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A method for synergistic integration of multimodal sensor data is proposed in this paper.
This method is based on two aspects of the integration process: (1) achieving synergis-17

tic integration of two or more sensory modalities, and (2) fusing the various information
streams at particular moments during processing. Inspired by psychophysical experiments,19

we propose a self-supervised learning method for achieving synergy with combined repre-
sentations. Evidence from temporal registration and binding experiments indicates that dif-21

ferent cues are processed individually at specific time intervals. Therefore, an event-based
temporal co-occurrence principle is proposed for the integration process. This integration23

method was applied to a mobile robot exploring unfamiliar environments. Simulations
showed that integration enhanced route recognition with many perceptual similarities;25

moreover, they indicate that a perceptual hierarchy of knowledge about instant movement
contributes significantly to short-term navigation, but that visual perceptions have bigger27

impact over longer intervals.

Keywords: Multimodal integration; robotics; navigation; proprioception.29

1. Introduction

The world around us supplies huge amounts of information continuously from which31

living organisms extract the knowledge and awareness we need for survival. A fun-

damental cognitive feature that makes this possible is the brain’s ability to integrate33

all the various sensory inputs into a coherent representation of its environment. By
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analogy, robots are designed to continuously record large amounts of data using1

various sensors, but their effectiveness suffers from a major design flaw. They lack

reference of how the information from the different sensory streams can be integrated3

into consistent representations.

Multimodal integration for navigation has been studied from many differ-5

ent perspectives. For instance, some studies have taken a purely computational

approach for their multimodal systems [19, 30]. Other studies took inspiration from7

observable animal or human behaviors [3, 39, 24, 28, 41]. A third approach mod-

els neural mechanisms in areas of the brain associated with multimodal integration9

[1, 2, 3, 11, 30, 31, 35, 38].

Our novel solution for this multimodal sensory integration problem for robot11

navigation task was inspired by psychophysical experiments connecting visual and

idiothetic information. While navigating around an area, idiothetic information is13

internally generated as the body moves through space [9, 25]. This information can

be derived from proprioceptive sensory streams about own movements and motor15

efferent signals. Vestibular information, which follows the change in linear or rota-

tional movement velocity, is another source of idiothetic information. We integrated17

view-based and velocity sensory information in our robotic implementations.

In general, two types of problems have to be solved for multimodal integration:19

how and when should sensory cues be fused and how to obtain a synergistic mul-

timodal integration. Synergistic integration should produce more information from21

the integrated representation than is evident from information generated in the sep-

arate modalities.23

The first set of problems concerns the representational and technical aspects of

the actual fusion process. The method we proposed represents continuous sensory25

information dynamically, by encoding the temporal history of sensor readings. This

encoding is a simple model of short-term memory. The method assumes that different27

percepts unify in the brain, as suggested from temporal registration and binding

experiments showing that the information from one type of sensors is processed29

separately on a certain time interval [10, 43]. To incorporate these observations into

a computational principle, we separate the processing of individual data streams31

using a self-organizing principle until substantially different sensory information (or

a distinctive event) is perceived. Integration of the two sensory modalities takes place33

only when the timing of a distinctive event encountered by both sensory streams

coincides. Since that distinctive event may occur at any moment in time, event-35

based integration must divide the sensory streams into non-equal time intervals.

Event-based integration is a distinctive feature of the proposed integration method.37

Synergy in a multimodal integration approach is difficult to quantitatively eval-

uate. Conflict estimation is a systematic approach that provides guidelines for39

integration [39, 26, 40]. Conflict studies [39, 26, 40] investigate causes of spatial dis-

crepancies between the shifted spatial layout obtained through vision and the correct41

spatial layout provided by other sensory modalities, such as proprioception. This

discrepancy (conflict) estimation approach has been used to judge spatial direction43
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perception as measured through target-pointing responses. It can be adapted to1

evaluate how dynamic visual and non-visual information is integrated over time to

determine how distance traveled is perceived while moving.3

One approach to integration is to add priority values (weights) to both (visual

and proprioceptive) information streams. Priorities are commonly assigned to visual5

information [39, 26, 40], but the selection criteria are rarely disclosed and there are

differing opinions on how modality weights should be determined. One suggestion7

is to base weights according to the precision of the information in each modality.

