed model over other models
is that the same low constant thresholds for corner and lo-
cal contour maxima detection are used for different images.
Closed contours are guaranteed by the contour following
algorithm to yield a fully symbolic representation which is
more suitable for reasoning and recognition. In this respect
our methodology is unique, and clearly different from the
standard (edge) contour detection methods. The results of
the extracted contours (when displayed as being detected)
show similar or better results compared to the SUSAN and
Canny-CSS detectors.

1 Introduction

A human carries out an object recognition task with such
ease that we hardly consider it as difficult. A closer view
reveals the problems behind this act of perception. A distri-
bution of light intensities on the retinas is processed by the
brain. Although a distribution of light intensities can change
considerably, e.g., when an object is placed in a different
environment or scaled, the object is being recognized as the
same. The brain transforms visual data into another rep-
resentation where these changes are compensated for, and
then performs recognition tasks. Similarly in computer vi-

sion, where the space in which tasks are performed is usu-
ally different from the space of visual measurements. It is
usually so different from the space of visual measurements
that using the first to guide the gathering of information in
the second is an area that is said to be still in its infancy [6].

Unfortunately, the functionality and representation space
of the brain are partly known, only. The existence of the
so called simple, complex, and endstopped cells found by
Hubel and Wiesel (see, e.g., the book of Hubel [9]) in early
vision proves that contours and corners play an important
role in mammalian vision. Graphs,1 where edges and ver-
tices represent contours and corners, respectively, have been
proven to be useful for object recognition [3, 5, 14]. By
adding attributes (which are implicitly available when vi-
sual objects are extracted), the graph can be made invari-
ant under changes of scale, rotation, and translation. A fast
graph matching algorithm using these attributes even rec-
ognized objects that are deformed and incomplete [13] and
was applied successfully in a humanoid that “simulated” se-
lective attention by integrating audio and video cues [12].

A problem that has been tackled party is the extraction of
contours and corners from a two dimensional grid of picture
elements. However, a fully symbolic representation is nec-
essary for recognition by graph matching. Widely applied
techniques for contour detection in image processing are
based upon enhancement of contours followed by thresh-
olding, in order to detect line segments. After that an ex-
traction algorithm should be applied to obtain a symbolic
representation. A well known method based on this tech-
nique is from Canny [2]. The problem in this approach is
setting a threshold, which is called aplagueby Faugeras [6].
To his knowledge thresholding is unavoidable, and should
be tackled with courage. Very recently, Jarvis [10] stated,
that even when sophisticated contour extraction and linkage
algorithms are used,gapsin contours can severely disrupt
the segmentation result. Domain-specific knowledge can
help bridge the gaps, but restricts the scope of applicability.

In this paper, a greedy contour following algorithm will

1A graph in its basic form is defined as a set of vertices and edges,
where the latter are tuples of vertices.



be proposed that avoids manual threshold and length of con-
tour settings for every different image. The idea of follow-
ing and extraction is based on neurons that fire in synchrony
and activate neighboring cells along the contour. Standard
algorithms for contour extraction based on a similar princi-
ple are the border-tracking algorithm [7] and following as
graph searching [1], but need further complicated process-
ing to obtain a graph.

The paper is organized as follows: Section 2 gives a
mathematical framework for contour and corner enhance-
ment based on the complex and endstopped cells found in
early vision. Section 3 contains the (attributed) graph ex-
traction algorithm based on the idea of synchronously firing
neurons along contours. In Section 4, results of the extrac-
tion algorithm are compared with the Canny-CSS [15] and
SUSAN contour and corner detectors [16]. Comparison is
made possible by displaying the extracted symbolic results
of our proposed algorithm as a 2D image. Section 5 gives a
summary and discussion.

