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Abstract. In analogy to animal research, where behavioral and internal neu-
ral dynamics are simultaneously analysed, this paper suggests a method for 
emergent behaviors arising in interaction with the underlying neural mecha-
nism. This way an attempt to go beyond the indeterministic nature of the 
emergent behaviors of robots is made. The neural dynamics is represented as 
an interaction of memories of experienced episodes, the current environmen-
tal input and the feedback of previous motor actions. The emergent properties 
can be observed in a two staged process: exploratory (latent) learning and 
goal oriented learning. Correspondingly, the learning is dominated to a dif-
ferent extent by two factors: novelty and reward. While the reward learning 
is used to show the relevance of the method, the novelty/familiarity is a basis 
for forming the emergent properties. The method is strongly inspired by the 
state of the art understanding of the hippocampal functioning and especially 
its role in novelty detection and episodic memory formation in relation to 
spatial context. 

1 Introduction

Emergence of behavior in biological organisms can be understood by simultaneous 
study of at least two different scales of organization: neural and behavioral. The term 
emergence may suggest that the intelligent behavior is merely a consequence of un-
known and uncontrolled internal dynamics of a system of connected simple elements. 
In this paper the emergence of behavior is understood as a consequence of assumed neu-
ral dynamics, that closely models the functionality of the hippocampal formation. The 
functionality is assigned to the neural structures as much as supported by behavioral ex-
periments. Yet, this paper aims at a computational model oriented towards a robot im-
plementation.
The choice of the hippocampal formation as the brain structure where the dynamics 
causing an emergent behavior takes place is made due to several reasons. Among them, 
the involvement of the hippocampus in episodic memory formation [1][2][3] and its 
role in familiarity discrimination, are considered, and illustrated through emergent be-
haviors within a navigation task.
Many biologically inspired robotic systems are built by simulating insect-like behav-
iors, for a review see [4]. Such a setting supposes a reactive nature of behavior- it is de-
termined mainly by sensing. The simulations following the functionality of the mam-
malian brain, that include memory or motivational features are seldom implemented 
into a robot without a severe simplifications.The theoretical models of the hippocampus 
and basal ganglia, however, suggest neural solutions that incorporate those features, and 



produce results on a behavioral scale, often not in the range of the computational ex-
pense, affordable for a realistic robotics task [5][6][7].
This paper puts forward memory driven behavior. In particular, memories of experi-
enced episodes are considered as carriers of contextual information, and therefore as a 
substrate for emergence of complex behaviors: the animat continuously gathers infor-
mation about the surrounding world through experiencing sequences of events. Higher 
organisms can encode such subjectively experienced episodes, so their further actions 
are determined to a big extend of these remembered episodes. Episodic memory forma-
tion is generally associated with the encoding in the hippocampus. 
While the emergent phenomena are modelled through the hippocampal system, the be-
havior manifests itself through a motor system. To rightfully describe the organism-en-
vironmental interaction the third, sensory system needs to be modelled. The overall 
model has to satisfy requirements coming from the behavioral setup as well as require-
ments that concern memory formation and reuse. The specificity of the model is that it 
attempts navigation, determined mainly by the experienced memories of connected 
events (episodes). In doing that we expect to observe manifestation of novel behavior 
that has emerged on the basis of encoding different memories about similar situations. 
Therefore, every individual event has to be seen in context. For a realistic task this is 
possible only if memorizing is flexible in both encoding and retrieval. Flexibility, as op-
posed to exact storage puts forward the need to selectively store the incoming percep-
tual information, judging which is new, or very similar to the experienced one. The cri-
teria of familiarity facilitates the ability to infer appropriate behavior in a novel envi-
ronment or for performing a novel task. The efficient encoding trough the familiarity 
judgement is a basis for life-long learning.
The paper is organized as follows: In Section 2 suggests a hipothesis and the corre-
sponding working model for novelty gated hippocampal encoding; In Section 3 the 
framework and the scheme from the last two chapters is bridged to the computations, 
derived by theoretical findings to lay a computational ground for further modelling. The 
connection between the two levels of the emergency scheme is shown in short in Sec-
tion 4. The results that show the efficacy of the novelty encoding are not shown in this 
study. Instead, some results from the functionality of the overall scheme are shown in 
Section 5. Section 6 offers a discussion of the state and the perspectives of this research. 

