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Windowed active sampling for reliable neural learning 

Abstract 

The composition of the example set has a major impact on the quality of neural learning. The popular approach is 
focused on extensive pre-processing to bridge the representation gap between process measurement and neural presen- 
tation. In contrast, windowed active sampling attempts to solve these problems in an on-line interaction between pro- 
blem selection and learning. This paper provides an unified view on the conflicts that may pop-up within a neural 
network in the presence of ill-ordered data. It is marked that such conflicts become noticeable from the operational 
learning characteristics. An adaptive operational strategy is proposed that closes the representation gap and its working 
is illustrated in the diagnosis of power generators. 
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I. Introduction 

The reliability of neural learning is not a widely 
discussed topic. Instead, particular failures to learn 
have been researched for decades [1,3] and led to 
countermeasures in learning algorithm. network 
topology, network initialization, and training set 
construction. The problem dependent nature of 
these work-arounds defies a general-purpose learn- 
ing strategy and still requires an in-depth analysis 
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into the cause and nature of various poor learning 
phenomena. 

This paper focuses on the low reliability of 
learning behavior, as caused by restrictions on 
the back-propagation algorithm in combination 
with a specific training set structure. As a result 
of the presentation of training sets, whose elements 
have the potential to provoke long-term changes in 
the network state with comparable but opposite 
impact. the learning does not have a guaranteed 
convergence. Random equidistant sampling of 
some signals as well as some selective sampling 
strategies can make this restriction ostensible. 
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Because of its nature we call this phenomenon can- 
celation. An extreme case of its appearance. when 
convergence never occurs, is often noticed in situa- 
tions. where realization, topology and target signal 
fully satisfy the symmetrical conditions undcl 
which error back-propagation breaks down [3]. 

Our contribution is. that we show hoc\ the can- 

celation phenomena. generally known as an arti- 
fact and unlikely to occur in practice [3], atl’ccts 
real-life situations. Most of the time, its effect will 
be that the learning duration becomes no1 repro- 
ducible or that the final approximation is less LICCLI- 

rate. The analysis made in the paper shows, that 
the prolonged learning time indicates potential 
failure of the number of consequent learning trials. 
A windowed sampling strategy will be suggested 
that guarantees high-quality results in the presence 
of cancelation conditions, as inobtrusively satisfied 
in actual measurements. 

Firstly, in Section 2. we review the techniques 
and notions in example set construction. Then, in 
Section 3. two typical applications visualizing the 
major occurrences of cancelation phenomena are 
shown. Later on, after analyzing the reasons which 
can bring the training algorithm to convergcncc 
problems and giving a brief framework of example 
set construction, we are applying in &lion 5 
windowed sampling algorithm that eliminates the 
cancelation effect. The results of applying this al- 
gorithm on real-life data. taken from the emer- 
gency working mode of a power generator, are 
shown in Section 6. A discussion on the obtained 
results and their potential application is presented 
as an open-end for future work. 

2. Example set construction: Arbitrary or selective 

A substantial problem in neural compuling is 
that except for the trivial problems they fail on a 
small percentage of subsequent tests. There exists 
a number of systematic exceptions in which neural 
networks always generalize in a wrong way. The 

performance of a trained network is dependent a 
lot on the function. that the network should map 
and thus on the training set used. Creating the 
training set which will ensure optimal functionality 
of the learning algorithm has many aspects. Over- 
all it can be defined as finding the optimal ratio be- 
tween the number of training samples and their 
distribution over the signal to learn. 

In the absence of any tangible rules relating the 
signal to be learned and the nature of training pat- 
terns. presenting equidistant samples in a random 
way gives in most cases a satisfactory result. One 
of the main advantages of random selection is its 
easy implementation. Moreover, the random fac- 
tor is crucial for the work of all learning algo- 
rithms of ;I stochastic nature. The creators of the 
back-propagation algorithm have suggested in [4] 
that not only the network parameters but also 
the training examples should be chosen randomly. 
On the contrary. the more factors able to break the 
symmetry in the network are present, the higher 
the cliance on success for the learning process. 
Some authors [5] suggest ~WII adding noise on 
the inputs for a better learning performance. 

