
TiViPE
Visual Programming

The Art of Parallel Processing using General
Purpose Graphical Processing units

–Hardware, CUDA introduction, and Software architecture
Technical Report

Copyright c©TiViPE 2009. All rights reserved.

Tino Lourens
TiViPE

Kanaaldijk ZW 11
5706 LD Helmond
The Netherlands
tino@tivipe.com

June 23, 2009

CONTENTS 2

Contents

1 Introduction 4

2 CPU architecture 5

3 GPU Hardware 7

4 Data transfer 8

5 Introduction to CUDA programming 10
5.1 Installation of CUDA . 10
5.2 CUDA project . 10
5.3 Parallelism . 11

5.3.1 General purpose functions . 11
5.4 Timers . 12
5.5 C alike . 13

6 Software architecture 13
6.1 Data structure . 14
6.2 Basic components . 14
6.3 Basic example . 14
6.4 General framework . 16
6.5 Software Model . 17

6.5.1 Example: polynomial function . 18
6.5.2 Memory bandwidth: Load and Store . 18
6.5.3 Computational performance: Instructions . 18
6.5.4 Model prediction . 19
6.5.5 CPU implementation . 19
6.5.6 Best case GPU performance . 21
6.5.7 Refining the model . 21
6.5.8 Memory alignment . 22
6.5.9 Shared memory . 24
6.5.10 GPU Performance by decomposition . 26

CONTENTS 3

Abstract

The aim of this report to elaborate on general purpose graphical processing unit (GP-GPU)
programming and provide a cookbook for programming NVIDIA’s compute unified device archi-
tecture (CUDA). CUDA contains a programming language that is very similar to C, and thus easy
to program. Programming CUDA appeared to result in algorithms that are at least one order of
magnitude faster than a best effort multi core SSE implementation. When normal C/C++ code was
used the differences where 2 to 3 orders in magnitude.

The architecture of the GPU is elegant which makes it easy to construct a hybrid model of
data-transfer and pure instruction (or floating point) processing that is much easier to understand
than a SSE or cache optimized CPU model.

The GPUs as computational units rapidly evolving compared to the CPU, the gap between
CPU on both data-transfer and computational power is more than 10 fold, making the GPU an
excellent candidate for real time parallel data processing. The latest generation GPUs has become
powerful enough to make a single PC solution to become sufficient to control a for instance a
medical imaging system. It implies size reduction, cost reduction, energy reduction, programming
effort reduction, and lifting on off-the-shelf consumer technology.

A follow up report on CUDA parallel computing using TiViPE is available [2]. In this report
TiViPE programs using parallelism will be discussed together with the respective computational
times for different datatypes.

1 Introduction 4

Chapter 1. Introduction to CUDA

2 CUDA Programming Guide Version 2.0

processor with tremendous computational horsepower and very high memory
bandwidth, as illustrated by Figure 1-1.

Figure 1-1. Floating-Point Operations per Second and
Memory Bandwidth for the CPU and GPU

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel

NV30

Jan
2003
Jun Apr

2004 2005 2007 2006 2008

NV35 NV40
G70

G71

G80

G92

GT200

Jun Nov Mar May Jun

GT200 = GeForce GTX 280

G92 = GeForce 9800 GTX

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

3.0 GHz
Core2 Duo

3.2 GHz
Harpertown

NV30

NV40

G71

G80

G80
Ultra

G80
Ultra

Northwood
Prescott EE

Woodcrest
Harpertown

Figure 1: CPU and GPU performance development. In Q2 2008, the high-end Intel CPU processor
is an octo (dual-quad) core with a peak performance of around 100 GFLOPS while the latest GeForce
GPU have a peak performance of 1 TFLOPS.

1 Introduction

Hardware is rapidly evolving and has made a shift towards parallel computing by producing multiple
cores on a single processing unit. This holds for both a central processing unit (CPU) with 2, 4, or 8
processing units and a graphical processing unit (GPU) with at most 16 multiprocessors having each
8 to 24 stream processors. The computational speed of processors has increased substantially over
the past decades. The current CPUs are in a 10-20 giga (109) floating point operations per second
(GFLOPS) range per core, yielding a total of 80 GFLOPS for a high-end quad core. GPUs have
staggered to a 200-600 GFLOPS range (583 GFLOPS for an NVIDIA 8800 Ultra), and it is a fact that
in Q2 2008 the GPUs have hit the tera (1012) floating point operations per second (TFLOPS) domain,
since NVIDIAs 9800GX2 and the 280GTX with peak performances of 1.152 and 0.933 TFLOPS,
respectively. In Q1 of 2009 a shift was made form 65 to 55 nm technology resulting in a 285GTX and
a 295GTX with peaks of 1.062 and 1.788 TFLOPS, respectively. The competition between AMD/ATI
and Nvidia is the force between this technology development. A third competitor is Intel’s Larrabee,
and it is likely to enter the market by 2010.