2 The Model

Approaching the novelty and familiarity discrimination problem from the perspective 
of an embodied agent has the following meaning: first, novelty has to be considered in 
relation to behavior; and second, the information, that has to be judged for novel or fa-
miliar is derived by the experienced episodes of events. The episode paradigm will be 
elaborated on first.
Episodic and autobiographical memories have intrinsic relation to sensory and percep-
tual events (Conway [8]). The term “episodic memory” is used differently by the re-
searchers. In definition, given in [8], which extends the widely accepted definition of 
Tulving [9], the episodic memory has event specific, sensory-perceptual details of re-
cent experiences that lasted for comparatively short periods of time (minutes to hours). 



To make this definitions more transparent for the purposes of our model, lets clarify that 
perception includes sensing, as well as memory, anticipation behavioral goals, etc. 
[10][11]. Further in this text sensing and perception will be distinguished, so that sens-
ing implies the external (sensory-bound) patterns, while the perception is the combined 
representation, formed by the sensory, memory and eventually top-down behavioral or 
attentional influence. 
The encoding of episodes takes place in CA3 area, while the representation, that guides 
the goal-oriented behavior is formed in CA1 area. The overall processing, naturally in-
cludes the contextual temporal information and accounts for novelty, and efficient en-
coding. 
The computation in proposed model accentuates on the representation of CA1 area, as 
a physical component with comparative function. The relation between the incoming in 
and outgoing from CA1 area signals is as follows. The information from the learned ep-
isode from CA3 and the sensory-bound information coming directly from EC forms the 
pattern in CA1 that controls the upcoming behavior and signals for novelty. 
This functionality has been confirmed by experimental studies to a large extend. Our 
aim is a model that closely resembles the actual computations in the hippocampus and 
is applicable for a robotic implementation. Therefore we hypothesize the exact mecha-
nism of novelty detection and context transfer between the two representations. We as-
sume, that the two representations - in CA1 and in CA3 area act together for the novelty 
detection and future action choice. The CA1 representation determines the action 
choice and signals for novelty, while CA3 supplies it with contextual information.
The computational scheme, that illustrates the hypothesized functionality is as follows. 
Two simultaneously active neural networks, corresponding to CA3 and CA1 area per-
form the major computations. The neurons in CA3 area account for temporal aspect and 
the formation of episodes, the representation in CA1 area is prone to detect novelty. 
The third structure, EC provides the input patterns to both areas. The same patterns, as 
formed in EC area are projected simultaneously to CA1 area trough the direct pathway, 
and to CA3 area (trough DG, which is not modelled here) to further reach CA1 area. 
The projection to CA3 area is mainly topological. In the itinerary of the indirect path-
way, in the CA3 area the broad lateral connectivity promotes formation of episodes, 
where the temporal characteristics of the formed episodes are taken into consideration. 
The representation, projected to CA1 area is not assumed topological, i.e. the connec-
tivity between EC and CA1 is full. The pattern that reaches CA1 area via the direct path-
way is organized on pattern similarity. Since the same projected pattern from EC area 
reaches within a small time interval the areas in CA1 and CA3, the connection between 
the currently most active neurons in this two areas is also strenghtened.
Let the representation, that is formed in CA1 area is denoted by . It evolves under the 
action of the following competing influences: sensory , memory  and behavioral . 

(1)

where f denotes a functional dependence, and  is a self inhibitory term.
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For a robotic framework it is feasible to consider discrete processing. Therefore formal-
ly an  is a set of n discrete events , defined by a considerable difference in the event 
representations. A single event , that is expressed by a specific firing pattern in CA1 
area is defined by ,  and ,

(2)

where the sensory component  introduces the current influence from the external 
world and constitutes by feedforward connections; memory component  represents 
the temporal impact of the sensory patterns, and is constituted by the lateral connec-
tions; the behavioral component  represents the influence, that the previous action has 
brought on the current even. All three components are multidimensional vectors. The 
change from one to another event requires a change in at least one component, that is 
bigger than an internal threshold, indicating the detection of a novel event.
The memory component consists of encoded episodes of events (memory with a tem-
poral reference)  as formed in CA3 area.  is a set of n discrete events occurring in 
a temporal order ,  defined by a considerable difference in the event 
representations.

