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ABSTRACT
This paper presents a method for familiarity gated 

encoding of episodic memories for the purpose of their 
inferential use in a spatial navigation task. The method is 
strongly inspired by the state of the art understanding of the 
hippocampal functioning and especially its role in novelty 
detection and episodic memory formation in relation to 
spatial context. A navigation task is used to provide an 
experimental setup for behavioral testing with a rat-like 
agent. The model is build on three presumptions: First that 
episodic memory formation has behavioral, as well as 
sensory and perceptual correlates; second, hippocampal 
involvement in the novelty/familiarity detection and 
episodic memory formation, experimentally supported by 
neurobiological experiments; and third, that a 
straightforward parallel exists between internal 
hippocampal and abstract spatial representations. Some 
simulation results are shown to support the reasoning and 
reveal the methods applicability for practically oriented 
behavioral simulation.

INTRODUCTION
Behavioral studies have found a convenient testbed in robotic 

simulations due to the embodied nature of both living organisms 
and robots. There are three systems that have to be considered in 
making this parallel: a sensory system, an action system, and a 
system that connects both. The last system can have arbitrary 
complexity, ranging from simple coupling between the sensing 
and action to a detailed model of integrative, perceptual, mem-
ory, attentional and motivational processes.

Most of the models of biologically inspired robotic systems 
are build by simulating insect-like behaviors, for a review see 
[14]. The simulations following the functionality of the mam-
malian brain, that include memory or motivational features are 
seldom implemented on a robot without a severe simplifica-
tions. The theoretical models of the hippocampus and basal gan-
glia, however, suggest neural solutions that incorporate those 
features, and produce results on a behavioral scale, often not in 
the range of the computational expense, affordable for a realistic 
robotics task [1][4][5].

The objective of this paper is to propose a model suitable for 
simulated or embodied behavior, that facilitates inferential reuse 
of experienced memories. Therefore, internal memory is a nec-
essary feature of the proposed model. In addition, the model has 
to satisfy requirements coming from the behavioral setup as 
well as requirements that concern memory reuse.

An animat continuously gathers information about the 
surrounding world through experiencing sequences of events. 
Higher organisms can encode such subjectively experienced 
episodes, so their further actions are determined to a big extend 
of these remembered episodes. Episodic memory formation is 
generally associated with the encoding in the hippocampus. 
Many models in computer science and robotics exploit the 
characteristics of the semantic memory - memory for facts; 
Actually, memory for events and their relatedness is the way 
higher organisms build their knowledge. Moreover, episodic 
memory copes naturally with the sensory, perceptual and 
behavioral character of learning of an embodied agent.

In addition, the memory has to be flexible in both encoding 
and retrieval. Flexibility, as opposite to exact storage puts for-
ward the need to selectively store the incoming perceptual infor-
mation, judging which is new, or very similar to the experienced 
one. The criteria of familiarity will determine the behavioral 



choice in the retrieval phase. 
The so narrowed scope puts forward memory based behavior, 

which includes recall of past events, distinguishment of what is 
novel at present, in order to perform selective encoding, and 
familiarity detection to facilitate the ability to infer appropriate 
behavior in a novel environment or for performing a novel task. 

Therefore, discrimination of novelty and familiarity is another 
central aspect of this work. Novelty is a known factor that gates 
learning in natural and artificial systems [6][11][12][17]. The 
requirements of embodiment dictate that novelty has to be con-
sidered in relation to behavior.

The relation between novelty and behavior has received much 
attention by experimental neuroscientists[6][11][12]. The mam-
mals, who are able to form episodic memories, and especially 
humans can remember some information for the whole life 
span. This fact suggests, that the episodic memory encoding is 
an efficient process, suitable for one-trial learning. It is gener-
ally related to the hippocampus - a brain structure developed in 
mammals.

The base for this model is the hippocampal functioning, since 
the hippocampus can effectively perform both functions 
together: episodic memory encoding, and novelty judgement, 
while, for instance, the organism is involved in spatial behavior 
task. Such model, adapted for a robotics task, has the potential 
to go beyond the state of the art robotic applications since it 
intrinsically accounts for the following aspects.

• The behavior and the underlying episodic encoding and 
retrieval process are analyzed together, so that the remem-
bering of episodes provides contextual background for the 
behavior. (The episodic memory encoding is the basis for 
the emergence of behaviors.)

• Navigation based to a great extend on encoded episodes, 
needs a criteria to guide the encoding and retrieval of the 
episodes and gate the emergent navigational behaviors. 
Familiarity is a natural criteria that gates learning in biolog-
ical systems, and is related to the hippocampal functioning, 
along with episodic memory formation.