In a matter of just a few years, the programmable graphics processor unit has evolved into an abso-
lute computing workhorse, as illustrated in Figure 1. With multiple cores driven by very high memory
bandwidth, today’s GPUs offer incredible resources for both graphics and non-graphics processing.
The main reason behind such an evolution is that the GPU is specialized for compute-intensive, highly
parallel computation.

Currently the market has voted for Blue-Ray DVD and full HD, and the LCD screen standard is set
to 24 inch. It implies that the number of pixels per display has increased by a factor 2 to 4, demanding
GPUs to evolve rapidly.

Also software developments are evolving. In 1992, Silicon Graphics Incorporation (SGI) intro-
duced the open graphical language (openGL) standard that is still widely used. In 1995, Microsoft
acquired RenderMorphics, its RealityLab engine was integrated into Direct3D. In 2001, NVIDIA cor-
poration introduced Cg “C for graphics” to bridge the gap between OpenGL and Direct3D. A recent

2 CPU architecture 5

Figure 2: Intel PC architecture.

trend in computer science in stream computing is general purpose computing on GPUs (GP-GPU).
In 2007, NVIDIA started to supply this trend by the compute unified device architecture (CUDA)
together with an easy to use software development kit (SDK).

This report is outlined as follows: Section 2 gives an overview of the Intel architecture and its
bottlenecks with regard to data transfer (Section 4). Its followed by a a section on GPU hardware.
Section 5 provides an introduction to CUDA programming. The following section, provides an in
depth explanation on GPU programming. It also gives a general framework for both CPU and GPU
processing. Section 6 elaborates on a model that comprises of a data transfer and a computational part
to predict the time required to process an algorithm.

2 CPU architecture

Figure 2 illustrates the PC architecture. Let us consider a data stream from I/O devices to display step
by step, and assume that a video stream with images of 1MB of data travels from one place to another.

2 CPU architecture 6

The commonly used I/O devices are USB 2.0 with a bus-speed of 480 Mb/s, SATA 3.0 Gb/s,
ethernet at 1Gb/s and recently 10 Gb/s, and PCI-express solutions like infiniband at speeds of 10, 20,
and 40 Gb/s.

Given a giga bit ethernet we can process at most 1Gb/s is equivalent to 125MB/s and in practise due
to the TCP-IP/UDP protocol where data is added to a package of 1500 or 9000 bytes the performance
is between 70 and 90 percent of this 125MB/s, so it implies that around 100MB can be processed per
second. Latter is equivalent to 100 frames per second. Hence if more data needs to be processed, it is
important to use 10 giga bit ethernet. It is able to process 10 times as much data as the giga bit ethernet
yielding a performance of 1GB/s.

The speed of the internal bus has a direct media interface (DMI), it is approximately a PCI-Express
x4 that has the speed of 1 GB/s. If disc I/O needs to be performed parallel to sending data by ethernet
this internal bus might become a bottleneck. A solution to this problem is to bypass the internal bus and
connect directly to the memory controller using the so-called infiniband connection that is available at
speeds of 1, 2, and 4 GB/s. However, connecting several PCs will result in multiple hubs, since the
number of PCI-Express slots is limited to at most four on most motherboards. In 2009, ASUS came
with a “P6T7 WS SuperComputer” motherboard, that contains 7 PCI-express slots with 16 lanes. The
term supercomputer refers to the GPU potential of 4 CUDA cards, leaving still space to install high-
bandwidth interfaces like infiniband.

The CPU is a calculator able of processing instructions in parallel, currently up to 8 cores. To
obtain data for processing it is coupled to a front side bus (FSB) that is able to process up to 12.8GB/s.
A dual lane with a speed just half that of the front side bus couples memory to the CPU. In case when
8 cores are used and these cores would all need the maximum data transfer around 800MB/s for a
10.6GB/s FSB per core could be achieved. For 1MB of image data per core it would imply that 1.25
ms are needed to get data to a core. Its is seems to be a huge bandwidth, but when several intermediate
results are processed this data trafficking could quickly increase. Just consider spatial and temporal
filtering of a single image by construction of for instance a Gaussian and a Laplacian pyramid that
each contain around 6MB (32 bit float) of data, suppose that around 5 intermediate results of data are
necessary for temporal integration. It becomes obvious that computing data on a CPU might lead to
trafficking times of more than 30 ms per image as just sketched. Some real time CPU models need to
avoid data transportation for this reason by keeping data as much a possible in the memory caches, and
thus in a more complicated software architecture. Section 4 elaborates on this topic in more detail.