(3)

Learning of an episode means that associations can rapidly be formed among items pre-
sented in temporal proximity. This is especially valid for events, or routes, where the 
temporal order is of importance. Therefore by episode learning the order or the temporal 
association has appeared important rather than or along with another common feature, 
and this has influenced the encoding. So, the events that have been learned as an episode 
will tend to be recalled together and after each other, even if presentation order is 
changed. In addition, the following two dependencies between the temporally related 
connections are important: contiguity and asymmetry. Contiguity means that stronger 
associations are formed between stimuli that occur near each other in time than between 
those that are separated by a larger interval. Asymmetry determines that the forward as-
sociations are stronger than backward associations.To summarze, the proposed model, 
as shown in Fig. 1., is as follows. Three structures, resembling EC, CA1 and CA3 areas 
form the representation, that is further used for navigation. The computations are per-
formed in the superficial CA1 and CA3 areas. The representation, which is denoted by 
E describes the activation pattern in CA1 area. It contains set of elements, which are not 
necessarily in the order of their temporal appearance. In contrast, M is a set of tempo-
rally related patterns. It refers to the activation pattern of CA3 area. The two represen-
tations are physically and computational connected.
The pattern that reaches CA1 area via the direct pathway is organized on pattern simi-
larity, not on topological principle. Since the same projected pattern from EC area 
reaches within a small time interval the areas in CA1 and CA3, the connection between 
the currently most active neurons in this two areas is also strenghtened.
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Fig. 1.   Schematic representation of the proposed model. The CA3 and CCA1respond differently 
to the same patterns. The CA3 area provides temporal context to the CA1 representation. 

This automatically activates the complete episode to which the pattern in CA3 area be-
longs, and therefore the contextual information from this episode is transferred to CA1 
area. 

3 Biological Learning

This section outlines the biologically plausible representational and learning mecha-
nisms within and between the different neural structures. Some of the formulas are 
adopted from the related work (like place cells definition, the specific Hebbian and 
Temporal Hebbian learning schemes). These are the preliminary elements that will sup-
port the choice of the model and justify the simplifications that are made for the robotics 
implementation.
It is widely known that the cells in the rat hippocampus fire when the rat is at particular 
location of the environment [12]. Because of that property, these cells are called also 
place cells. If the rat moves through the environment, at every particular position a 
number of place cells fire. Cells that code for places in nearest vicinity fire most strong-
ly, while the cells that code for more distant locations fire less. The activity of the place 
cell firing can be modelled by a Gaussian for the open environments, where place cells 
show non-directional firing. Therefore, the movement of a simulated rat at every posi-
tion of the environment is characterized by a particular pattern of firing, containing of 
the active place cells in its vicinity. The activity of each cell can be represented in the 
following way:

(4)

where  is the location in the space of the center of the cell ‘s place field,  is the po-
sition of the simulated rat, and  represents the width of the place field. s corresponds 
to the sensory representation within a single event.

Contextual 
information

Sensory - bound
information

EC

CA1CA3

si t, r( )
r ci–

2σ2
( )exp

------------------------
 
 
 

–=

ci i r
σ



The sensory as well as behavioral signals are encoded into a constellations of the active 
place cells. The unique pattern of activity corresponds to a certain position  in the en-
vironment. The level of activity of every place cell depends on the distance between the 
rat position and the place fields centers. Fig. 2.a) shows two single activation patterns 
from the rat route, which represent the pattern of activation of the simulated EC area. 
These patterns are dependant on the external-world and are further transmitted through 
the direct pathway. 
The learning mechanism of the feedfortward connections from a EC area, to both CA1 
and CA3 area is the modified hebbian rule as shown in Eq. (5).