Thcsc are the reasons \\hy most neural net- 
works are stttdied by means 01’ random sampling. 
Random sampling assumes that training examples 
arc arbitrarily chosen, and that the network learn- 
ing process evolves under its own dynamics. In this 
case, it can be said that the neural network is a 
passive learncr. This approach is generally referred 
to as “Learning from examples”. Analytical exam- 
ination of this problem for neural networks is done 
by hum and Haussler [h], the generalization 
properties are empirically investigated by Cohn 
and Tesauro [7]. while Lc C’un [8] attempts further 
improvements. A complete description of this 
approach for analyzing neural networks generali- 
zation is given by Poggio ct al. [9]. 

In the context of the passive learning framc- 
work. the ordorcd presentation of examples prc- 
sumes that also the relation between subsequent 



presentations is of importance. This happens for 
instance when the natural order of presentation 
must be preserved (as in time-series prediction 
tasks) or when this is the only possible way of ob- 
taining the examples. Often the ordering is com- 
bined with a degree of filtering to remove 
spurious detail. As reported by Morgan and Bou- 
lard [lo], one can produce results by using only a 
small fraction of the available examples, that are 
close to those obtained when all available data 
are used. Another reason for using a specific strat- 
egy of pattern selection is that network perfor- 
mance can be drastically improved [I I]. 

This latter result, together with [ 12,131, etc. es- 
tablishes neural active learning as an alternative 
for passive learning from random examples. Active 
learning presumes some control over the way of se- 
lecting training examples. Active algorithms ap- 
plied to neural networks aim to assure success of 
the neural learning process by optimizing the in- 
formation coming from the environment. They 
are either oriented towards the strategy of pattern 
presentation or to the selection of the best training 
set. Accordingly, there are two distinct groups of 
techniques for choosing training examples. The 
first group assumes that the network is partially 
trained on a set of previously acquired examples. 
This group of techniques is known as uctiw .sm1- 
pling or progressive laming and can be defined 
as the task of adding new examples to the set of 

available examples. The second group of active 
learning techniques is known as active srlectiot~ 
or infiwmrtiw hming and implies selection of 
training exemplars from the set of available exam- 
ples. Properly selected, these actions can drasti- 
cally reduce the amount of data and 
computation time required for learning to be com- 
pleted. Fig. 1 summarizes the above discussion. 

This paper suggests to base active selection on 
the detection and ttlimination of notoriously bad 
learning conditions. It has its counterpart in the 
preprocessing of measured data by filtering and 
ordering as applied successfully in passive ordered 
learning. Though this has the advantage of using 
pre-knowledge, its disadvantage of a potentially 
extensive pre-processing stage precludes the poten- 
tial usage in real-time applications. 

With active selection we rather aim to improve 
the learning quality by on-line adaptation. By a 
rigorous windowing of the available data, it ex- 
tracts a behavioral hierarchy that by rapid applica- 
tion is guaranteed to have the proper 
representation. Our analysis of the reasons fol 
bad convergence suggests several possibilities fog 
active selection. The choice we made tends to pre- 
serve the advantages of random pattern presenta- 
tion in the local window range, while the size 
and position of the windows are determined by ac- 
tive selection strategy. This allows for an easy in- 
troduction in current practice. 



3. Examples of cancelation training sets 

The cancelation training set, that visualizes a 
fundamental drawback of the back-propagation 
algorithm, can be constructed in many ways. The 
following examples will give a more clear indica- 
tion how and why cancelation can appear in prac- 
tice. We focus largely on illustrating that the 
cancelation can be easily introduced in a number 
of ways, ranging from the problem definition to 
the applied intermediate representation. In a later 
section we will provide some analytical considera- 
tions. by which one can check whether a problem 
can suffer from cancelation. 