2 Contour enhancement

Corner detection and contour enhancement are based on
a Gabor wavelet transform of the image. Complex-valued
Gabor functions at scaleσ and orientationθ are defined as

Ĝσ,θ(x, y) = exp
(

i
π√
2σ

(x cos θ + y sin θ)
)

exp
(
−x2 + y2

2σ2

)
.

(1)

These Gabor functions have been modified so that their in-
tegral vanishes and their one-norm (the integral over the
absolute value) becomes independent ofσ, resulting in
Gσ,θ(x, y). They provide a transform of the imageI(x, y)
via spatial convolution. Afterwards, only the amplitudes of
the complex values are retained for further processing:

Cσ,θ(x, y) = |I ∗Gσ,θ| . (2)

This representation, which models the responses of com-
plex cells, is the basis of all subsequent processing. A
high value at a certain combination ofx, y and θ repre-
sents evidence for a contour element in the direction or-
thogonal toθ. Orientations and scales are sampled linearly:
θi = i·2π

N , i = 0 . . . N −1, σj = σ0 +j∆σ, j = 0 . . . S−1.

2.1 Robust corner detection

Starting from the local energy representation, a biologi-
cally motivated method for corner detection was developed,
which is described here only briefly. For details and moti-
vation of the constants, see [17]. The method for detecting

corners yields position, sharpness, size, color, and contrast.
It is based on a model of cortical endstopped cells [8].

The first step towards an endstopped operator is an ap-
proximation of thefirst (given by theEs-operators which
represent the single endstopped cell responses) andsecond
(given by theEd-operators which represent the double end-
stopped cell responses) derivative of theC-operator in the
direction orthogonal to that of the line segment in question:

Ês
σ,θ(x, y) =Cσ,θ(x + s, y − c)− Cσ,θ(x− s, y + c) (3)

Êd
σ,θ(x, y) =Cσ,θ(x, y)− 0.5Cσ,θ(x + 2s, y − 2c)−

0.5Cσ,θ(x− 2s, y + 2c), (4)

wheres = dσ sin θ andc = dσ cos θ. These two opera-
tors are both inhibited by a tangential (It) and a radial (Ir)
inhibiting operator:

It
σ(x, y) =

2N−1∑
i=0

[
−Cσ,θi%N

(x, y) + Cσ,θi%N
(x1, y1)

]≥0

Ir
σ(x, y) =

2N−1∑
i=0

[
Cσ,θi%N

(x, y)− wrCσ,θ(i+ N
2 )%N

(x, y)
]≥0

where % denotes the modulus function,x1 = x+dσ cos θi,
andy1 = y + dσ sin θi. Half-wave rectification is obtained
by [z]≥0 which is equal to 0 for negativez and equal to
z elsewhere. Constantwr is set to 4 to suppress all false
responses. The corner operators on a single scale in a single
direction then are:

Eσ,θi =
[[
Êσ,θi

]≥0

− g(It
σ + Ir

σ)
]≥0

. (5)

Constantg = 2 is a gain factor and forE one can substitute
Es or Ed. Orientations and single and double endstopped
operators are combined by a maximum operator, while ori-
entations for contours are combined by amplitude:

Eσ =
2N−1
max
i=0

(max(Es
σ,θi

, Ed
σ,θi

)) Cσ =

√√√√N−1∑
i=0

(Cσ,θi)
2
.

(6)

Combining contours by amplitude yields better results than
combining with a maximum or averaging operator. Results
of theCσ- andEσ-operators are illustrated in Figure 1.

2.2 Combining color channels

With a slight and biologically justified extension of the
concept of complex and endstopped cells can be extended
to color channels (red-green and blue-yellow opponent),
which is described in detail in [11].



a) Image b) Cσ-operator c) Eσ-operator

Figure 1. a) Synthetic input image. b)-c) Re-
sults of the Cσ- and Eσ-operators applied at a
single scale ( S = 1) to the input image. The
parameters used are σ = 2.36 and N = 8.