How the priority values are chosen, however, has not been shown by experimental-9

ists. There are different ideas about how to determine the weights given to each

modality. According to one idea, the weights are determined by the precision of11

the information in each modality [26, 42]; another assigns weights according to the

amount of attention directed to each modality [39, 20, 21, 40]. The thinking behind13

these ideas stems from the concepts underlying statistical optimization models which

assume that sensory information from multiple sources should be weighted accord-15

ing to the estimated reliability of each cue. Unlike the discussed issues surrounding

weight assignments for vision and proprioception cues in conflict studies [39, 26, 40],17

we coupled the dynamic view-like and self-motion information using a self-teaching

principle, conforming with the application domain of concurrent mapping and nav-19

igation [4, 11, 45].

To illustrate our integration approach, two data streams were recorded as an21

autonomous robot explored an unfamiliar environment. They provided absolute and

relative information about the robot’s movement with respect to the relation of robot23

movement to the surrounding objects.

In Sec. 2, we present our integration hypothesis followed by an explanation of25

the temporal synchronization principle as the framework for the application domain

in Sec. 3. The actual integration and the experimental testing is presented in Sec. 427

and the results are discussed in Sec. 5.

2. Hypothesis29

Multisensory integration requires an anatomical convergence of unisensory inputs

onto a single neuron or ensembles of interconnected neurons [33], and some degree31

of temporal alignment of the unisensory inputs [36]. Areas associated with multisen-

sory integration include the superior temporal polysensory area, lateral and ventral33

intraparietal areas. A detailed explication of the brain mechanisms of multisensory

processing has been conducted in the carnivore superior colliculus [36] and substan-35

tial progress has also been made at the neocortical level, most notably in monkeys

[5, 7, 13, 14, 16, 17] and recently in humans [8, 18].37

Despite these advances, questions remain about the anatomical substrates of

multisensory convergence in primates. Questions also remain about the temporal39

parameters of the converging sensory inputs. Temporal windows exist for the inte-

gration of neural responses to stimulus inputs from different modalities and for41
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perception of fused multisensory inputs (i.e., relating to the same object [36]). How-1

ever, only a few studies of the timing of sensory inputs to the neocortex have been

reported, focusing mostly on the response latencies in the visual system [26, 32, 30].3

Therefore, detailed modeling at this stage remains difficult.

Temporal registration experiments suggest that the brain does not bind infor-5

mation entities from different modalities in real time; instead, it binds the results

of its own processing systems on certain time intervals. Our hypothesis provides a7

constructive basis for an integration strategy. We assumed that the brain operates

as a self-organizing information system that processes the sensory flow to asymmet-9

ric activation patterns at the separate sensory modality level. Since each modality

brings different levels of generalization and information about the external world,11

information from any one modality can also serve as a “teacher” for other modalities.

Experimental support for this line of thinking comes from studies of the rat13

head-direction system. Head-direction cells are located in many parts of the rat

brain, including the pre- and post-subiculums, the anterodorsal thalamus, and the15

mammillary nuclei [27, 30, 34, 35]. Head-direction tuning may arise when angular

head-velocity signals are fused. These signals originate from vestibular neurons that17

are tonically active when the head is still, but the firing rate increases when turning

is in one direction (i.e., center to left) and decreases when it turns the other way19

(i.e., center to right).

