
Graph Extraction from Color Images

T. Lourens, K. Nakadai, H.G. Okuno, and H. Kitano

Japan Science and Technology Corporation
ERATO, Kitano Symbiotic Systems Project

M. 31 Suite 6A, 6-31-15 Jingumae, Shibuya-ku, Tokyo 150-0001, Japan
{tino, nakadai, okuno, kitano}@symbio.jst.go.jp

Abstract. An approach to symbolic contour extraction will be de-
scribed that consists of three stages: enhancement, detection, and ex-
traction of edges and corners. Edges and corners are enhanced by models
of monkey cortical complex and end-stopped cells. Detection of corners
and local edge maxima is performed by selection of local maxima in both
edge and corner enhanced images. These maxima form the anchor points
of a greedy contour following algorithm that extracts the edges. This al-
gorithm is based on an idea of spatially linking neurons along the edge
that will fire in synchrony to indicate an extracted edge. The extracted
edges and detected corners represent the symbolic representation of the
image. The advantage of the proposed model over other models is that
the same low constant thresholds for corner and local edge maxima de-
tection are used for different images. Closed contours are guaranteed by
the contour following algorithm to yield a fully symbolic representation
which is more suitable for reasoning and recognition. In this respect
our methodology is unique, and clearly different from the standard edge
detection methods.

1 Introduction

A human recognizes objects with great ease, although a distribution of light
intensities can change considerably, e.g. when an object is scaled or placed
in a different environment. The brain transforms visual data into another
representation where these changes are compensated for, and then performs
recognition tasks. Similarly in computer vision, where the space in which tasks
are performed is usually different from the space of visual measurements. It is
usually so different from the space of visual measurements that using the first
to guide the gathering of information in the second is an area that is said to
be still in its infancy (Faugeras [5]).

Unfortunately, the functionality and representation space of the brain are
only known partly. The existence of the so called simple, complex, and end-
stopped cells found by Hubel and Wiesel [8] in early vision proves that edges
and corners play an important role in mammalian vision. Graphs,1 where edge

1A graph in its basic form is defined as a set of vertices and edges, where the latter are
tuples of vertices.



contours and corners represent edge contours and corners, respectively, have
been proven to be useful for object recognition [3, 4, 9].

A problem that has been tackled party is the extraction of edges and corners
from a two dimensional grid of picture elements. However, a fully symbolic
representation is necessary for recognition by graph matching. Widely applied
techniques for edge detection in image processing are based upon enhancement
of edges followed by thresholding, in order to detect line segments. After that an
extraction algorithm should be applied to obtain a symbolic representation. A
well known method based on this technique is from Canny [2], but the problem
in this approach is setting a different threshold for every image.

In this paper, a greedy edge contour following algorithm will be proposed
that avoids manual threshold and length of contour settings for every different
image. The idea of following and extraction is based on neurons that fire in
synchrony and activate neighboring cells along the contour. Standard algo-
rithms for edge extraction based on a similar principle are the border-tracking
algorithm [6] and following as graph searching [1], but need further complicated
processing to obtain a graph.

The paper is organized as follows: Section 2 describes the enhancement of
edges and corners based on models of complex and endstopped cells found in
early vision. Section 3 contains the (attributed) graph extraction algorithm
based on the idea of synchronously firing neurons along edge contours. In
Section 4 results of the extraction algorithm are compared with the Canny [2]-
CSS [10] and SUSAN edge and corner detectors [11]. Comparison is made
possible by displaying the extracted symbolic results of our proposed algorithm
as a two-dimensional image. The last section gives summary and discussion.

2 Edge enhancement

Corner detection and edge following are based on a Gabor wavelet transform
of the image. These Gabor functions have been modified so that their integral
vanishes and their one-norm (the integral over the absolute value) becomes
scale independent. They provide a transform of the image via spatial convolu-
tion. Afterwards, only the amplitudes of the complex values, that represent the
complex cell responses at a single scale and orientation, are retained for further
processing. Starting from this representation, we have developed a biologically
motivated method for corner detection, for details and motivation, see [12].
Our method for detecting corners yields position, sharpness, size, color, and
contrast. It is based on a model of cortical end-stopped cells [7].

With a slight and biologically justified extension of the concept of complex
and endstopped cells can be extended to color (red-green and blue-yellow op-
ponent) channels. The amplitude for each of the grey value, red-green, and
blue-yellow channels yields the edge operator

Call
σ =

√
C2

σ +
(

1
2
Cr,g

σ

)2

+
(

1
2
Cb,y

σ

)2

(1)

at a single scale. The corner operator is similar to (1), with the exception that
for C one should substitute E .