Combining the achromatic and two color opponent (red-
green and blue-yellow) channels by maximum, sum, or am-
plitude all result in a strongest response at the contour. In
this respect any arbitrary (maximum, sum, or amplitude)
combining operator can be chosen. The amplitude is cho-
sen because the strength of the response at the contour cor-
responds to the Euclidean color distance between two ar-
eas with color(ra, ga, ba) and(rb, gb, bb) which formed the
contour. The amplitude for each of the grey value (Cσ), red-
green (Cr,g

σ ), and blue-yellow (Cb,y
σ ) channels yields the final

contour operator at a single scale:

Call
σ =

√
(Cσ)2 +

(
1
2
Cr,g

σ

)2

+
(

1
2
Cb,y

σ

)2

(7)

SinceCe,i
σ = Ci,e

σ , one channel for every opponent pair is
sufficient.The final corner operator is obtained in a similar
way, its equation is identical to (7) ifEσ is substituted for
Cσ.

2.3 Multiple scales

Scale plays an important role in contour detection. In
general it is hardly impossible to select a single optimal
scale, since there exists no scale of threshold which can
be defined a priori to detect contours [4]. Sharp corners
are characterized by strong responses over a wide frequency
range. If only high frequency cells respond, the feature is
likely to be noise or texture rather than a corner. We found
that averaging the responses over a range of frequencies
yields a much more robust corner detection operator:

Eall
avg(x, y) =

1
S

S−1∑
j=0

Eall
σj

(x, y) . (8)

For contour detection and extraction multiple scales are
used as well, but contours are extracted for every scale sep-
arately.

3 Algorithm for attributed graph extraction

In standard contour detection, one global threshold is
set for the whole image to determine whether a pixel be-
longs to a contour. In most cases the threshold needs to
be adjusted for every image, manually. Thresholding can
be avoided, if instead of performing the operations on the
whole image, segments are detected by contour following.
The idea of contour following is, to select corners and lo-
cal contour maxima as starting points, and then to follow
a contour to another corner or local maximum by selecting
the strongest contour responses during the following pro-
cess. Such a mechanism might exist in the brain as well.
A group of cells, which we calllinking cells, receive their
inputs from the complex and endstopped cells. Initially,
only the strongest local responses of the complex and end-
stopped cells will trigger the linking cells at the same spa-
tial positions. These activated neurons will activate their
neighbor with the strongest complex input response; both
will start firing in synchrony. In turn, these newly activated
neurons will activate an inactive neighbor, and a cascade of
synchronously firing neurons along the contours will be the
final result. This firing in synchrony is what we call the
linking of the (neighboring) neurons.

1 Function ExtractAttributedGraph (Eall
ω , Call

σ )
2 C := Set of corners obtained by taking local maxima fromEall

ω

3 M := Set of local contour maxima obtained fromCall
σ

4 forall m ∈ M
5 forall n ∈ BestNeighborSelectedByResponseAnd-

OppositeCoordinate (Call
σ , m)

6 l := ExtractContour (Call
σ , C, M , m, n)

7 Add (L, l)
8 forall c ∈ C
9 forall n ∈ EightNeighbors (c)

10 l := ExtractContour (Call
σ , C, M , c, n)

11 Add (L, l)
12 RemoveDoubleDetectedContours (L)
13 forall l ∈ L
14 forall c ∈ C
15 lc := ConnectCornerToContour (l, c, dσ)
16 Add (Lc, lc)
17 G := CreateAttributedGraph (L ∪ Lc)
18 returnG

Figure 2. Algorithm for attributed graph ex-
traction. Variable ω is σ or avg.