(5)

where  is learning rate, notation CA-EC shows the starting and destination layer of 
the connection (coming from EC, reaching CA layer) the indices i and j denote neurons 
on the input and output layer, correspondingly. The CA layer is not denoted as CA1 or 
CA3, because the learning rule is used for EC-CA1 as well as EC-CA3 learning. The 
term  of Eq. (5) is needed due to internal instability of the Hebbian rule.
The difference in the feedforward learning in EC-CA1 and EC-CA3 stems from the dif-
ferent connectivity. In EC-CA3 area the predominant are the topological connections - 
the simulation is done as the neurons from the first (EC) layer project to a topologically 
correspondent area, in a way that every input neuron is connected to 20% of the output 
neurons. Differently, the learning between EC and CA1 area is done on the self-organ-
izing principle, since the connectivity between those two layers is full. The lateral inhi-
bition connections, denoted as LI have a sharpening effect on the transmitted to the CA 
areas activations.

(6)

where  are learning rates,  is a gating factor,
The biological and computational plausibility of the learning process as described in 
Eq. (5),(6) have been shown previously in [13] where the learning parameters choices 
is explained in detail. 
By far, the representation made within the layer denoted as CA3 has not the intrinsic 
capacity for temporal association. This quality is obtained by applying a hebbian rule 
with asymmetric time window over the lateral connections only. The asymmetric time 
window has been simulated to correspond to the experimental measurements as found 
by [14], see also [15]. Due to computational difficulties it has been scaled symmetrical-
ly in the interval [-1 1]. The lateral learning rule is adapted from [16], so that it over-
comes the computational constrains of the asymmetric time window function - Eq.(7).

(7)
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Fig. 2.   Samples of sensory patterns provided by a) the simulation of the place cells formation 
process, and b) the omnidirectional range sensor of a robot.The patterns in Fig. 2.b) will be dis-

cussed tn the following section. 

where H stays for the asymmetrical time window function. Due to the so introduced 
temporal aspect, the learning in CA3 results in episode learning. A plot of a sample 
learned episode performed by the set of equations (5-7) is shown in Fig. 3.

4 Connection between the Neural and Behavioral 
Representations

The actor-critic model [18] most closely resembles the behavioral part of the organism-
environmental interaction, in the following sense: At any moment t, the embodied ani-
mat is able to choose an action on the environment, as well as environment provides it 
with a feedback. In the case considered here the simulated animat can choose from 8 
possible actions - or more exactly directions of movement. 
By a physical robot they are to be restricted to 3. The critic is the feedback influence, 
that reaches CA1 area in this model. The actor-critic mechanism regards the actions of 
the animat that are directed in finding a particular goal. The familiarity gating is entirely 
performed in the feed-forward track. The goal oriented behavior will be used only for 
illustration of the animat behavior, and not to optimize its performance. The mechanism 
of actor-critic optimization, based on place cells representation is suggested in [17]. 
However, the two studies have completely different objective - in [17] the reinforce-
ment algorithm causes improved behavior, while in our case the learned episodes are a 
substrate of the emergent behavior, i.e. the first paper models dopamine like effects, 
while we work on episodic memory based behavior. 

a)

b)



Fig. 3.   Episodes, formed after Hebbian learning with lateral inhibition and novelty gating. Every 
input pattern activates multiple neurons. The actual path corresponds to the neurons, activated at 

highest.

The actor-critic mechanism used for the simulations is modified from the original 
[18][17] in a way, that it accounts for a more realistic movement of both rat and robot. 
To be consistent with the text above and with the previous notation, the critic is denoted 
with . The value of  when the animat is at a position  as represented in CA1 area, 
has the following form:

(8)

where  is the weight between the output cell and the i-th place cell as formed in CA1 
area. At the made experiments, the actor makes use of 8 action cells . At 
position r, the activity of the each action cell is:

(9)

where  stays for the j-th action cell, and v is the adaptive weight between the action 
cell and the i-th place cell. The first step for the movement direction is taken randomly 
with a probability . However, the next movement direction is chosen in a random 
way, but the possibilities are restricted according to the choices made in the previous 
movements , so there is not a random walk like trajectory, but a 
smoother orbits with eventual sudden turns.
The actor weights are adapted according to:

