
TiViPE
Visual Programming

The Art of Parallel Processing using General
Purpose Graphical Processing units

–TiViPE software development
Technical Report

Copyright c©TiViPE 2009-2010. All rights reserved.

Tino Lourens
TiViPE

Kanaaldijk ZW 11
5706 LD Helmond
The Netherlands
tino@tivipe.com

September 14, 2010

CONTENTS 2

Contents

1 Introduction 4

2 Basic components 4
2.1 Device information and selection . 4
2.2 Data transportation . 5

2.2.1 Data transport evaluation . 5
2.2.2 Parallel but not too parallel . 7
2.2.3 Transfer by a single step . 7

3 TiViPE application by convolution example 9

4 TiViPE modules 10
4.1 Processing time prediction for any GPU card . 10
4.2 Processing time . 10
4.3 Visualization . 12

4.3.1 Multiple GPU cards . 12
4.4 Multiple scale image processing . 14
4.5 Polynomial function and look-up table . 16

CONTENTS 3

Abstract

The aim of this report to elaborate TiViPE modules that make use of NVIDIA’s compute uni-
fied device architecture (CUDA) programming. The focus will be on the construction of these
programs making the best use of the GPU hardware using CUDA. These results are sometimes
counter intuitive compared to traditional hardware, for instance 32 bit floating point arithmetic is
faster than 8 or 16 bit integer arithmetic, and often faster than 32 bit integer arithmetic. In the
past avoiding arithmetic by using look-up tables was faster than computing a function, on the GPU
processing a polynomial function is considerably faster.

1 Introduction 4

1 Introduction

The aim of TiViPE is to integrate different technologies in a seamless way using graphical icons [2].
Due to these icons the user does not need to have in depth knowledge of the underlying hardware
architecture. For a better understanding of the software architecture and hardware, see [3].

This report is outlined as follows: Section 2 elaborates on the basic components. In Section 3 the
concept for programming TiViPE modules that make use of the GPU will be described. Section 4
gives an overview of the available GPU modules together with their timings on a 285GTX GPU card.

2 Basic components

The basic set of components involves data allocation, freeing, and transportation.

2.1 Device information and selection

Obtaining information from all GPU devices is obtained by using cudaGetDeviceProperties
call, it is implemented as module GPUinfo, for a graphical representation see the left side of Figure 1.
This module gives the following output:

Number of devices 2
Device 0=GeForce GTX 285

* Global memory 1073414144

* Shared memory per block 16384

* Registers per block 16384

* Warp size 32

* Memory pitch 262144

* Maximum threads per block 512

* Maximum threads dimensions 512 512 64

* Maximum grid size 65535 65535 1

* Total constant memory 65536

* Major 1

* Minor 3

* Clock rate 1476000

* Texture alignment 256

* Number of multi processors 30

Performance in GFLOPS 1062.72

Device 1=GeForce GTX 285

* Global memory 1073479680
...

* Number of multi processors 30

Performance in GFLOPS 1062.72

In case multiple cards are used one can switch between these devices by setting a different id
cudaSetDevice (int deviceId), it is implemented as module GPUsetDevice. For the
example given above, it implies that useful settings are 0 or 1.

2.2 Data transportation 5

Figure 1: Basic GPU modules.

2.2 Data transportation

The basic components for data handling on GPU are data allocation and freeing, data transfer from
GPU to both GPU and CPU and vice versa. The complete set is illustrated in Figure 1.

The speed of data transportation is an important aspect in real time systems, and has been discussed
in [3]. An implementation of data transportation is given in Figure 2a and its timing results are given
in Figure 2b-e.

In Figure 2a two green modules are merged to a single module called GPUmemorySpeedTestDev.
Note that GPUsetDevice has only one output connection, this gray connection is the so-called control
connection. Merging these modules is mandatory since the device setting would be lost if these mod-
ules would be executed sequentially by separate processes. Merging these modules to a single one
preserves the setting of the device and by providing a device index a test can be run with one device or
with two devices in parallel.