• Extensive modeling has created a consistent computational 
framework that connects the internal hippocampal and spa-
tial representations. Keeping the skeleton and the physio-
logical meaning we simplify the computations and extend 
to a relation between hippocampal, spatial and behavioral 
representation, mediated by familiarity.

This paper is organized as follows: In Section I a hypothesis 
of how the novelty function of the hippocampus is accom-
plished and proposes a computational scheme accordingly. In 
Section II global framework is constructed that makes a parallel 
between robot’s and hippocampal encoding; The framework 
and the scheme from the last two chapters is bridged to the com-
putations, derived by theoretical findings in Section III to lay a 
ground for further modelling. The initial results are shown in 
Section IV. Section V offers a discussion of the state and the 
perspectives of this research. 
Figure 1.   Working scheme, accentuating on the CA1 area. 
The sensory bound and memory representations are 
projected to CA1, also affected by the behavioral feedback.

I. HYPOTHESIS 
It is widely known that the hippocampus encodes episodic 

memories [7]. The CA1 area, to which projections of sensory-
bound stimuli come together with formed episodes of recent 
memories is an area of interest [13][20][27]. Recent analysis of 
the data from rat experiments [27] has shown the bi-modal 
structure of the theta rhythm, a brain rhythm which appears 
when exploratory behavior takes place. A possible reason for 
bimodality might be the different nature of information that 
comes at the same time to CA1 area - sensory and episodic, and 
the different time it needs to be projected to this area. Other 
studies suggest, the function of CA1 as a comparator [13][20]. 
There are slight variations of how exactly the comparison takes 
place, but in general they agree in the following mechanism:

The same sensory-bound pattern is transferred trough the 
direct and the indirect pathway from the Enthorinal cortex to 
CA1 area (Figure 1). During the indirect path the pattern passes 
DG and CA3 areas, where orthogonalization, and episodic 
memory encoding take place.

Our hypothesis is based on the evidences, that the CA1 area 
of the mammal hippocampus is one possible place where sen-
sory and memory-related information comes together to form a 
representation. This representation, we hypothesize, determines 
the future behavior, and indicates the familiarity/novelty of the 
upcoming information. It therefore determines what has to be 
remembered or forgotten.

Based on this hypothesis, we define the computational 
scheme as shown in Figure 1. This scheme accentuates the CA1 
area. The representation in CA1 is formed under the influence 
of the sensory- bound representation from EC area and the 
formed episodic memories on the basis of recent sensory history 
in CA3. The information from the learned episode from CA3 
and the sensory-bound information coming directly from EC 
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forms the pattern that controls the upcoming behavior. At the 
same time the interplay between the patterns in CA1 and CA3 
signals for novelty. This signaling indicates wether encoding 
has to take place, or the episode is familiar already.

Subsequently, during recall, the perforant path input initially 
has a stronger influence on activity in CA1. However, for famil-
iar stimuli, the pattern of the activity arriving from region CA3 
via the Schaffer collaterals will dominate within region CA1, 
allowing output from region CA3 to drive neurons which had 
previously been associated with the particular activity pattern in 
region CA3. 

Figure 1 outlines the entire computational flow for encoding 
within the behavioral setup of a simulated rat. It briefly intro-
duces the sensory, motor areas and the connecting memory sys-
tem, restricted to the hippocampus. There are feedforward and 
feedback/recurrent information flow. In feedforward track, the 
environmental sensory information is gathered and transferred 
to the hippocampus and trough its direct and indirect pathways 
to CA1; The episodic memory system encodes history of sen-
sory information, before projecting to CA1; The navigation sys-
tem, associated with the motor/behavioral functionality uses the 
combined representation in CA1. The feedback behavioral 
influence has its impact on the internal hippocampal representa-
tion. The feedback coupling is also present in the temporal pro-
cessing for episode formation. The sensory and behavioral part 
will not be further discussed in this paper.

Several studies have established the opinion, that the parahip-
pocampal area is responsible for novelty detection and manage-
ment, while the hippocampus is involved in encoding relational 
memory. Recently a series of new experimental and neuroimig-
ing studies [15][22][23] [26][28] confirmed that the hippocam-
pal formation contributes similarly to declarative memory tasks 
that require relational or familiarity processing. This confirms 
the plausibility of the proposed schematic representation.