Although it is proven in [14] that feedforward 
networks with one hidden layer can approximate 
an arbitrary function, practice shows a number 
of systematic hindrances to achieve this goal. 
One example for monitoring potential convergence 
problems in training back-propagation networks is 

the approximation of a signal, when the selected 
training set is either near to or fully symmetrical. 
As shown in Fig. 2 a symmetrical target set can 
be extracted from a large class of functions. Thus, 
sampled symmetry sets can be created by choosing 
not-equally spaced contradictory patterns. We 
have created such training sets artificially Fig. 3(a) 
and (b). but a number of pattern selection methods 
or practical sampling recommendations, efficient 
otherwise. can also end up with creating a cancela- 
tion example set (Fig. 2(c)). 

Handwritten Word Recognition is a typical ex- 
ample of when sampled symmetry can creep in 
through the choice in intermediate representation. 
Handwritten Word Recognition, also called 
isolated Handwritten Word Recognition 
(HWWR), deals with the problem of machine 
reading of handwritten words, generally with the 
assistance of a lexicon of all valid words. A hand- 
written word is typically scanned in from a paper 
document and made available in the form of a bin- 
ary or grayscale image to the recognition algo- 
rithm for Off-line HWWR. The problem difl‘ers 

Fig. 2. Functions from which a symmetrical training set can be exlractcd 



from On-line HWWR where the writing surface is 
frequently an electronic notepad or a tablet. and 
where temporal information (the trajectory of the 
pen as it traces the word) is available to the recog- 
nition algorithm, which attempts to recognize the 
writing as it is being written. 

An often used approach takes the handwritten 
word as an on-line signal and stores it as a sequence 
of “strokes”: line segments between two sign 
changes in the writing direction. Each stroke is 
characterized by a 5-tuple: the starting point. three 
equally spaced intermediate samples and the end 

point. Ensembles of strokes can be identified as 
characters. which in turn can be assembled to words 
of fuzzy segmentation. Our critique here is on the 
normalizing storage of strokes by 5-tuples. that 
blurs away the differences in angular writing. As a 
consequence, the first character of the word in 
Fig. 2(c) will be found from an upgoing and a 
downgoing line on different angles, but with a sym- 
metrical representation on stroke level. 

So far we have focused on a symmetry that is 
directly visible in the training set. Even when the 
symmetry is not ostensible a lack in reliable train- 
ing performance may easily appear. as it will be 
discussed further. 

After we have reached a basic understanding of 
the internal mechanisms that cause the cancelation 
phenomenon, predicting the range of signals. that 
can cause bad approximation and too long learn- 
ing time is an easy task. Not only a sampled sym- 
metry set makes the gradient algorithm to oscillate 
into stationary areas of the error surface. but also 
training sets as shown in Fig. 3. In Fig. 3(a) the 
entire signal is subject to cancelation by symmetry. 
moreover the phenomenon aKects also sub-train- 
ing sets Fig. 3(b) and (c), where only the global 
tendency or other dominant input feature of the 
signal can be approximated. 

A general cancelation signal can be constructed 
by chasing at random, equally spaced patterns of a 
periodic signal. that is symmetrical in itself or con- 
tains additive symmetrical components. Some- 
times the symmetrical component is not obvious, 
because of additive noise with a normal distribu- 
tion Fig. 3(a) and (b). Moreover, signals as the 
one shown in Fig. 3(c) also shows cancelation nat- 
ure. The signal, shown in Fig. 3(c) is recorded dur- 
ing the emergence working mode of a power 
generator. It contains a large percentage of cance- 
lation examples and its approximation usually fails 
when a random equidistant sampling is done on it. 
It is a typical example of a general cancelation sig- 
nal, as it will be shown further on. 

4. Analysis 

Analytically, the properties of a generalized 
cancelation set can be understood by the following 
reasoning. The single output network with one 
hidden layer is equivalent to the nested sigmoidal 
scheme as shown in Eq. (1). 

(1) 

After one full presentation of the entire training 
set D,,. output f’(x. 11’) ’ depends on D,, and the 
development of a lcarninp process, i.e. from the 
previous weight values. The generalized delta rule 
for updating the weights ,,,i:” is 

’ The mdcx j in Eq. (I) is a notation I’or the,jth neuron from 
the output layer. Indexing the on11 neuron of the output lay 

wc conaider as not necessary and further on it will be used onI> 
if nccrsuy. 



In order to see the effect of the sequence ofpat- 
terns on the synaptic weights it is useful to reprc- 
sent Eq. (3) as a time series with index t [IS]. 