Globally the algorithm (Figure 2) contains 3 stages:

1. detecting corners and local contour maxima by thresh-
olding (lines 2-3); the initial stage of a two dimen-
sional layer of linking cells

2. extracting contours starting at local maxima (lines 4-7)
and corners (lines 8-12); activating and linking neigh-
bors along a contour



3. connecting corners with edge contours and each other
(lines 13-16); also activating and linking neighboring
neurons along a contour

3.1 Detection of corners and local contour max-
ima

Although setting a threshold in most algorithms depends
strongly on the input image, we created a robust corner op-
erator by averaging over multiple scales, hence setting one
threshold at a reasonable value yields good results in almost
all images. Selection of local contour maxima is less critical
than marking corners, therefore a constant thresholdTC at
a single scale that is equal or even lower than thresholdTE ,
which is used for marking corners, gives satisfactory results.
A position(x, y) is markedas a corner if theEall

avg(x, y) re-
sponse is larger than its neighbors, i.e. a local maximum,
and aboveTE . Similarly (x, y) is a local contour maximum
if Cσ(x, y) is larger than its neighbors and aboveTC .

3.2 Contour extraction

The second step in the algorithm is contour extraction.
Local contour maxima and corners should be treated differ-
ently. At a corner several, but at most eight,2 contours can
start and in order to avoid missing any, a contour will be
followed in every direction.3 A contour is always passing
through a local maximum, otherwise a corner should have
been marked there. Hence at a local maximum two opposite
directions will be selected to be followed.

Contour following is based on a greedy algorithm: walk-
ing from one top, local contour maximum, to another and
trying to keep as high as possible. The latter is done by
selecting always that coordinate (within certain constraints)
with the highestCall

σ -response. In the layer of linking cells
this means that the neighbor with strongest input response is
activated and linked by firing synchronously with the other
activated neurons.

The algorithm is given in Figure 3. In this figure variable
p denotes the current point or coordinate andpp previous
point, which is initially a corner or local edge maximum.
At every step there are three possible neighbors ofp that
can be selected. These neighbors form a 135, 180, and 225
degree angle withp andpp (lines 4-6). From these three
neighbors the one with the highestCall

σ -response is selected
(line 7).

2The smallest unit in a digital image is a pixel, on a square grid of pixels
there are (by definition) 8 neighboring pixels. Hence, at most 8 separate
contours can connect a single pixel.

3Following in every direction is the simplest way, but it is not strictly
necessary, since directions can be derived from theEσ,θ-operator.

1 Function ExtractContour (Call
σ , C, M , c, n)

2 p := n; contour :=p; pp := c
3 while (NotAtBorderImage (p) and NoMember (contour,p)

and Call
σ (p) ≥ T and p /∈ C ∪M )

4 p1 := Neighbor ofp to pp at180◦

5 p2 := Neighbor ofp to pp at135◦

6 p3 := Neighbor ofp to pp at225◦

7 pp := p; p := pj , whereCall
σ (pj) = max(Call

σ (pi))
∀i; i, j ∈ {1, 2, 3}

8 Add (contour,p)
9 if (p ∈ C ∪M or Length (contour)≥ Len)

10 return contour

Figure 3. Algorithm for extraction of a single
contour from a contour maximum or corner
to another contour maximum or corner.

3.3 Connecting corners to contours

A third step is necessary because a contour does not nec-
essarily have to pass through a corner. In order to get a fully
symbolic representation, which is needed for symbolic rea-
soning, an additional step is taken that connects corners to
contours if the closest distance between corner and contour
is less thandσ. The valuedσ, is the distance where the
complex cell operator influences the endstopped operator.

4 Evaluation of contour detection methods

In this section we evaluate our method by comparing it
with the Canny edge detector combined with the curvature
scale space (CSS) detector and with the SUSAN edge and
corner detector. Although contour detection and extraction
are not the same, we can compare results by displaying the
extracted data in a two dimensional image by treating it as if
it is detected. As already mentioned in the introduction, ex-
traction of contours is very difficult for both Canny and SU-
SAN, since the contours sometimes contain gaps. For both
Canny-CSS and SUSAN we set the thresholds manually for
every image to get the optimal results for both methods.