Experimental evidence also implicates a fast-acting contribution of visual input21

in the organization of head-direction circuits [6, 8]. That is, the preferred head direc-

tion of these cells can be controlled by a visually salient landmark. When the head23

is rotated, the preferred direction of these cells is generally aligned with the angular

displacement of the landmark [37]. These, and other similar experiments [30, 46],25

suggest a critical role of visual information in the calibration and development of

head-direction tuning. Calibration of head-direction cells by visual landmarks has27

been shown in [44]. The possible role of visual information as a teaching signal that

supervises the development of an integrator network has also been studied [15]. They29

concluded that selective amplification teaches the vestibular input how to predict

and replace missing input.31

3. Temporal Synchronization in Spatial Navigation Setup

In robots, various sensors asynchronously provide information with different mean-33

ings and sampling characteristics. Established ways of combining the information

from different information sources are missing. To combine multimodal information35

sources, the following principles need to be considered:

• Data that are perceived (recorded) at the same time interval relate to the same37

situation (event).

• Processing of different data streams is done in separate modalities, followed by39

synchronization using a temporal principle.

• The temporal synchronization is event-based (not fixed-time interval based).41
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With these guiding principles, the following computational steps will be taken:1

firstly, event-based time intervals will be defined. Secondly, information recorded

within these intervals will be represented so that fusion is possible. Thirdly, the3

actual integration takes place.

The mapping task is solved by using the data recorded by the robot during its5

exploration of an unknown environment. Figure 1 shows the experimental environ-

ment. Several exploration routes are plotted on the picture. Black points on the floor7

indicate novel regions that have been clustered in different classes (events) according

to the sensory information as detailed below.9

Imagine a group of sensors imitating a consummate description of the environ-

ment that can be created by biological systems is difficult. A plausible alternative11

might be to focus on a couple of sensors that provide complementary informa-

tion about the environment. The relevance of an egocentric perspective for an13

autonomous robot in spatial modeling of previously unknown environments was

elaborated in [4, 45]. That egocentric model combines two types of information:15

absolute and relative with respect to the relation of robot movement to the sur-

rounding objects. The absolute perspective records sensory information independent17

of robot movements using laser range finders. Relative information reflects the robot

perceptions of its motion. For instance, if the flooring is different, the angular veloc-19

ity readings may differ when the robot takes the very same trajectory. The relative

sensory stream is recorded by a build-in gyroscope.21

The “views” that the robot perceives with a laser range finder source the absolute

information. Visual information has an absolute character. Since this method takes23

Fig. 1. Experimental environment in the picture several recorded trajectories that reach percep-
tually similar places have been added.
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ideas from the combination of visual and proprioceptive cues by living organisms,1

the recordings from the laser range finder are referred to as view-like information.

Vision is not used because the application domain that the current study is target-3

ing is underwater navigation, an area where visual information is scarcely available.

Apparently, the range sensor information is simpler to process and sufficient to repre-5

sent the idea of fusing absolute with relative egocentric information. The individual

“view” of the robot is formed by recording 360 samples per 180 degrees. A snapshot7

of a polar representation of such a record is shown in Fig. 2.

A sequence of such snapshots, recorded during robot exploration, form a dynamic9

trajectory:

xi(ti) =
si(ti) +

∑hi−1
τ=1 fi(τ)xi(ti − τ)

hi

(3.1)
11

where si(ti) is the readout of sensor (element) i, ti > 0 is an integer time stamp

for sensor (element) i, xi(ti) specifies the current sensory representation, that keeps13

a history of hi = min(Hi, ti) elements from the exponentially decaying forgetting

curve f . A priori known constant Hi denotes the maximum history length. Items in15

the dynamic trajectory decay in time, corresponding to the decay theory of forgetting

in short term memory. In our experiments a decay kernel [Eq. (3.2)] was used. This is17

because, of all the previously seen patterns, the last is the most vivid and influences
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Fig. 2. Sample recording from the laser range finder. The range finder “view” is a composite
recording of 360 samples per 180 degrees that forms a snapshot. Snapshots are recorded at frequency
of 4.7 Hz. The distances are presented in millimeters.
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most strongly the current perception, as the influence of the older patterns fade1

away.

fi(t) = exp(−αit) (3.2)3

where constant αi ∈ [0, 1] determines the decay profile fi for sensor (element) i. Each

unit in this short-term memory model samples a symbol in a specific time interval.5

Such a dynamic sequence encodes the first sensory stream, used for the integration