The equality of the product 6,(r)):(r) to 
-M(r)/i)~;,(/) can be seen from the derivation 
of the back-propagation algorithm. Then the Eq. 
(3) can be rewritten in the following way: 

(3) 

Here. AM’,!(~) is an exponentially weighted sum. 
When subsequent partial derivatives iM (t)/&\,,,(t) 
have the same sign AN,,,(~) grows in magnitude. 

thus weights are adjusted by a large amount. When 
the partial derivatives M(r)/&~,,(t) have opposite 
signs on consequent iterations. AM,,,,(“) shrinks in 
magnitude, which presumes a small adjustment 
of the weight values. Random equidistant sam- 
pling of some signals presumes altering of the sign 
of iM (~:I/cYN~,,(~) at a very small intervals, and cor- 
respondingly almost smooth shrink of the borders 
of the neight changes. To make this statement 
more cleat- let us look in detail at the derivative 
iM It)jih,,(t). 

(5) 

This equation represents in fact the dependence 
of the network state change from the current value 
of the error (M(t)/i>~(/) = e(r) = C/ -IJ), the deri- 



vative of the network output to its input or indir- 
ectly from the network input i!l,(f)/iI~(t) and the 
output of the neuron i from the hidden layet 
(iIr(t~~/iI~~,,(t) =~;it)). The term ik(/)/ilJ)(/) contri- 
butes only with a negative sign. 

The derivative of the network output to its In- 
put i1,1,( r),/iir( t) = q’( r) has always a small positive 
value, as can be seen in Fig. 4 for both: nnnsym- 
metrical and zero-centered sigmoid. 

The values of ilrqfj/ih,,it) = ~,(rj and 
iM(t’)/(t) = e(r) = d -,I’ are going to be analyced 
in combination. When considering the I-N- I a~-- 

chitecture. the hidden neuron outputs arc in fact 
scaled values of the input examples. The hidden 
neuron output J;( /) is always positive in case of a 
nonsymmetrical sigmoid. This way the only com- 
ponent, able to change the sign of the weight value 

is the calculated error e( tj = t/(tj ~~ )Yr). When the 
network is constructed from neurons with zero- 
centered transfer. l;(tj changes its sign either bc- 
cause an input example with a ditfercnt sign was 
introduced or (quite rarely in fact) because of al- 
tering the sign of its weight to the input neuron. 
Both changes can not happen only to one hidden 
output. but to ail the hidden neurons at OIWC. 

b/hi& will provoke the corresponding change in 
the networks output. relevant in our case with 
the calculation Of c(tj =: d(t) -- ,l,(tj. 

In both cases have to be looked at the error va- 
lue c’(t) = t/(t) - ~j(t). In the beginning of the train- 
ing process only a small area in the middle of the 
activation function (p(rj is active. because of the 
initialization with small random weights and scal- 
ing of the examples. Then at the very beginning we 
can consider I; as ;I linear function with a little 
slope. biased at the average of the target ‘: 

Then the summed dift‘ercnce between the net- 
work target and output has approximately zero 
impact for the period of one complete presentation 
of a symmetrical pattern set 



Moreover, random sampling of such a function 
provokes the zero summed effect of presenting 
parts of the input-target set. Fig. 5 depicts the 
sum of all previous output errors for a certain step 
while learning to approximate respectively non- 
symmetrical and symmetrical functions. The error 
sum graph for the symmetrical function is plotted 
with a solid line. The dashed line follows the error 
sum for nonsymmetrical function. Kandom sam- 
pling of a symmetrical function helps in this case 
to obtain zero summed effect also for subsets. 

As mentioned before, the learning problems 
have a distinct similarity to a statistical long run 
effect of which the run length is by definition tinite 
but varying. In the simple experiment, concerning 
Fig. h. cancelation leads to bad approximati~~n 
the network gives a straight line output. if a ran- 
dom equidistant sampling is done. In training 
more complex signals, the cancelation can be cx- 
petted to product a wider range of learning times 
or poor approximation. Poor approximation ap- 
pears most often as learning only the global signal 
structure. 