An alternative would be to send data to the PCI-Express bus at speeds of 250 or 500 MB/s (PCI
express version 2.0 of late 2007) per lane. Commonly 16 lanes are used for graphics cards result-
ing in speeds of up to 4 or 8 GB/s. The in practise due to overhead, these values are lower, see
also http://en.wikipedia.org/wiki/PCI Express. Data-transfer rates will be checked extensively in Sec-
tions 4.

Performing a data-transfer once over the PCI-Express bus, result in data to reside on the GPU.
Being there computational power and memory bandwidth are a factor 10 higher, and thus a good
alternative when it comes to processing data in real time.

Another advantage is that when data needs to be displayed on the screen binding of the data that
resides on GPU will be sufficient. Hence no data transportation to the CPU by PCI-Express is neces-
sary. On the other hand the resulting CPU data will need to be moved to the GPU for visualization
anyway.

3 GPU Hardware 7

a) b)

c) d)

Figure 3: a) Schematic details of NVIDIA 280GTX. b) Die overlay. c) Size compared to CPU. d)
Die. Data obtained from LR web-site (http://forums.legitreviews.com).

3 GPU Hardware

The first thing to be said about the latest NVIDIA GT200 series is that it’s not a major departure from
the current stable of G80-derived GPUs. Instead, it’s very much a refinement of that architecture, with
a multitude of tweaks throughout intended to improve throughput, efficiency, and the like. The GT200
adds a handful of new capabilities at the edges, but its core graphics functionality is very similar to
current GeForce 8- and 9-series products.

The GeForce GTX 2xx series is designed specifically for parallel computing, incorporating unique
features like shared memory, atomic operations and double precision support. In order to do this it has
240 cores running at speeds of 1.3GHz or higher.

If you take the die of the Intel 45nm Penryn processor that is found in the newest quad-core
processors and sit it on top of the GeForce GTX 280 you’ll get an idea of just how big this new core
really is (Figure 3c). Eighty percent of the transistors of a GPU are used for computation compared to
just 4% for a CPU!

As the overlay shows in Figure 3b, the stream processor clusters, texture units, raster operation
processors (ROPs), and frame buffer memory partitions are located in a grid layout in the GPU. The
wafer shot (Figure 3d) shows just how big the GT200 is.

4 Data transfer 8

Figure 3a shows a high-level view of the GeForce GTX 280 GPU parallel computing architecture.
A hardware-based thread scheduler at the top manages scheduling threads across the thread processing
clusters (TPCs). You’ll also notice the compute mode includes texture caches and memory interface
units. The texture caches are used to combine memory accesses for more efficient and higher band-
width memory read/write operations. The elements indicated as ’atomic’ refer to the ability to perform
atomic read-modify-write operations to memory. Atomic access provides granular access to memory
locations and facilitates parallel reductions and parallel data structure management.

The G80 core used to perform ROP frame buffer blending at half speed. The GTX 200 can perform
the same tasks at full-speed. The GT200 GPU also sports twice the number of registers for longer, more
complex shaders. The chip’s output buffer size has been increased by a factor of six and it offers IEEE
754R compliant double precision for improved floating-point accuracy, its the first generation GPUs
with 64 bit floating point precision.

Figure 3a provides a lot of information by the schematic rectangles. The 10 large groups across
the upper portion of the diagram are what NVIDIA calls thread processing clusters, or TPCs. TPCs
are familiar from G80, which has eight of them on board. The little green boxes inside of the TPCs are
the chip’s basic processing cores, known in NVIDIA’s parlance as stream processors or SPs. The SPs
are arranged in groups of eight, and these groups are called SMs, or streaming multiprocessors.

Let’s combine the power of all three terms. 10 TPCs multiplied by three SMs times eight SPs
works out to a total of 240 processing cores on the GT200, and that is nearly twice the G80’s 128 SPs.