(i.e., the laser range finder stream). It represents the absolute perspective of the7

robot about its own motion (i.e., robot motion with respect to the surrounding

objects).9

The velocity measured by the gyroscope is used to represent the relative cue that

resembles proprioceptive information in animals. It reflects the robot’s perception of11

its own motion. Most informative are the angular velocity recordings from the robot,

since they reflect directional changes in its trajectory. The temporal synchronization13

of these two information streams is performed as follows: a neural gas algorithm

[23] is applied to the view-based sensory stream to determine the intervals when a15

novel “event” occurs. Learning dynamics is guided by a combination of competitive

Hebbian learning and vector quantization algorithm. A set of n reference vectors ~wi,17

i ∈ {1, 2, . . . , n} have strengths, depending on their neighborhood ranking. When an

input vector ~x = {x1(t1), x2(t2), . . . , xn(tn)} is presented, a neighborhood ranking19

of the reference vectors takes place (~wi0, ~wi1, . . . , ~win) with ~wi0 being the closest to

~x, ~wi1 being the second closest to ~x, and ~wik, k ∈ {1, 2, . . . , n − 1} is the reference21

vector for which there are k vectors ~wj with ‖~x − ~wj‖ < ‖~x − ~wik‖. The rank index

associated with ~wi is denoted by ki(~x, ~w). Using a Hebbian-like rule, the adaptation23

step for adjusting is given by:

∆~wi = ε(t)hλ(ki(~x, ~w))(~x − ~wi) (3.3)25

where the step size ε ∈ [0, 1] is the learning rate, and hλ(ki(~x, ~w)) ∈ [0, 1] accounts

for the topological arrangement of the ~wi in the input space.27

hλ = exp

(

−
k

λ

)

(3.4)

i.e., the neighborhood relies on the rank in the ordered sequence of distances, and29

the weights are learned according to (3.3), while decreasing λ. For the simulation,

the ε(t) and λ(t) are calculated as follows:31

g(t) = g0

(

N

g0

)
t

T

(3.5)

where g ∈ {λ, ε}, N = 0.01, ε0 = 0.5, λ0 = n/2, where n is the number of neurons,33

and T is the number of the training patterns. The simulations were made with

n = 20 neurons, sufficient to encode the different patterns from the experimental35

environment. In order to extend the method to any environment, an incremental

version of the algorithm known as a growing neural gas algorithm [12] can be used.37
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Fig. 3. Temporal synchronization principle. (a) Experimental trajectory is segmented by the clus-
tering algorithm. Points on the curve denote the events that are determined as new. (b) The
corresponding angular velocity curve, segmented according to the time the robot has spent in the
same event cluster.
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This algorithm starts from two neurons and increases the neurons number, until all1

the different patterns are encoded to separate classes. A Euclidean distance measure

decides how many classes to form.3

Synchronously, an event-based segmentation is performed on the second (veloc-

ity) sensory stream. Note that the dynamic events are formed on-line with minimal5

processing of incoming data.

Figure 3 illustrates the temporal synchronization of the two information streams.7

Figure 3a represents a trajectory that the robot took during its exploration of an

environment. Any qualitatively different “view” that the robot observes is defined9

as new segment in the environment and it is denoted by * in Fig. 3. The duration of

the trajectory in these segments determines the division of the other sensory data11

stream as illustrated in Fig. 3b.

The results of a temporal synchronization by a recorded short experimental tra-13

jectory are shown in Fig. 4. Figure 4a shows view-based segmentation of a two-

dimensional space, obtained during free exploration of the robot. The points where a15

qualitatively new view occurs, as determined by the described algorithm, are shown.