III. EPISODIC MEMORY AND ROBOTICS FORMAL-
ISM
This paper features the familiarity based encoding mechanism 
as a part of a robotic simulation. Only those robotics related 
features that have relation to novelty and familiarity encounter 
will be discussed in the current paper. Approaching the novelty 
and familiarity discrimination problem from the perspective of 
an embodied agent implies that the information, that has to be 
judged for novel or familiar is derived by the experienced 
episodes of events. 

The term “episodic memory” is used differently by the 
researchers. In definition, given in [8], which extends the widely 
accepted definition of Tulving [25], the episodic memory has 
event specific, sensory-perceptual details of recent experiences 
that lasted for comparatively short periods of time (minutes to 
hours). 

To make this definitions more transparent for the purposes of 
our model, lets clarify that perception includes sensing, as well 
as memory, anticipation, behavioral goals, etc. [2]. Further in 

 

this text sensing and perception will be distinguished, so that 
sensing implies the external (sensory-bound) patterns, while the 
perception is the combined representation, formed by the 
sensory, memory and eventually top-down behavioral or 
attentional influence. 

Basing our reasoning on the idea that the organism - 
environmental interaction is a continuous and inseparable 
process [2][21], we argue, that episodic memory has also 
behavioral correlates:
• There is not a clear separation between action and perception 

[2][21]. Every sensory-perceptual event causes behavior, 
which in turn either changes the environment or reflects the 
changes that occurred independently of its action;

• Episodic memory is formed during specific experienced 
sequence of events, and every event consists of sensing, 
binding the sensed information into a coherent perception, 
acting accordingly; 
• Episodic memory formation takes short time slices, possi-

bly determined by changes in goal-processing. Goal and 
action processing are tightly related.

• Episodic encoding consists of organizing abstract knowl-
edge defined by the goals active during experience. 

The encoding of episodes takes place in CA3 area, while the 
representation, that guides the goal-oriented behavior is formed 
in CA1 area. The overall processing, naturally includes the con-
textual temporal information and accounts for novelty, and effi-
cient encoding. 

The computational approach that has been taken in this work 
requires a formalization of the episodic memory task. Let us 
assume that an episode  evolves under the action of the fol-
lowing competing influences: sensory , perceptual  and 
behavioral . 

(1)

where f denotes a functional dependence, and  is a self 
inhibitory term.

For a robotic framework it is feasible to consider discrete pro-
cessing. Therefore an episode  is a set of n discrete events 
occurring in a temporal order ,  defined by a 
considerable difference in the event representations.

(2)

A single event  is defined by ,  and , 

(3)

where the sensory component  introduces the influence from 
the external world and constitutes by feedforward connections; 
perceptual component  represents the internal influences, and 
is performed by the lateral connections; the behavioral 
component  represents the influence, that the previous action 
has brought on the current event. All three components can be 
multidimensional vectors. The change from one to another 
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event requires a change in at least one component, that is bigger 
than an internal threshold, indicating the detection of a novel 
event.

Learning of an episode means that associations can rapidly be 
formed among items presented in temporal proximity. This is 
especially valid for events, or routes, where the temporal order 
is of importance. Therefore by episode learning the order or the 
temporal association has appeared important rather than or 
along with another common feature, and this has influenced the 
encoding. So, the events that have been learned as an episode 
will tend to be recalled together and after each other, even if 
presentation order is changed. In addition, the following two 
dependencies between the temporally related connections are 
important: contiguity and asymmetry. Contiguity means that 
stronger associations are formed between stimuli that occur near 
each other in time than between those that are separated by a 
larger interval. Asymmetry determines that the forward 
associations are stronger than backward associations.

IV. BIOLOGICAL LEARNING 
This model follows the information flow as suggested in the 

scheme of Figure 1. It is widely known that particular cells in 
the rat hippocampus fire when the rat is at particular location of 
the environment [19]. Because of that feature, this cells are 
called also place cells. If the rat moves trough the environment, 
at every particular place a number of place cells fire. Cells that 
code for places in nearest vicinity fire most strongly, while the 
cells that code for more distant location fire less. The activity of 
the place cell firing can be modelled by a Gaussian for the open 
environments, where place cells show non-directional firing. 
Therefore, the movement of a simulated rat at every place of the 
environment is characterized by a particular pattern of firing, 
containing of the active place cells in vicinity of the animate. 
The activity of each cell can be represented in the following 
way:

(4)

where  is the location in the space of the center of the cell ‘s 

place field,  is the position of the simulated rat, and  
represents the width of the place field. s corresponds to the 
sensory representation within a single event, eq. (3).