Our theoretical conclusions are inspired by and 
coordinated with the mathematical analysis of 
Wiegerinck and fieskes [lb]. Elaborating on how 
dependencies between successive examples affect 
on-line learning they suggest that the reason fat 
bad convergence is the existence of flat areas in a 
global error surface (or also called plateau ). Pla- 
teaus cause an extremely long training time and 
a bad generalization. After the network reaches 
suc11 a flat area the w/eights hardly change any- 
more. Consequently good approximation becomes 
extremely difficult if uncorrelated input patterns 
are used. 

It is important to point out, that networks with 
zero-centered sigmoid neurons suffer much more 
from cancelation phenomena than nonsymmctri- 

Fig. 5. The sum of the output wror for the samphng step\ up to 
one full pattern presentation. The dashed line shows the error 
\um development for nonsymmetrul target. The solid line 
corrcqmda to a symmetrical target 

cal sigmoid networks. The reason is the larger in- 
fluence of the error parameter when forming the 
weight correction value. if both networks are initi- 
alized in the same way and trained to learn the 
same function on the same input interval. 

So far we have elaborated on symmetrical train- 
ing sets. because in this case random sampling or- 
ders the training examples in a way. that 
propagated back updating coefficients are cancel- 
ing each other and make the network parameters 
become zero. There are a lot of nonsymmetrical 
training sets as well whose presentation can have 
zero summed effect. both in the long run as during 
shorter intervsals. Thus, the cancelation can appear 
during training an arbitrary function if for a long 
time the cancelation examples, provoking a 
symmetrical phase in the learning process, are sup- 
plied long enough to bring the network parameters 
to zero values. The way it can be detected will be 
discussed in the following paragraph. 

5. Cancelation detection 

Cancelation training sets either lead the lcarn- 
ing process to a dead-end. or (in the case when 



the percentage of patterns with a cancelation po- on we will propose a method for detecting the 
tential is less than 100 from all the training exam- cancelation in an arbitrary signal. Decreasing the 
ples) in slowing down the convergence process and possibility of training failure or low quality learn- 
in bad reliability. In other words, approximation ing can be done in many ways, after the cancela- 
may fail on a small number of consequent tests. tion is detected. The particular way can be 
First in this section will be shown how the learning adapted to the problem to solve. We are suggesting 
quality can be damaged by the difIerent content ot a windowed active sample selection algorithm. 
cancelation examples in the training sequence. The which solves the cancelation problem and at the 
possible damages range from not reproducible same time preserves the advantages of the positive 
training duration and inaccurate final approxima- impact of randomization inside the selected win- 
tion until total crash of the learning process. Later dows. 



The risk of entering a cancelation situation ex- 
ists for example when a periodical signal is 
sampled. Because of the stochastic nature of ncur- 
al learning the exact borders of appearance of can- 
celation effects can probably never be determined. 
but a long statistical investigation over the signal 
shown in Fig. 3(b) gives quite informative results. 
This signal is artificially created to allow easy con- 
trol over the content of cancelation examples in 
the training set. The percentage of cancelation ex- 
amples in the extracted training sets varies within 
wide borders. For every particular number of can- 
celation examples 200 different training sets are ex- 
tracted. With so created training sets two groups 
of experiments are made. 

In the first group of experiments the percentage 
of cancelation examples is varied and at every step 
the average learning duration and the number of 
successful trials are recorded. Fig. 7 summarizes 
the learning performance of a network. trained 
with example sets extracted from the signal in 
Fig. 3(b) with different percentages of cancelation 
examples. Averaging is made over 200 training 
sets. In Fig. 7(a) the results of a statistical investi- 

gation over the effect of cancelation pattern sets on 
network reliability are depicted. The performance 
of the network on the subsequent experiments with 
differently randomized training set is plotted 
against the percentage content of the cancelation 
examples. It can be seen, that once a certain 
amount of cancelation patterns is present in a 
training set. the experiment becomes nonreprodu- 
cible. Correspondingly, the necessary training time 
increases drastically. This is shown in Fig. 7(b) 
after all the nonlearnable examples are discarded. 
These results concern networks with zero-centered 
sigmoid transfer functions. 