Scale plays an important role in edge detection. In general it is hardly
impossible to select a single optimal scale. We found that averaging the re-
sponses over a range of frequencies yields a much more robust corner detection
operator:

Eall
avg(x, y) =

1
S

S−1∑
j=0

Eall
σj

(x, y). (2)

3 Algorithm for attributed graph extraction

In standard edge detection, one global threshold is set for the whole image to
determine whether a pixel belongs to an edge. In most cases the threshold
needs to be adjusted for every image, manually. Thresholding can be avoided,
if instead of performing the operations on the whole image, segments are de-
tected by contour following. The idea of contour following is, to select corners
and local edge maxima as starting points, and then to follow a contour to
another corner or local maximum by selecting the strongest edge responses
during the following process. Such a mechanism might exist in the brain as
well. A group of cells, which we call linking cells, receive their inputs from
the complex and endstopped cells. Initially, only the strongest local responses
of the complex and endstopped cells will trigger the linking cells at the same
spatial positions. These activated neurons will activate their neighbor with the
strongest complex input response; both will start firing in synchrony. In turn,
these newly activated neurons will activate an inactive neighbor, and a cascade
of synchronously firing neurons along the edge contours will be the final result.
This firing in synchrony is what we will call the linking of the (neighboring)
neurons. Globally the algorithm (Figure 1) contains 3 stages:

1. detecting corners and local edge maxima by thresholding (lines 2-3); the
initial stage of a two dimensional layer of linking cells

2. extracting contours starting at local maxima (lines 4-7) and corners (lines
8-12); activating and linking neighbors along an edge contour

3. connecting corners with edge contours and each other (lines 13-16); also
activating and linking neighboring neurons along an edge contour

1 Function ExtractAttributedGraph (Eall
ω , Call

σ )
2 C := Set of corners obtained by taking local maxima fromEall

ω

3 M := Set of local edge maxima obtained fromCall
σ

4 forall m ∈ M
5 forall n ∈ BestNeighborSelectedByResponseAndOppositeCoordinate (Call

σ , m)
6 l := ExtractContour (Call

σ , C, M , m, n)
7 Add (L, l)
8 forall c ∈ C
9 forall n ∈ EightNeighbors (c)

10 l := ExtractContour (Call
σ , C, M , c, n)

11 Add (L, l)
12 RemoveDoubleDetectedContours (L)
13 forall l ∈ L
14 forall c ∈ C
15 lc := ConnectCornerToContour (l, c, dσ)
16 Add (Lc, lc)
17 G := CreateAttributedGraph (L ∪ Lc)
18 returnG

Figure 1: Algorithm for attributed graph extraction. Variable ω is σ or avg.



3.1 Detection of corners and local maxima

Although setting a threshold in most algorithms depends strongly on the input
image, we created a robust corner operator by averaging over multiple scales,
hence setting one threshold at a reasonable value yields good results in almost
all images. Selection of local edge maxima is a less critical process than marking
corners, therefore a constant threshold at a single scale that is equal or even
lower than that for marking corners gives satisfactory results. A position (x, y)
is marked as a corner if the Eall

avg(x, y) response is larger than its neighbors, i.e.
a local maximum, and above TE . Similarly (x, y) is a local edge maximum if
Cσ(x, y) is larger than its neighbors and above TC .

3.2 Edge contour extraction

The second step in the algorithm is contour extraction. Local edge maxima and
corners should be treated differently. At a corner several, but at most eight,2
contours can start and in order to avoid missing any, a contour will be followed
in every direction.A contour is always passing through a local maximum, oth-
erwise a corner should have been marked there. Hence at a local maximum
two opposite directions will be selected to be followed.

Contour following is based on a greedy algorithm: walking from one top,
local edge maximum, to another and trying to keep as high as possible. The
latter is done by selecting always that coordinate (within certain constraints)
with the highest Call

σ -response. In the layer of linking cells this means that
the neighbor with strongest input response is activated and linked by firing
synchronously with the other activated neurons.

1 Function ExtractContour (Call
σ , C, M , c, n)

2 p := n; contour :=p; pp := c
3 repeat
4 if (NotAtBorderImage(p) and NoMember(contour,p) and Call

σ (p) ≥ T and p /∈ C ∪M )
5 p1 := Neighbor ofp to pp at180◦

6 p2 := Neighbor ofp to pp at135◦

7 p3 := Neighbor ofp to pp at225◦

8 pp := p; p := pj , whereCall
σ (pj) = max(Call

σ (pi)) ∀i; i, j ∈ {1, 2, 3}
9 Add (contour,p)

10 else stop
11 until stop
12 if (p ∈ C ∪M or Length (contour)≥ Len)
13 return contour

Figure 2: Algorithm for extraction of a single contour from local edge maximum
or corner to another local edge maximum or corner.