One of the key changes in the organization of the GT200 is the increase from two to three SMs
inside of each thread processing cluster. The TPCs still house the chip’s texture addressing and filtering
hardware (brown rectangles), but the ratio of SPs to texturing units has increased by half, from 2:1 to
3:1.

The lower part of the diagram reveals a corresponding rise in pixel-pushing power with the increase
in ROP (raster operator) partitions from six on the G80 (GeForce 8800 GTX) and four on the G92
(GeForce 9800 GTX) to eight on the GT200. Since each ROP partition can output four pixels at a
time, the GT200 can output 32 pixels per clock. And since each ROP partition also hosts a 64-bit
memory controller, the GT200’s path to memory is an aggregated 512 bits wide.

4 Data transfer

In real time processing and latency issues data transfer plays a key role. In order to understand the per-
formance of data transfer between processor and memory one has to understand the Intel architecture,
its north bridge, and PCI-express (2.0).

The upper bound performance of the PCI-express bus is 8 giga bytes per second (GB/s). The
memory bus, at the other side in Figure 2, is divided into 2 pipelines, all even cores have access to one
while the odd core numbers have access to the other pipeline. A single core of an intel E5430 can write
up to 3GB/s to memory and in that respect it does not fill the entire bandwidth of the pipeline. When
a single process runs on all cores the maximum throughput per core is 1GB/s per core. In practise this
number is around 800MB/s per core. Its obvious that when multiple processes run on a single core its
throughput needs to be divided among the processes reducing the I/O bandwidth even more. The core
i7 Nehalem technology provides a higher bandwidth its discussed in [2].

Assuming that every process is bound by memory I/O we can derive the maximum throughput per
process:

T =
B

2 max
(∑C

2
−1

i=0 P2i,
∑C

2
−1

i=0 P2i+1

) , (1)

4 Data transfer 9

a)

b) c)

Figure 4: Data transfer rates for different page sizes, ranging from 1 kilobyte to over 40 megabytes. a)
Performance of 8400 mobile GPU device. b) and c) illustrate the performance of the 8800GTX GPU
device.

where B denotes the maximum bandwidth (8GB/s), Pi denotes the number of processes on core i, and
C denotes the number of CPU cores.

We performed a test on the I/O bandwidth between CPU and GPU without any other processes
and with cores 0, 1, 2, and 3 using maximum I/O bandwidth. These processes also use the full CPU
processing power. The process that performs the bandwidth test for the GPU requires 100% CPU load
for a single core as well.

Table 1 provides the transfer from host to device for page-able memory for 32MB of data is per-
formed for paged and pinned memory Transfer rates are close to the expected performance T from
(1). For instance, when the first 4 cores have a process that is solely writing data, and the process is
running that does the check the GPU related bandwidths, we have either 3 processes on the even or
odd cores. Hence it is expected that the CPU I/O performance declines with a factor 3. The second
row in Table 1 illustrates that there is a decrease in performance of a factor 2.4 to 2.6.

When the same is performed with 8 cores instead of 4, we even notice a decrease in device to
device data transfer. This is due to the maximum CPU load required by a single process. Since 9
processes are active computational resources are shared which has effect on the maximum possible
GPU device to device transfer.

Figure 4 demonstrates the bandwidth for different memory chunks. The maximum bandwidth is
achieved when having chunks that are 4 megabytes or larger. A performance of at least 50 percent is
achieved at page sizes larger than 50 kilobytes.

5 Introduction to CUDA programming 10

H to D D to H D to D P P H to D P D to H
8800GTX paged 1 process 2122.5 2013.2 70426.7 1 1.0 1.0
8800GTX paged 5 processes 895.5 778.5 70334.9 3 2.4 2.6
8800GTX paged 6 processes 466.1 423.5 70043.3 4 4.6 4.8
8800GTX paged 9 processes 444.8 377.7 48788.4 5 4.8 5.3
8400M paged 1 process 1053.1 712.1 5315.7
8800GTX pinned 1 process 2920.8 3122.1 70376.5
8400M pinned 1 process 2130.9 501.1 5312.3

Table 1: Data transfer rates from host to device, device to host and device to device in megabytes per
second (MB/s). P denotes the number of processes for all even cores, P H to D and P D to H denote
the number of expected running processes on on all even cores, for host to device, and device to host
data transfer, respectively.

5 Introduction to CUDA programming

This section elaborates on the setup of the CUDA programming environment, its syntax, and some
basic steps in CUDA programming.