The timing results are obtained by using “ReadTable” twice together with the “Plot” module. The
results of the plot module are given in Figure 2 and will be used throughout this report.

2.2.1 Data transport evaluation

Three different PCs have been used to evaluate the memory transfer

• A PC with PCI-express 2.0 (8 GB/s) and two 285GTX GPUs (159 GB/s; 1063 GFLOPS).

• A PC with PCI-express 1.0 (4 GB/s) and one 8800GTX GPU (86.4 GB/s; 518 GFLOPS).

• A notebook with PCI-express (4 GB/s) and one 8400M-GS GPU (6.4 GB/s; 38.4 GFLOPS).

Note that memory has an upper bound as well. For the Intel this was bound to 10.4 GB/s and 12.8
GB/s for high-end processors. Recently these numbers have doubled due to Intel’s nehalem technol-
ogy. Since multiple processors make use of the available bandwidth it might become a bottleneck, see
[3].

The results given in Figure 2b-e have been obtained by taking the average over 10,000 iterations,
and for large data blocks (≥ 25 MB) 1,000 iterations.

Figure 2b illustrates the results for loading from CPU memory and storing it in GPU memory. The
latest PC technology demonstrates that a 1GB/s data transfer is reached for even for small data sets.
A throughput of 3 to 4 GB/s is reached at data sets of around 1 MByte. The maximum throughput

2.2 Data transportation 6

a)

b) c)

d) e)

Figure 2: Data transportation. a) TiViPE implementation. b-e) Timing results for data transfer from
CPU to GPU, from GPU to CPU, by copy on the GPU, and for allocating and freeing data on the GPU.

2.2 Data transportation 7

measured 5.8 GB/s and that implies 72.5% which is close to the maximum bandwidth, since there is
20 percent overhead on PCI-express.

Figure 2c illustrates data trafficking the other way around. Also here a bandwidth of 1GB/s is
reached for small data sets. The performance “dip” for large datasets is due to the number of iterations
instead of 10,000, 1,000 iterations have been performed. For the transportation of data from single
285GTX it resulted in a throughput between 5.1 to 5.2 GB/s, while repeating the same with 10,000
iteration resulted in a performance between 5.6 and 5.8 GB/s. Indicating that storing data in CPU
memory is dependent on the amount of data rather than the data size alone.

Figure 2d demonstrates smooth curves reaching a throughput of up to 95% of the bandwidth. The
285GTX is capable of copying an 128x128 pixel 8 bit monochrome image at a speed of 1 GB/s it is
less than 16 (µs). Note that in this case the used bandwidth is 2 GB/s, since on load and one store is
used for a copy. Its clear that better performance is reached when 1 MB of data or more are copied.

Figure 2e memory allocation and freeing demonstrates that memory allocation and freeing takes
constant time for a 285GTX GPU for data blocks up to 10 MB. Both are combined for the simple
reason that allocated memory will be freed, unless memory leaks are desired. It takes 150 µs to
allocate and free a single block, it seems very little, but it might have substantial impact impact in a
real time environment.

Suppose that 8 computational steps are performed subsequently, and that every step requires allo-
cation and freeing of one block, it would require 1 ms for data management only. In practise for every
step multiple blocks are allocated quickly resulting in substantial memory management overhead.

It appears that the CPU is capable of allocating and freeing memory considerably faster, in ob-
ject oriented programming these steps are performed many times, its commonly performed by a the
constructor and destructor of a class.

TiViPE blocks have adopted the CPU concept of allocation and freeing. Unfortunately as men-
tioned before this might have strong impact on the processing speed of the GPU. For the GPU memory
needs to be allocated first, next processing should take place where no memory management takes
place, afterwards the memory will be freed. It explains why there are a substantial number modules
for data transportation, see also Figure 1.