Figure 4b-d (3 top-left squares) illustrate that all three
methods are able to detect corners and contours accurately
in the synthetic P-image. Our method found correctly the 7
vertices (6 corners and 1 local contour maximum at the cir-
cle) and 7 contours, see Figure 5. For both synthetic and real
world images we used the default parameters, a single scale
with one smallσ, and did not do any additional postprocess-
ing, to give an objective comparison between the methods.

Evaluation of results is subjective, since there are no sim-
ple criteria that can evaluate which method is better. The
main focus of the real world images will be on properly
detected corners and contours. For simplicity we will as-
sume that additional processing can eliminate falsely de-
tected corners and contours.



a) Input images: left “P”, middle “colors”, and right “door”.

b) Proposed c) Canny-CSS d) SUSAN

Figure 4. a) Top row input images used as benchmarks and bottom row enlarged results of parts of
the input images. b) Results obtained with our method with σ = 2.36 and default parameters ( TE=10,
TC=10, T=1, and Len=15). Corners are represented as green squares and detected contours are
marked in red. Blue squares are corner contour connections. Yellow squares denote a junction (due
to extraction) or the end of a contour. c) Results of the Canny detector combined with the CSS corner
detector. d) Results of the SUSAN edge and corner detector.



4.1 SUSAN

For the SUSAN detector the brightness parameter is very
sensitive and needs to be tuned for every image, while the
distance parameter seems to have hardly any influence for
values larger than 4. This corner detector underperformed
in the real world images of Figure 4a. For example at the
door image in Figure 4d, detected contours are (slightly S-
shaped) shifted segments that are not likely to be closed us-
ing simple post-processing mechanisms. In the same image,
corners are detected at absolutely straight contours of the
rectangular metal part. Also, slightly rounded corners are
not detected, instead corners are marked at the beginning
and end of the arc of the corner.

vertices start end attributes
Vi Vj (xi, yi) (xj , yj) len score
10 8 ( 79, 219) ( 81, 132) 87 293.41
9 1 ( 60, 219) ( 61, 40) 179 292.48
6 6 (103, 61) (103, 61) 168 291.84
9 10 ( 60, 219) ( 79, 219) 19 297.08
0 1 ( 60, 39) ( 61, 40) 1 ***
2 3 ( 80, 40) ( 79, 41) 1 ***
5 4 ( 80, 50) ( 81, 48) 2 294.67
7 8 ( 80, 130) ( 81, 132) 2 294.67
8 4 ( 81, 132) ( 81, 48) 198 292.88
1 3 ( 61, 40) ( 79, 41) 18 296.26
4 3 ( 81, 48) ( 79, 41) 7 309.04

Figure 5. Symbolic representation of the ex-
tracted graph from the P input image. Cor-
ners, junctions, and contour ends are de-
noted by Vk, where k ∈ [0 − 10] in this ex-
ample. Every Vk has an (xk, yk) coordinate
to indicate its position in a 2D image. The
length len of contour Vi-Vj is the distance in
pixels between Vi and Vj . The score gives
an indication of the “quality” of the contour,
*** denotes that the contour contains coordi-
nates (xi, yi) and (xj , yj), only. Corners are
represented in boldface, the “contour end”
of the circle is emphasized, and the others
represent the connections from a corner to
an extracted chain. Note that the extracted
chains, which are coded as Freeman indices,
are omitted in this figure, but they are dis-
played (in red) in Figure 4b. In that figure
corners, contour ends, and others are rep-
resented in green, yellow, and blue, respec-
tively. The used parameters to obtain this
graph are are TE = 10, TC = 10, T = 1, σ = 2.36,
and Len=15.