(10)

where  if action j was chosen at the moment t,  otherwise. 
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5 Emergent Behaviors and Robotic Implications

Emergent properties arise at a particular level of system description by interaction of 
relatively simple lower level components - between themselves and with the environ-
ment. In this paper as the lower level of organization is considered the functional sim-
ulation of the hippocampal formation, and as the higher level the resulting behavior. 
At the lower level, the sensory bound representation of the direct pathway, and the ep-
isodic representation of the indirect pathway, come together in CA1 area, where the 
comparison (novelty/familiarity judgements) takes place. Note, that at the same time, 
the CA1 area gets input from the current pattern of EC area and a pattern from CA3 area, 
that does not have incorporated the pattern that EC area currently projects. 
In Figure 3b) are shown the omnidirectional views taken by range sensors, when a robot 
is at a specific position of the environment. The similarity between the nature and the 
shapes of both types of signals, the one obtained by distance dependant superposition 
of place cell firing with respect to the rat positioning (Fig. 2.a, the inner countour) and 
the range sensor readings of a robot with respect to the robots current position, Fig. 2.b), 
is the basis of our motivation to use the patterns as illustrated in Fig. 2.b) for a robot 
simulation. For the novelty detection, the network build on the basis of the proposed 
computational scheme is simplified. The hebbian learning followed by a lateral inhibi-
tion is replaced by a modification of the competitive hebbian learning algorithm 
[19][20], which makes a single neuron to represent an input pattern. It is necessary to 
organize the map which has fine representation for frequently visited places but coarse 
representation for others. This problem is elegantly solved by the proposed algo-
rithm.The connections between events within an episode are formed as an internal prop-
erty of the learning process, that is a principle difference from existing models with tem-
poral history encoding [21]. An on-line comparison of the incoming sensory-bound pat-
terns with those encoded into episodes is made. Once a recognition of the similarity 
between an experienced episode and the current sequence of events is encountered, the 
behavior is entirely guided by the encoded memories. When memory of a similar situ-
ation is not available, the behavior is random goal-searching. In Fig. 4. are illustrated 
two groups of behaviors: merely random, when no related memory episode have been 
encountered, and two memory based behaviors, that are initiated when the similarity be-
tween the upcoming environmental sequence appears familiar with already experienced 
episodes of memories. 

6 Discussion

This paper features episodic memory encoding as a substrate for emergence of behav-
iors and goal oriented navigation, performed solely on the recollected episodes. The ep-
isode formation and behavioral choices are based on novelty/familiarity discrimination. 
The impact of novelty is two-fold: it allows an efficient encoding (exploration) phase 
and it is a basis for flexible reuse of memories in the recall (exploitation) phase. The 
same computational paradigm is used in both cases, which makes an on-line implemen-
tation feasible.



Fig. 4.   Behavior of the simulated rat. a) random goal-searching behavior; b) and c) familiarity 
driven behaviors, emerging after a period of exploration. 

 
Mimicking an animal by a robot simulation has its roots in the many parallels, that can 
be found between them. The most obvious parallels stem from the embodied nature of 
an animal and a robot: both have a physical body, gather external information and be-
have accordingly. Going beyond this coarse comparison, we search for a simulation, 
that aims exactness at the level of internal representation, the hippocampal representa-
tion in particular. The functional efficiency of the hippocampal encoding, while per-
forming both tasks - episodic encoding and novelty detection, suggests an optimal com-
putational scheme, which may be beneficial for a robotics task. A detailed hippocampal 
simulation on its turn is a substrate for realistic emergent behaviors and can benefit the 
experimental sciences. 
A new concept for hippocampal model underlying behavior simulation that has been 
presented incorporates the novelty/familiarity gated learning and builds a functional 
connection between novelty detection and episode formation. A different approach has 
been taken to the sensory input. The functional and structural resemblance between sen-
sory patterns of a robotic range sensors and place cells representation was observed, so 
the robotics simulation is based on so derived patterns. 
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