2.2.2 Parallel but not too parallel

A simple test has been performed by running two GPUmemorySpeedTestDev modules at the same
time, both transferring 4 megabytes of data. The results of a single process are given in the first row
of Table 1. It illustrates that a single process transports data of a rate of almost 5GB/s over a 16 lane
PCI-Express v2.0 bus. A copy of data is performed on the GPU that requires one load and one store.
For the bandwidth occupancy we have to double the rate since a load and a store is used. Taking into
consideration that the maximum bandwidth of a 285GTX GPU is bound by 159 GB/s, the measured
performance is around 90% of this maximum.

In case of receiving the maximum bandwidth the conclusion is that at most 2 processes should be
used when using transferring data from CPU to GPU and vice versa, when two GPU cards are used.

2.2.3 Transfer by a single step

The data rate of 10,000 iterations was higher than 1,000 iterations. What happens if a single block is
processed?

Figure 3 provides minimum, average, and maximum of 1,000 measurements for the PC with two
285GTX GPUs.

2.2 Data transportation 8

processes device toGPU(GB/s) onGPU(GB/s) toCPU(GB/s) A+F(ms)
1 1x0 4.83163 67.1675 4.70536 0.1571
2 1x0, 1x1 4.16156 68.1017 3.31804 0.2954
2 2x0 1.26783 36.4422 1.23471 0.3227
4 2x0, 2x1 1.23307 35.4598 1.20343 0.5794
6 3x0, 3x1 0.82091 22.2305 0.79770 1.5313

Table 1: Data transfer rates with one or two GPU cards activated. The number of processes is given in
the leftmost column, its distribution on the 2 GPU devices in the next column. A+F denote allocation
and deleting/freeing data.

a) b)

c) d)

Figure 3: Data transportation measurements for a single block of data. a-d) Timing results for data
transfer from CPU to GPU, from GPU to CPU, GPU allocation of memory, and freeing allocated GPU
memory, respectively.

3 TiViPE application by convolution example 9

Figure 4: TiViPE icon for convolution. Icons in green are use to construct CPU icon.

The drawback of single block measurements is that other processes might be scheduled and take 10
or 20 ms of processing time, these are the worst case situations for allocation and freeing of memory
that have been measured, but omitted in Figure 3c-d. These occurrences are few since average and
maximum data transfer rates differ marginally.

Surprisingly the transfer rates for a single block from CPU to GPU are higher (Figure 3a) compared
to those with 10,000 cycles in a run (Figure 2b). The transfer the other way around confirms that the
maximum throughput is around 5.2 GB/s and further the curves given in Figure 3a and Figure 2c
appear, as expected, very similar. Figure 3c and d confirm that memory allocation takes at least 60 and
70 µs for allocation and freeing memory. Figure 2e provides the sum allocation and freeing shows a
similar curve.

3 TiViPE application by convolution example

The concept for programming TiViPE modules that make use of the GPU is decomposed in memory
allocation and transfer to GPU, processing on the GPU, and transfer to CPU, and freeing memory.
This concept is illustrated by the green modules in Figure 4.

The computational component is the “GPUconvolution”, for a definition and details on the imple-
mentation of a convolution, see [3], it contains 5 inputs rather than the expected 2, one for data and
one for kernel(s), as given in “convolutionGPU”. This is because the GPU modules do not contain
any data allocation or freeing. The GPUconvolution module contains five inputs from left to right,
the pre-allocated output data, the input data, kernel data, image buffer, and kernel buffer, respectively.
Latter 2 inputs are used solely if the fast Fourier transform (FFT) is used.

The timings for spatial convolution of the GPUconvolution module are listed in Table 2. For a
1024 squared image or kernel the Fourier transform for both forward and backward transform take
around 1.4 ms while the multiplication in Fourier domain takes 0.2 ms. Depending on if the image
and kernel need to be transferred to the Fourier domain the overall time needed is 1.4 (forward image)
+ 1.4 (forward kernel) + 0.2 (complex multiplication) + 1.4 (inverse transform) = 4.4 ms.