4.2 Canny-curvature scale space

The CSS corner detector has a sensitive minimum length
parameter and needs as input detected contours, hence re-
sults depend strongly on detected contours. The Canny
edge detector has been proven to be a useful detector, cer-
tainly when all detailed edges in an image need to be de-
tected. The detector gives good results in the image with
the different colored rectangles (Figure 4c). Known prob-
lems in the detector are doubly detected lines and gaps be-
tween segments (even at corners in synthetic images), but it
outperforms the SUSAN edge detector. The multiscale ap-
proach of the CSS corner detector shows good performance
for the colored rectangles, where corners are detected prop-
erly. These results are obtained by setting the high threshold
adjustmentThigh to 20. In the door image of Figure 4c, the
CSS corner detector shows satisfactory results with excep-
tion of the contours between the blue door and white wall,
where corners are not detected.

5 Summary and discussion

In this paper we described an approach to corner and
contour extraction and presented an algorithm that consists
of three stages: enhancement, detection, and extraction.

Enhancementof contours is obtained by convolving
the input image with Gabor filters at multiple orientations
which represents a model for the well known simple and
complex cells, that are found in monkey primary visual cor-
tex. The model for corner enhancement is based on the re-
sponses of endstopped cells.Detectionof corners is accom-
plished by taking the local maxima in the corner enhanced
image. Likewise the local maxima in the contour enhanced
image are marked.Extractionof enhanced contours from
an image is based upon an idea and possible existence of,
which we termed, linking neurons. These neurons which
receive their input from the complex and endstopped cells
are activating each other along enhanced edges and start fir-
ing in synchrony, indicating that they formed a linked chain.

The advantages of the proposed method are:

• A fully symbolic representationis obtained that is more
suitable for artificial intelligence than a discrete 2D im-
age with detected corners and contours.

• Results are similar or bettercompared to the SUSAN
and Canny-CSS detection methods.

• Thresholds are the same for different images. Due to
the following mechanism global threshold settings are
avoided. Thresholds are set to avoid contour extrac-
tion in areas where responses are caused by noise. In
the other two methods threshold settings strongly in-
fluence the results. To obtain satisfactory results with
these two methods, threshold tuning is needed, which
is a tedious and time consuming job.



• Every contour is closeddue to the following mecha-
nism of the extraction algorithm. Hence, no further
(complicated) postprocessing is necessary to obtain
symbolic contours.

• The extraction algorithm is fast, since at most all pixels
in the image, but in most images only a fraction of all
pixels will be visited.

Although, the extraction algorithm is fast, the prepro-
cessing for contour and corner enhancement is computa-
tionally expensive, due to its many convolutions. For con-
tour and cornerdetectionin synthetic images, where pa-
rameter tuning is not necessary, the SUSAN detector is the
best choice, due to its speed. In case high sensitivity and
accuracy is required in slightly more complicated images
the Canny-CSS method is the best choice, since it is faster
than our method. In cases when it comes to natural images,
reasoning, or recognition, the proposed method is the best
choice because of the resulting symbolic representation and
its robustness to parameter settings.

5.1 Future work

Combining multiple scales works well for corner detec-
tion, but combining scales for enhanced contours by a max-,
avg-, or ampl-operator is not the best solution. Probably
the best method is to extract relevant contours from dif-
ferent scales, or first extract contours from all scales sep-
arately, and use further processing to decide which are true
or falsely detected contours.

In the current approach there are shortcomings compared
to what humans perceive as contours, this is because only
a feedforward mechanism for solely form features is used.
Results might be improved by using other visual cues, like
color, texture, and motion. Also a feedback mechanism
could improve and facilitate contour extraction. Another
very important factor for contour extraction that is not used,
is knowledge, e.g., often true contours are ignored because
they are not relevant in the current scene. Future research
needs to incorporate these cues to improve the results.

5.2 Concluding remarks

Even while there are many ways to improve the results,
the symbolic extraction algorithm is sufficient to let a hu-
manoid robot perform vision tasks, successfully [12]. A
successful example is selective attention in a (restricted)
natural environment by symbolic object recognition, which
is a step towards true intelligent artificial vision systems.
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