The algorithm is given in Figure 2. In this figure variable p denotes the
current point or coordinate and pp previous point, which is initially a corner
or local edge maximum. At every step there are three possible neighbors of p
that can be selected. These neighbors form a 135, 180, and 225 degree angle

2The smallest unit in a digital image is a pixel, on a square grid of pixels there are (by
definition) 8 neighboring pixels. Hence, at most 8 separate contours can connect a single
pixel.



with p and pp (lines 5-7). From these three neighbors the one with the highest
Call

σ -response is selected (line 8).

3.3 Connecting corners to contours

A third step is necessary because a contour does not necessarily have to pass
through a corner, to get a fully symbolic representation, an additional step is
taken that connects corners to contours if the closest distance between corner
and contour is less than dσ. This value is derived from the single end-stopped
operator.

4 Edge detection methods

In this section, we compare our method with the Canny edge detector combined
with the curvature scale space (CSS) detector, and with the SUSAN edge and
corner detector. Although edge detection and extraction are not the same,
we can compare results by displaying the extracted data in a two dimensional
image, by treating it as if it is detected. As mentioned in the introduction
already, extraction of edge contours is very difficult for both Canny and SUSAN,
since the contours sometimes contain gaps. For both Canny-CSS and SUSAN
we set the thresholds manually for every image to get the optimal results for
both methods. Results of the methods are in Figure 3.

a) b) c)

Figure 3: Comparison with other detection methods. a) SUSAN edge and
corner detector. b) Canny edge detector combined with the CSS corner detec-
tor. c) Results obtained with our method for σ = 2.36 and default parameters
(TE=10, TC=10, T=1, and Len=15). Corners are represented as grey squares
and detected contours are marked in black. In our method: little brighter grey
squares are corner edge connections and bright squares denote a junction (due
to extraction) or the end of a contour.

5 Summary and discussion

In this paper we described an approach to multiscale corner and edge extrac-
tion, based upon complex and endstopped cells. Extraction of enhanced edges
from an image is based upon an idea and possible existence of, which we termed,
linking neurons. These neurons which receive their input from the complex and



end-stopped cells are activating each other along enhanced edges and start fir-
ing in synchrony, indicating that they formed a linked chain.

For corner and edge detection we used low constant thresholds for different
images. In this respect our method is very robust and outperforms the other
edge detection methods, where setting a threshold often strongly influences
the results. The extraction algorithm guarantees contours without gaps and
avoids global threshold settings. The presented method performs equally well
or better compared to the SUSAN and Canny-CSS detection methods, but is
especially a valuable choice when further processing for symbolic reasoning is
used.

In the current approach there are shortcomings compared to what humans
perceive as edge contours, this is because only a feedforward mechanism for
solely form features is used. Results might be improved by using other visual
cues, like color, texture, and motion. Also a feedback mechanism could im-
prove and facilitate edge extraction. Another very important factor for edge
extraction that is not used, is knowledge, e.g., often true edges are ignored
because they are not relevant in the current scene. Future research needs to
incorporate these cues to improve the results.

References

[1] D. H. Ballard and C. M. Brown. Computer Vision. Prentence-Hall Inc., 1982.

[2] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(9):679–698, November 1986.

[3] C. Dillon and T. Caelli. Learning image annotations: The CITE system. Videre:
Journal of Computer Vision Research, 1(2):90–121, Winter 1998.

[4] M. A. Eshera and King-Sun Fu. An image understanding system using attributed
symbolic representation and inexact graph-matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(5):604–618, September 1986.

[5] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. The
MIT Press, Cambridge, Massachusetts; London, England, 1993.

[6] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley,
1992.

[7] F. Heitger, L. Rosenthaler, R. von der Heydt, E. Peterhans, and O. Kübler.
Simulation of neural contour mechanisms: from simple to end-stopped cells.
Vision Research, 32(5):963–981, 1992.

[8] D. H. Hubel. Eye, Brain, and Vision. Scientific American Library, New York,
1988.

[9] Bruno T. Messmer and Horst Bunke. A new algorithm for error-tolerant sub-
graph isomorphism detection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(5):493–504, 1998.

[10] Farzin Mokhtarian and Riku Suomela. Robust image corner detection through
curvature scale space. IEEE Transaction on Pattern Analysis and Machine In-
telligence, 20(12):1376–1381, December 1998.

[11] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image
processing. Int. Journal of Computer Vision, 23(1):45–78, May 1997.

[12] R. P. Würtz and T. Lourens. Corner detection in color images through a mul-
tiscale combination of end-stopped cortical cells. Image and Vision Computing,
18(6-7):531–541, April 2000.