4 TiViPE modules 10

kernel size Float Char Short Integer Long Double
3x3 362
5x5 470 868 674 713 1983 938
25 generic 1544 1424 1221 1789 3169 2330
7x7 647
9x9 848
11x11 1122
13x13 1412
15x15 1767
17x17 2352
19x19 2834
21x21 3279
23x23 3800
25x25 5058
625 generic 12700

Table 2: Spatial convolution timings on 285GTX for data size 1024x1024 for different kernel sizes.
Timings in microseconds (µs).

4 TiViPE modules

This section provides an overview of the available GPU modules their timings are provided for a 285
GTX GPU card at normal clock speeds. The initial set of available TiViPE modules that perform their
main computations on the GPU are illustrated in Figure 5.

4.1 Processing time prediction for any GPU card

In case a different GPU is used or different clock speeds one can make an estimation of the time needed
for a routine. Its as follows:

speedfactor =
1

2

(
GPUGflops

1063
+
GPUGBsBandwidth

159

)
(1)

For instance if the card is an 8800GTX it has a GPUGflops = 518 and GPUGBsBandwidth = 86.4. So
its computational power is 0.48 and its bandwidth is 0.54 yielding a speedfactor = 0.52. Hence it is
expected that it takes about 1.92 times the time compared to a 285GTX.

Note that this factor holds for floats only. For instance resizing other data type is considerably
slower on a 8800GTX, see also Table 3.

4.2 Processing time

Processing time for 1024 times 1024 elements are given in Table 3.
Resizing data is size dependent, for images of 1024x1024 pixels of type float resizing is illustrated

in Table 4 in the top row are the resizing factors given for first and second dimension while at the
bottom row the timings are given.

Computing the histogram for all intensities

h(I) =
∑
x,y

I(x, y) (2)

4.2 Processing time 11

Figure 5: Set of available GPU modules. Columns from left to right represent arithmetic, color,
datamanipulation, and filters, respectively.

class module description Float (U)char (U)short (U)Integer (U)long Double
Arithm. poly123 float const 141 199 129 152 210 258
Arithm. poly123 double const 314 288 285 306 388 372
Datam. convert 8,16, 32 bit 79 69 69 79 128 128
Datam. convert 64 bit int 118 103 98 99 126 126
Datam. convert double 118 167 171 170 170 128
Datam. convert nc 8,16, 32 bit 101 109 111 111 133 136
Datam. convert nc 64 bit int 138 144 140 140 153 156
Datam. convert nc double 137 328 326 325 320 153
Datam. crop from 20482 91 85 90 92 128 127
Datam. fft2d 1367 X X X X X
Datam. pad from 800x600 101 97 100 102 130 130
Datam. resize to 20482 259 250 260 262 X X
Datam. resize on 8800gtx 588 2861 2604 585 X X
Filters convolution 5x5 kernel 470 868 674 713 1983 938
Filters convolution 25 generic 1544 1424 1221 1789 3169 2330
Filters median 3x3 kernel 342 505 457 343 775 867
Filters median 5x5 kernel 925 1410 1274 925 2516 3171
Filters sobel 263 345 309 272 615 400
Filters threshold adap binary 177 180 172 179 227 219
Filters threshold fixed nobin 119 118 118 117 149 129

Table 3: Timing in µs for 285GTX gpu card. Timings marked by X denote that they are not supported.

0.25x0.25 0.5x0.5 0.75x0.75 1x1 2x1 2x2 3x2 3x3 4x3 4x4
40 60 66 80 143 259 388 560 744 984

Table 4: Timings in (µs) for resizing a 1024x1024 image (float).

4.3 Visualization 12

Figure 6: Histogram performance for both CPU and GPU.

where I(x, y) denotes the intensity of the image, can be performed in parallel on a GPU, but its perfor-
mance isn’t substantially better compared to a single core of a CPU, as illustrated in Figure 6. The only
exception is the strongly optimized 32 bins solution for unsigned characters. In that case the histogram
takes 80 micro seconds for a 1024x1024 monochrome image.