The sensory as well as behavioral signals are encoded into a 
constellations of the active place cells. The unique pattern of 
activity corresponds to a certain position  in the environment. 
The level of activity of every place cell depends on the distance 
between the rat position and the place fields centers. Figure 2
shows two single activation patterns from the rat route. They 
represent patterns of activation in the simulated EC area. These 
patterns are dependant on the external-world and are further 
transmitted through the direct pathway.
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Figure 2.   Samples of sensory patterns, as represented in 
CA1 area. They denote a unique position-
pattern_of_activity relation in 2D space.

The same patterns are also projected to CA3 area and 
therefore take also the itinerary of the indirect pathway. We 
assume the same hebbian learning rule between EC and CA1 as 
well as between EC and CA3. (Eq. (5)).

(5)

where  is learning rate, notation CA-EC shows the starting 
and destination layer of the connection (coming from EC, 
reaching CA layer) the indices i and j denote neurons on the 
input and output layer, correspondingly. The CA layer is not 
denoted as CA1 or CA3, because the learning rule is used for 

EC-CA1 as well as EC-CA3 learning. The term  
of Eq. (5) is needed due to internal instability of the Hebbian 
rule.

In EC-CA3 area the predominant are the topological 
connections - the simulation is done as the neurons from the 
first (EC) layer project to a topologically correspondent area, in 
a way that every input neuron is connected to 20% of the output 
neurons. Differently, the learning between EC and CA1 area is 
done on the self-organizing principle, since the connectivity 
between those two layers is full. The lateral inhibition 
connections, denoted as LI (Eq.(6)), have a sharpening effect on 
the transmitted to the CA areas activations.
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(6)

where  are learning rates,  is a gating factor,

The biological and computational plausibility of the learning 
process performed in Eq. (5),(6) have been shown previously in 
[24] where the learning parameters choices is explained in 
detail. 

By far, the representation made within the layer denoted as 
CA3 has not the intrinsic capacity for temporal association. This 
quality is obtained by applying a hebbian rule with asymmetric 
time window over the neurons within the CA3 lattice, since in 
CA3 layer lateral connections exist between the neurons. Note, 
that this learning is not affected by the lateral inhibitory connec-
tions, denoted as LI in Eq. 6. It concerns the learning due to the 
excitatory lateral connections only. The asymmetric time win-
dow has been simulated to correspond to the experimental mea-
surements as found by [29], see also [16]. Due to computational 
difficulties it has been scaled symmetrically in the interval [-1 
1]. The lateral excitatory learning rule is adapted from the ini-
tially proposed by Dayan and Abbott rule [9], so that it fits to 
the practical constrains of the asymmetric time window function 
- Eq.(7).

(7)

where ATW stays for the asymmetrical time window function, 
the one shown in Figure 3, v and u are correspondingly the post, 
and presynaptic lateral neurons, and bound is the time window 
size. 

Figure 3.   Asymmetrical time window function based on 
experimental studies.

wj
LI CA–∆ α2g LI· CAj⋅ α3wj

LI CA– CAj
2–( )=

α2 α, 3 g

∆wt ATW τ( )v t( )u t τ–( )
τ 0=

bound

∑= ATW τ–( )v t τ–( )u t( )+

−100 −80 −60 −40 −20 0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

30

40

50

Time

A
m

pl
itu

de
Figure 4: Episodes, formed after Hebbian learning with lat-
eral inhibition. Every input pattern activates multiple neu-
rons. The actual path corresponds to the neurons, activated 
at highest.

In summary, modified Hebbian learning mechanism with 
20% projections between the EC-CA3 layers and inhibitory 
connections to promote topological self-organization. The EC-
CA1 full connectivity promotes a different learning outcome - 
the topological projections are lost, the self-organization takes 
place. 

Within CA3 layer, temporal association results in a formation 
of episodes. A plot of a sample learned episodes performed by 
the set of equations (5-7) is shown in Figure 4. The result of this 
learning process corresponds to the perceptual contribution  of 
the proposed event definition Eq. (3). Behavioral influence is 
represented by a neuromodulator-like gating signal:

(8)

where  denote correspondingly the learning rate, 
current, and desired state of CA1 output. Due to the scope of 
this paper, this influence will not be elaborated further on.

V. Familiarity gated spatial encoding 
The encoding of episodes takes place in CA3 area, while the 

representation, that guides the goal-oriented behavior is formed 
in CA1 area. We assume, that the two representations - in CA1 
and in CA3 area act together for the novelty detection and 
behavioral choice. The CA1 representation determines the 
action selection and signals for novelty, while CA3 supplies it 
with contextual information.