The second group of experiments shows the re- 
plicability of the training duration for four groups 
of training sets, correspondingly with 40%. 60%, 
80’!% and 100%~ of cancelation examples. The re- 
sults of training with a network, built with zero- 
centered sigmoid neurons (q(s) = (1 - exp(-x))/ 
( 1 + exp( -.Y)) are not shown, because they are im- 
plied more or less in Fig. 7. Instead, the unstable 
learning duration with nonsymmetrical transfer 
network is exhibited. 

As commented before, the result of approxi- 
mating cancelation signals with networks com- 
posed by nonsymmetrical transfer neurons 
cp(r;l 1: 1 I( 1 - exp(-x)) has not so big conver- 

Fig. 7. (a) Network generalization performance: Percentngc of succcs~ful trials from subsequent tats decreases quadratically once a 
critical number of cancelation examples is present in the training set. (b) Number of iterations during training increases once the 
number of cancelation cxamplcs exceeds certain II~II\ 



gence problems. The reasons for that were ex- 
plained in Section 4. In this case the effect remains 
as not reproducible learning duration, if the train- 
ing set contains a high percentage of cancelation 
examples, as shown in Fig. 8. In case of 100% can- 
celation there is a small percentage (about 2”/1)) of 
experiments, that fail. 

From the shown empirical results we can con- 
clude that the example selection can be derived 
from observed changes in runtime results. We are 
therefore suggesting the windowed active sampling 
strategy based on the analysis and the observations 

made so far. Moreover, we are tending to create an 
easy to implement method. preserving the advan- 
tages of randomness on the sub-training set level. 

To support the description of the algorithm it- 
self we will illustrate the cancelation detection 
quality criteria. The illustration is made for train- 
ing sets. that are not symmetrical themselves but 
can provoke cancelation. If the training set con- 
tains examples which in the order of their presen- 

b) 60% 

80% 4 

Fig. 8. Convergence behavior of network with nonsymmetrlcal transfer learning the signal from Fig. 3(b) with differently constructed 
training sets. (a) Exhibits the distribution of convergence time normalized for 100 experiments, done with training set which contains 
40’%) cancelation examples. While increasing the amount of cancelation (6o”A in (b), 8o’iG in (c). and 10(Y:~I in (d)) we observe that the 
spread in learnmg time increases considerably. leading to not reproducible learning behavior long before the eff’ect becomes noticeable 
as a stand-still 



tation have the sum of the direction coefficients 
equal to zero, A&, will be zero after a full presen- 
tation of this training set. At the following pictures 
the two different training sets as shown in Fig. 9(a) 
and (b) from the same signal and the graph of the 
mean of the training set direction coefficients as 
shown in Fig. 9(c) and (d). 

Fig. 9(c) clearly shows that the training set 
from plot 9(a) will not be learned if presented at 
random. On the contrary. the plot of the direction 
coeflicients mean, corresponding to randomized 
training set 9(b), approaches the value quite differ- 
ent from zero. This shows that the training set has 
no cancelation nature and can be easily learned. 

Here the proposed algorithm implies this calcula- 
tion for adaptation of the window size. 

In the beginning we use a large portion of the 
signal and check by prototype learning on the evo- 
lution of the mean values of the direction coeffi- 
cients. If cancelation is present, it will sharply 
move to zero and the experiment can be stopped. 
In sequence we try smaller portions till finally we 
find a window-size that shows no cancelation be- 
havior. Then, in assembly, we can train from the 
small windowed segments and build in an hier- 
archical fashion upwards to finally obtain a full 
signal coverage. The detection algorithm takes 
the following steps: 

Fig. 9. Two trammg sets. extracted I’rom the qnal. shown in Fis. l(b) correspondingly (a) posaessng and (b) missing the canc~l~t~on 

property. (c). (cl) Evolution of the mean value of the dil-cctlon coetliwnt I’or the constructed training squcnces. 