4.3 Visualization

TiViPE contains two standard icon called Display and Animate for visualization. The make use of
OpenGL and CPU processing. The aim of the construction of the GPUdisplay and GPUanimate mod-
ules is to provide a very similar look and feel compared to their CPU equivalents. These routines
use OpenGL as well, but process the data on the GPU using the concept of cudaGLMapBufferObject,
processing on the GPU, followed by cudaGLUnmapBufferObject.

Table 5 illustrates the speeds of the old version compared to the new GPU version. For a single
GPU device/card the performance is around 120 and 360 µs for the 285GTX and 8800GTX, respec-
tively. The performance increase of a GPU is of two orders of magnitude compared to a CPU.

The processing itself takes barely any extra time, hence it does not matter what data-type is being
used. Internally we can select to compute either unsigned character data or floating point computation
for visualization. In the latter case, it implies that internally 4 times more data is used. Although it is
possible technically to process floating point data, there are 2 reasons that it is not extremely useful:

1. Software and/or hardware provide 8 bit or 256 grades per channel (r, g, b, alpha).

2. In case your display is able to process 10, 12, or 16 bits per channel, and your software supports it
(like these 2 TiViPE modules) the human eye is not sensitive enough to distinguish between two
neighboring gray values or colors. So additional processing is needed to make these differences
visible to the human eye.

4.3.1 Multiple GPU cards

The more interesting case is when at least 2 GPU cards are used, since in that case most of the pro-
cessing time is spend in mapping and unmapping a buffer object. Its performance appears to be much

4.3 Visualization 13

type cpu-u 285gtx 8800gtx 2 x 285gtx-u 2 x 285gtx-f
uchar 9.6 0.11 0.33 1.1 3.1
uchar3 13.1 0.11 0.33 2.3 7.5
float 19.9 0.11 0.33 1.1 3.1
float3 36.0 0.11 0.33 2.3 7.5
uchar 0.12 0.36 3.1 9.5
uchar3 0.12 0.36 7.5 29.5
float 0.12 0.36 3.1 9.5
float3 0.12 0.36 7.5 29.5

Table 5: Timings in milliseconds displaying a 1024x1024 and a 2048x2048 image, at top rows and
bottom rows, respectively.

Figure 7: Speed of visualization measured in GB/s.

slower as shown in the rightmost two columns of Table 7. The throughput measured in GB/s is given
in Figure 7.

In conclusion a one mega pixel monochrome image can be visualized in a little more than one
millisecond. Setting up 2 display modules has a negative impact on the performance since it takes
every display 4.1 milliseconds to visualize the data while a single module would take 1.1 milliseconds.

It appears that there is a correlation between the CPU-GPU transfer and the visualization timings
(see also Figure 2 and Figure 7), its possible that there is just a factor 3 between them, possibly
suggesting that 3 data transfers take place. One might suspect that cudaGLMapBufferObject copies
the device memory to the host and then re-uploads it into OpenGL after modification. Possibly that
copying data back and forth between GPU and CPU is faster using glMapBuffer to get data into an
OpenGL buffer object.

On the NVIDIA forum, Mark Harris wrote the following on July 28, 2008:

to add a note here, because I got bitten by this recently. Currently on Windows XP OpenGL
interop falls back to transferring data between GL and CUDA contexts via the host on
multi-GPU systems. EVEN IF the CUDA and GL code are running on THE SAME GPU.

Yes, this is a major limitation, and it will be fixed in the future. For now, you’ll get better
performance for interop-bound applications by running them on a single GPU.

4.4 Multiple scale image processing 14

internal elements x 10242 285gtx device 0 285gtx device 1
uchar 1 0.11 1.0
uchar 3 0.11 2.0
float 1 0.11 2.1
float 3 0.11 5.7
uchar 4 0.12 2.6
uchar 12 0.12 7.2
float 4 0.12 7.1
float 12 0.12 21.5

Table 6: Timings in milliseconds displaying a 1024x1024 and a 2048x2048 image, at top rows and
bottom rows, respectively.