The computational scheme, that illustrates the hypothesized 
functionality is as follows. Two simultaneously active neural 
networks, corresponding to CA3 and CA1 area perform the 
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major computations. The neurons in CA3 area account for tem-
poral aspect and the formation of episodes, the representation in 
CA1 area is prone to detect novelty in the temporal context of 
CA3. The two representations are physically and computation-
aly connected. 

The pattern that reaches CA1 area via the direct pathway is 
organized on pattern similarity, not on a topological principle. 
The same projected pattern from the EC area reaches areas CA1 
and CA3 within a small time interval, and the connection 
between the currently most active neurons in these two areas is 
strenghtened also. This automatically activates the complete 
episode to which the pattern in CA3 area belongs, and therefore 
the contextual information from this episode is transferred to 
CA1 area. 

For familiarity detection, the network build on the basis of the 
proposed computational scheme is simplified. The Hebbian 
learning followed by a lateral inhibition mechanism is replaced 
by a modification of the competitive Hebbian learning algo-
rithm of [10][18], which makes a single neuron to represent an 
input pattern. Moreover, a map representation, derived by a 
Hebbian learning is inefficient for a practical navigation task 
since a vast number of place cells are required to organize a 
map. It is necessary to organize the map so that it becomes fine-
grained at frequently visited places to coarse at rarely visited 
areas. This organization problem is elegantly solved by the pro-
posed algorithm. 

The connections between events within an episode are formed 
as an internal property of the learning process, that is a principle 
difference from existing models with temporal history encoding 
[3].

The sensory bound patterns from the direct pathway are also 
simplified to the smallest convex contour of the place cell repre-
sentation (Figure 5).

An on-line comparison of the incoming sensory-bound pat-
terns with those encoded into episodes takes place. To illustrate 
the results of the familiarity gating, two episodes with an over-
lap at their initial itineraries have been distinguished in the very 
beginning after short history of pattern presentation from the 
second episode. Figure 7.a shows the first encoded episode. The 
small circles denote the most active neuron from CA3 area by 
presentation of the patterns that form this episode. Figure 6.b 
illustrates the learning outcome after both episodes have been 
presented. The most active neurons are denoted with stars, so it 
is obvious, that the representations of both episodes does not 
overlap strongly. The first pattern is classified as familiar in 
both: the topologically organized superficial CA3 area and the 
organized on the pattern similarity CA1 area. However, the 
interepisode connections do not transfer activation patterns to 
the adjacent CA1 areas by the presentation of the next patterns, 
so the two episodes are encoded (i.e. the second episode is con-
sidered as novel).
Figure 5.   Some training patterns, based on the place field 
activation patterns.

Figure 7 illustrates the encoding by two episodes that are 
closely spatially related since most of the time the topological, 
similarity learning, as well as contextual connections are acti-
vated, the episode is encountered as familiar and encoding does 
not take place.
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Figure 6.   Learning of two episodes with initial overlap. 
After the two trajectories show discrepancy, the novelty is 
signaled.

VI. DISCUSSION 
This study aims to show the relevance of novelty/familiarity 

discrimination method based on the hippocampal modelling for 
robotics exploration. The embodied nature of an animal and 
robot makes this parallel useful, and the functional efficiency of 
the hippocampal encoding, while performing both tasks: 
episodic encoding and novelty detection, suggests an optimal 
computational scheme. 

The impact of novelty is two-fold: it allows an efficient 
encoding in the exploration phase and it is a basis for flexible 
reuse of memories in the recall (exploitation) phase.The same 
computational paradigm is used in both cases, which makes 
possible on-line implementation. The paper accentuates on the 
methodological part and shows simulations of episodic memory 
encoding and novelty/familiarity detection, on which efficiency 
of the encoding process is based. Making the parallel between 
the robotics and episodic memory formalism we argue, that in 
addition to sensory and perceptual (memory and another inter-
nal factors related), behavioral influence contributes to episodic 
memory formation. The behavioral feedback, however is not a 
part of the simulations shown so far, and is to be described else-
where. Novelty and familiarity principle is the only gating fac-
tor for encoding and recall at this stage of the work.
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Figure 7.   Learning of two similar episodes. By episode 
formation, the representation of the second episode overlaps 
with the trajectory of the already existing episode. Encoding 
does not take place. 

Including the behavioral feedback shall change this setting as 
goal oriented behavior and novelty will determine learning.

The method differs from the existing navigational models, 
that relate hippocampal modelling and robot navigation tasks, 
since it focuses on familiarity gated episode formation that is to 
determine emergent behavior Its merits for a robotics task, as 
shown by the experimental testing, prove that it can solve both 
representational problems of perceptual aliasing, learning in 
context, and concept formation for life-long learning.
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