The robot trajectory is not shown on the plot. Corresponding velocity trajectory is17

reconstructed by angular and linear velocity recordings (Fig. 4b). Figure 4c shows

the velocity curve after temporal synchronization with the view clusters.19

The synchronization process is as follows: after clusters of the view based infor-

mation stream are found, the velocity data are segmented on the same time inter-21

vals, considering the different sampling frequencies of both sensory streams. Based

on this segmentation, a clustering to unified trajectory elements (or motion prim-23

itives) of the velocity curve is made, using the algorithm described in Eqs. (3.3)–

(3.5). The input vectors by this clustering are the segments from the velocity curve.25

Figures 4d–f depict the resulting motion primitives corresponding to the shown seg-

ments of the velocity curve.27

4. Integration Results

In the learning phase, the sequences of views were clustered by the self-organizing29

algorithm, forming dynamic events throughout the robot’s continuous exploration

of the unknown environment. Those moments when a qualitatively new view is31

recorded by the gyroscope become the temporal dividers for the proprioceptive

dynamic sensory stream. Similar steps in the testing phase were performed with the33

sensory data gathered from further exploration. Specific trajectories were recorded

for the testing process where classification, not clustering, is done based on the35

clustering categories already attained from the exploration data. The database of

distinctive events is built gradually during on-line implementation. Figure 5 summa-37

rizes the computational flow by off-line event based integration. A supervised neural

network is used for teaching between the modalities, that are denoted as multimodal39

integration blocks in the figure.
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Fig. 4. The result of temporal synchronization over a short trajectory recorded by the robot.
(a) View-based segmentation of a two dimensional space. (b) The corresponding velocity trajectory
(c) Temporally synchronized velocity curve. (d–f) Classes, corresponding to the segments of the
velocity curve.
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Fig. 5. Information flow of event-based integration, consisting of exploration and testing phases
that reflect the experimental process.

Several groups of experiments were performed according to this computational1

scheme. In the first group of experiments, perceptually similar places with respect to

the view-based sensory stream were training inputs and motion primitives perceived3

by the auto-motion (velocity) stream functioned as teacher. Figure 6 depicts the

dynamic trajectories, obtained from the view-based information stream.5

All trajectories reach one of two corners in the experimental environment, which

look the same if “seen” by the laser range sensors (Fig. 6a). Figures 6b–f depict the7

encoding by dynamic trajectory formation. The plots on the left show the dynamic

trajectory and the plots on the right show the classes of distinctive views encoun-9

tered while making these trajectories. Considering only the temporal history of

experienced views, the dynamic trajectory method can distinguish most of the tra-11

jectories, although two, shown in Figs. 6e–f, appear similar despite the obviously

different view history. Using the self-motion primitives (that can be obtained from13

the velocity sensory cue) as a teaching signal, all dynamic trajectories are disam-

biguated. Experimental analysis shows that using self motion as a teaching signal15

helps perceptual aliasing, but sometimes distinguishes trajectories that are very

similar.17

The view-based signal was used as teacher and the self motion signal as an input

in the second group of experiments. New motion trajectories, specifically selected for19

their similarity with respect to classification to motion primitives, were trained. The

obtained results coincided better with decisions that a human observer would make.21

The later experiments were made with trajectories that were not controlled with

respect to similarities. Correspondingly, short, long, and arbitrary length sequences23

were recorded. The environment contains 6 big objects that divide it on routes

that can be distinguished by a human observer. All possible trajectories between25
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Fig. 6. Environmental similarities and the corresponding dynamic trajectories. (a) The left plot
shows the laser range finder recording of a corner in the experimental room. The plot on the right
shows the network output. (b–f) 5 dynamic trajectories that finish at that corner (i.e., have the
same final sensory reading). Alternative routes to the corner are shown as clusters in the right plots.
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Fig. 7. Recognition rate with view based information used as a teacher (black bars) and self-motion
information used as a teacher (white bars). The experiments are made as follows: 1-perceptually
similar trajectories with respect to view based sensors; 2-perceptually similar trajectories as per-
ceived by self-motion sensors; 3-short trajectories; 4-long trajectories; 5–7 non selected trajectories.

the same objects or object traversed in the same order belong to the same route.1

For the learning phase the robot has passed all the possible routes between the

environmental objects at least once. The test sequences were recorded by a robot3

traversing trajectories within the possible routes. Every trajectory record consists

of view sequence of data and velocity sequences for reconstructing the self-motion5

trajectories. The recognition of a trajectory was evaluated manually.