BTW, this means you need to remove the second GPU or disable it in the windows device
manager. Simply not extending the desktop onto the second GPU is not enough (in my
tests).

Indeed Mark is right about the desktop extension, but fortunately there is a work-around to get the
optimal performance of a single card for visualization, but being able to use multiple cards:

1. disable all cards except the first one. For window XP select Control Panel->System. A
pop-up window appears Select hardware->Device Manager, select Display adapters->Select
a device and disable it by a right-click and selecting disable.

2. A reboot is required to active these new settings.

3. Repeat the first item, but now enable the devices. The OS does not require a reboot! This setting
yields best of both worlds.

4. To ensure that the same setting is obtained the next time, one could disable the device immedi-
ately, and reboot later.

These settings have been tested by using two displays that are connected to the first device.
Note that within TiViPE one can validate the number of active cards by running GPUinfo. The

good part about the current setting is that multiple GPUdisplay modules can be used, they appear to
work much faster for the first device that contains the desktop compared to the second device that is
not connected at all to a display. Its obvious that in the latter case the data is transferred from GPU
device 1 to CPU, and from CPU to GPU device 0. Considering the case given at the third column of
the bottom row of Table 6 it takes 21.5 milliseconds to transfer the data from device 1 to 0, yielding a
throughput of 2.23 GB/s. This corresponds to the expected bandwidth of 4.5 GB/s, see also Figure 3.

The fact that it takes 29.5 ms with one display connected to the first and one to the second, see
bottom row of Table 5, and 37.4 ms (independently on which GPU device it is executed) when both
connected to the first suggests that data is transfered first to CPU and then copied to both devices.

4.4 Multiple scale image processing

This section contains the modules for multiple scale processing with the aim to be able to perform a
Gaussian pyramid decomposition to resize an image. Such a construction contain a high-pass and a
low-pass image. The image reduction process involves lowpass filtering and downsampling the image
pixels. The image expansion process involves upsampling the image pixels and lowpass filtering. This
so-called Laplacian Pyramid has been described by Burt and Adelson [1].

4.4 Multiple scale image processing 15

Figure 8: Modules used for multiple scale processing. On the left an example with all 6 modules
that are involved in pyramid processing. The other 6 networks represent each one module, where
for every module memory allocation/freeing and transportation has been performed. They have been
compounded to a single module with post-fix “GPU” rather than the pre-fixed “GPU” in the network
on the left.

The routines involved in pyramid processing are illustrated in Figure 8.
The routine used for downsampling is as follows

gl(i, j) =

2∑
m=−2

2∑
n=−2

w(m,n)gl−1(2i+m, 2j + n) (3)

for levels 0 < l < N . Kernel w is a 5-by-5 pattern that is separable

w(m,n) = ŵ(m)ŵ(n) (4)

and symmetric, and needs to give equal contribution. This is satisfied when ŵ(0) = a, ŵ(−1) =
ŵ(1) = 1/4, and ŵ(−2) = ŵ(2) = 1/4− a/2.

The routine for upsampling is as follows

gl,n(i, j) = 4

2∑
m=−2

2∑
n=−2

w(m,n)gl,n−1(
i−m

2
,
j − n

2
) (5)

For the terms for which (i−m)/2 and (j − n)/2 are integers are included into this sum.
The timings for pyramid routines are provided in Table 7.
The two main routines for pyramid construction are GPUdecompose and GPUreconstruct. GPUde-

compose constructs a Gaussian and a Laplacian pyramid from a given input image. GPUreconstruct
on the other hand uses the Laplacian pyramid as input and constructs a Gaussian pyramid, level 0 of
this pyramid is the same as the input image. In the experiment provided in Figure 8 this is almost the
case, there are some rounding errors, likely caused by numerical loss on the 32-bit floating point. The
largest error was found to be 0.0015 where the values are between 0 and 16,000.