1. The data set D,, = { (,X~.~i)}~, is extracted from 
the signal S(.W.J~) by random equidistant sam- 
pling. 

2. Divide the data set D,, = { (x;.JJ,)}~ , on equidi- 
stant windows n ,,,,, = ( (xI..v/)}~~, 

3. After randomization, the training subsets for 
the first few epochs E,,,,] E {(x,~?;,)}~‘, are ob- 
tained from the data subsets D ,,,,, = { (.u,. .I’/ ) }; , 

4. Calculate the direction coefficient mean evolu- 
tion. for the current training set El,,,; = 

5. If detected existence of the cancelation. dc- 
crease the size of the window. Go to 3. 

6. If evolution curves as calculated in 4 stabilize to 
show absence of cancelation the learning can be 
left on its internal dynamics. End. 

6. Some practical experience 

We have presented active selective sampling as 
the on-line alternative for passive ordered sam- 
pling. The causes for network-internal conflicts 
are related to the presentation of the examples 
and an analytical justification is provided. Then 
a procedure is outlined that is based on the inter- 
active reconstruction of the hierarchical structure 
as implicitly present in the example set. 

The importance of this contribution is illu- 
strated by the observation that even learning net- 
works can be unreliable in its performance. 
Reliability is hereby taken as the ability to perform 
learning in a stable, reproducible way. For appli- 
cations in an industrial setting, such a reliability 
should ensure real-time. hazard-free behavior. .A 
typical example can be found in the diagnosis of 
power generators, as discussed next. 

Destabilization of a turbogenerator by shaft 
torsion can be estimated during its operational 
lifetime by vibroacoustic measurements. The prac- 
tical significance of a classical vibration-based 
fault monitor and report AI-system is Iimitcd as: 

I the amount of on-line information is too large 
for comfortable handling. 

2. the count of all probable failures is too high for 
simultaneous monitoring. 

3. only known faults can be classified. 
The first of these arguments stresses the need 

for on-line data processing. while the latter two 
state the case for a Connectionist Expert System 
as reported in [ 171. 

The signal, shown in Fig. IO(a) is recorded dur- 
ing the emergence working mode of a power gen- 
erator. In order to discover in one training 
whether this signal has the cancelation potential 
it is divided into parts, defined by its odd and even 
local extrema. So created training set leads to poor 
approximation (Fig. IO(d)). The approximation 
quality will not improve with time, because the 
weights are oscillating in small areas, as shown in 
Fig. IO(e), and this cannot be changed by repeti- 
tive presentation of the same training set. In this 
case the network output is governed by only three 
hidden neurons. which can successfully learn the 
periodicity of the signal. Fig. IO(c) illustrates the 
weight changes when a non-cancelation training 
set is extracted. In this case the learning quality 
is quite satisfactory. as shown at X(b). 

The number of weights arc the same in both 
cases. but in Fig. 10(e) they arc graphically over- 
lapping. Also the interval, from which the initial 
weights have been chosen, is the same. This is 
not clear from the sub-plots. because after the first 
datasct presentation the weights from Fig. IO(c) 
are changing noticeably, but this change is reprc- 
sented in very small plotting space (in the scale 
of 1 147 dataset presentations). 

A typical facet of this application of a neural 
network in an industrial environment is the occur- 
rence of new frequency contributions from new 
failures as well as the shift in existing frequencies 
because of wear and ageing. F-or the diagnosis it 
is required to perform the above learning at regu- 
lar intervals. These on-line requirements make 
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extensive prc-processing impossible. while on the 
other hand reliability is of utmost importance to 
guarantee hazard-f’ree operation. 

In our experience. we frequently encounter 
the cancelation phenomenon. Often thcrc is an 

easy work-around by introducing pre-knowlsdgc 
on the problem to be solved [I 81. t-let-c, hlerarch- 
ical design to isolate the signal symmetry in pre- 
designed cubnetworks has dictinct advantagc~. In 

general. nonsymmetrical initialization is the key- 
word. Despite all this. comparing ii numbcr of 
Icarning attempts to verify the reliability of the 
product remains required to provide folk ;1 jinal 
quality guarantee. Under circumstances. and 
cspccially when no quantifiable understanding 
of the natural process is available. windnwcd ac- 
11x sampling provides I‘oI- an attractive allcrna- 
IIVC. 
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