Experimental results where self-motion signals were used to teach are shown in7

Fig. 7 as white bars. Results with the view signal as teacher are plotted with black

bars in the same figure. The recognition rate was evaluated as the percentage of the9

trajectories from the given group that was classified in the right class.

Classification over the same training sets was also made with the weighting11

integration method, implemented after [39]. The bigger weights are assigned to view

information; however, better results with current method, as shown in Fig. 8, are13

not achieved even after thorough experimental testing of both algorithms. They are

validated for this particular case only.15

5. Discussion

The proposed multimodal integration method provides an alternative way to com-17

bine information from different sensory modalities. It addresses two groups of

problems — firstly, how and when the combination between the two sensory streams19
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Fig. 8. Recognition rate by weighted integration (black bars) and integration with a teacher (white
bars). The experiments are made as follows: 1-perceptually similar trajectories with respect to
view based sensors; 2-perceptually similar trajectories as perceived by self-motion sensors; 3-short
trajectories; 4-long trajectories; 5–7 non selected trajectories.

occurs, and secondly, how synergy in the integration process is obtained. The estab-1

lished synchronization framework is an efficient way to bring the multimodal infor-

mation together at event-based temporal intervals. This approach prevents error3

accumulation since the synchronization takes place over relatively short temporal

intervals (i.e., the accumulative errors are reset after every interval). Another advan-5

tage of this model is that both the consequent perceptions as well as the transitions

between them are dynamically encoded.7

Information from both sensory streams is used directly, without feature extrac-

tion. The basis for this synergistic integration is tested for data sets recorded on9

the following principles: perceptual similarity of the trajectories with respect to

view-based information; perceptual similarity of the trajectories as perceived by11

self-motion sensors; different length of the trajectories. The experimental results

show that in most cases using a view-based sensory stream as a teacher is advan-13

tageous. Trajectories, recorded on a visual similarity principle can be successfully

disambiguated if the self-motion (velocity) signal is used as a teacher, but this dis-15

ambiguation is crude, occasionally not differentiating between similar trajectories.

Disambiguation ensured by the view-based teacher never reaches 100 percent recog-17

nition of experienced trajectories, but gives results that most closely mimic human

observer decision behavior.19
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This integration method is compared to a weighted integration method that1

uses visual and proprioceptive sensory cues (see [39]). This is possible since two sen-

sory streams are used: view-based information resembles animal vision, and velocity3

information is equivalent to proprioception by living organisms in this experimen-

tal setting. In most of the testing set groups, the integration process gives better5

results by the method, as proposed in this paper, except when there are similarities

in self-motion sensory stream or when the data sets are absent.7

From the third and forth groups’ test sets we can conclude that the proposed

integration method explains perceptual hierarchy in the following way: knowledge9

about instant movement contributes significantly to short-term navigation, while

visual perceptions have bigger impacts over longer terms.11

While temporal synchronization can be implemented as an on-line learning pro-

cess, the multimodal integration requires off-line processing. This is one major draw-13

back of the model.

We base our multimodal integration on studies that rely on visual and pro-15

prioceptive data streams. Such streams have different dimensionality. However, the

experiments show integration of two unidimensional data streams. Using visual infor-17

mation is a straightforward extension to the developed integration method, since the

two integration streams are processed separately. The used algorithm can work with19

two-dimensional data as well. The speed of processing, however, will be a problem

for a real robotic implementation. To deal with that, we have the following idea.21

The range sensor readings give a sparse depth representation. The same could be

obtained by using unimodal vision features. For instance the most salient features23

of corners/crossing or edges could be used to construct a depth map [22].

Further, we plan to model the integration process on the level of cortical struc-25

tures, including temporal synchronization with feedback, since recent work suggests

that feedforward and feedback projections contribute to the convergence of the inte-27

grated representation. We will use visual and proprioceptive cues.
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