4.5 Polynomial function and look-up table 16

Routine 4096 3072 2048 1536 1024 768 512 384 256 192 128 ... 4
GPUdownsample (float) 2517 1419 638 364 172 104 56 37 25 19 18 18
GPUupsample (float) 2574 1438 643 367 172 103 57 37 24 17 17 17
GPUreduce (float) 6766 3724 1754 987 464 280 145 95 63 45 39 39
GPUexpand (float) 3993 2238 1678 595 453 168 87 56 37 26 21 21
GPUdecompose (float) 10203 5797 2706 1612 848 565 376
GPUreconstruct (float) 6605 3745 1744 1032 538 354 229

Routine (U)char U(short) (U)int (U)long Float Double
GPUdownsample (N=2048) 668 689 696 1277 638 1906
GPUupsample (N=2048) 473 557 669 1189 644 1236

Table 7: Timings on a 285GTX GPU in milliseconds for different pyramid modules for different sizes
N and different datatypes. For GPUdownsample holds N2 to (N/2)2, GPUupsample (N/2)2 to N2,
GPUreduce for N2 input, and GPUexpand for N2 output. GPUdecompose and GPUreconstruct have
been measured with 7 pyramid levels.

Routine Description Size N Float
GPUlut 2048 557
GPUpoly k=3 2048 253
GPUpoly k=13 2048 415
GPUlut 1024 162
GPUpoly k=3 1024 67
GPUpoly k=13 1024 107
GPUlut 512 59
GPUpoly k=3 512 21
GPUpoly k=13 512 31

Table 8: Timings on a 285GTX GPU in micro-seconds for computation of a function. Size N denotes
N2 elements, k implies a polynomial function of k − 1th order: yi =

∑k−1
i=0 cixi.

4.5 Polynomial function and look-up table

In mathematics a function is a relation between a given set of elements (the domain) and another set
of elements (the codomain), which associates each element in the domain with exactly one element in
the codomain. These elements are often real numbers.

On a computer these functions are processed by a floating-point-unit. However many embedded
processors, especially older designs, do not have hardware support for floating-point operations. Hence
emulation or approximation is mandatory.

In this section a comparison is made between a look-up table. On the GPU standard texture hard-
ware is available to perform linear interpolation using such a table. We used a table of 4096 elements
between 0 and 1 as illustrated in Figure 9a.

Figure 9a illustrates the implementation of this test. At the left upper part an input images of
N ×N elements is read and processed by the lutGPU and polyGPU modules. Both routines consists
of a merged set of modules that are given at the bottom left and right for the polynomial and LUT
routine, respectively. The top right part simulates a LUT of 4096 elements and approximated by a
polynomial least squares fitting algorithm called polyFit. Figure 9a illustrates both functions. The
polynomial constants are used as input for the polynomial function.

Its stunning to find out that a polynomial function is faster than a look-up table even polynomials
of order 12 are faster than a look-up table of 4096 elements.

How much time it takes extra to compute a polynomial function that is one order higher? We

4.5 Polynomial function and look-up table 17

a) b)

c)

Figure 9: a) Look-up table and two polynomial function approximations. b) Enlargement of (a). c)
TiViPE network used for evaluation.

REFERENCES 18

measured 430.83 and 415.38 microseconds for k=14 and 13, respectively, see also Table 8. This
implies 20482 operations in 15.45 microseconds. It implies that 271 Giga-operations are computed
per second. Since the operation used to compute one degree higher is

val = val * di + cj;

Two floating point operations are required yielding 542 G-Flops or 51 percent of the peak performance
of a 285GTX GPU.

References

[1] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions
on Communications, 31(4):532–540, April 1983.

[2] T. Lourens. Tivipe –tino’s visual programming environment. In The 28th Annual International
Computer Software & Applications Conference, IEEE COMPSAC 2004, pages 10–15, 2004.

[3] T. Lourens. The art of parallel processing using general purpose graphical processing units –
hardware, cuda introduction, and software architecture. Technical report, TiViPE, 2009.