5.1 Installation of CUDA

The following environment variables are used by CUDA:

CUDA_BIN_PATH ...\CUDA\bin
CUDA_INC_PATH ...\CUDA\include
CUDA_LIB_PATH ...\CUDA\lib

5.2 CUDA project

Setting up a CUDA project in Microsoft visual studio is straight forward using template vpcproj and
sln files.

The main difference compared to a CPU only project is that the nvcc compiler will be invoked. A
command line example looks as follows

$(CUDA_BIN_PATH)\nvcc.exe -ccbin $(VCInstallDir)bin; -deviceemu -c
-DWIN32 -D_CONSOLE -D_MBCS -Xcompiler
/EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MT
-I $(CUDA_INC_PATH) -I someMore/include
-o $(ConfigurationName)\cuprogram.obj cuprogram.cu

In a project cuda files are required to have a .cu file extension. When using a qmake project file
the project is extended by using the following:

#--
Cuda Files
#--
CUDA_SOURCES = TVPcuda.cu
CUDA_SOURCES += TVPcudafilters.cu
#--
Cuda flags

5.3 Parallelism 11

use -deviceemu to test the code by emulation by
uncommenting the line below
#--
CUDA_FLAGS += -deviceemu
#--
Cuda compiler
#--
win32 {

cuda.output = $$OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.obj
cuda.commands = $(CUDA_BIN_PATH)/nvcc.exe -c $$CUDA_FLAGS \

-Xcompiler $$join(QMAKE_CXXFLAGS,",") \
$$join(INCLUDEPATH,’" -I "’,’-I "’,’"’) \
${QMAKE_FILE_NAME} -o ${QMAKE_FILE_OUT}

}
cuda.input = CUDA_SOURCES
QMAKE_EXTRA_COMPILERS += cuda

In essence the project file defines what cuda files (with extension .cu) should be compiled by the
nvcc compiler.

5.3 Parallelism

Parallelism in CUDA is obtained by spawning off threads massively, typically in the order of thou-
sands. It is called thread batching. Thread batching is done by thread blocks and a grid of thread
blocks. A thread block has fast shared memory, synchronization points in the kernel, and 2D or 3D
array support: (x,y) is x + yDx or (x, y, z) which is x + yDx + zDxDy. A grid is 2D (x, y).

5.3.1 General purpose functions

The function is a void return, and parameters are bound to 256 bytes.
Function Quantifiers

• device callable on the GPU from the GPU

• global callable on the GPU from the CPU

• host callable on the CPU from the CPU

Variable Quantifiers

• device global memory on the GPU

• constant constant memory on the GPU

• shared shared per-block memory on the GPU

Execution configuration

__global__ void Function<<<Dg, Db, Ns, S>>>(int argument)

5.4 Timers 12

Dg (dim3) denotes the dimensions of the grid Dg.x * Dg.y denote the number of blocks used. The
z-dimension is fixed to Dg.z = 1.

Db (dim3) denote the size of each block, and Db.x * Db.y * Db.z denote the number of threads per
block.

Ns (size t) gives the number of bytes in shared memory that is dynamically allocated per block.
By default it is 0, its an optional parameter.

Stream parameter S (cudaStream t), is by default set to 0, its an optional parameter also.
There are four important built-in variables:

• blockIdx (dim3) that provides the index in a block

• blckDim (dim3) that provides the dimensions of a block

• threadIdx (dim3) that provides the thread index in a block

• gridDim (dim3) that provides the dimensions of the grid

Parallelism in CUDA is performed by a language extension:

void Function<<<GridSize,BlockSize>>>(int argument)

Both grid an block is represented as a vector with three parameters x, y, and z. The maximum block
size is 512, 512, 64, but the multiplication of x, y, and z should be at most 512 for the current generation
GPUs. The grid size allowed is 65535, 65535, 1.

Calling a kernel is done as follows:

dim3 grid ((N+255)/256, 1, 1);
dim3 block (256, 1, 1);
vectorAdd<<<grid,block>>>(d_A,d_B,d_C,N);

The kernel is implemented as follows:

__global__ void vectorAdd(float* iA, float* iB, float* oC, int N)
{

int idx = threadIdx.x + blockDim.x * blockId.x;
if (idx < N)

oC[idx] = iA[idx] + iB[idx];
}

The above algorithm will be discussed in ore detail in the following section.

5.4 Timers

In parallel programming the outcomes of an algorithm can be timed using the following code snippet:

/***
* Setup and start timer

***/
unsigned int timer;
CUT_SAFE_CALL (cutCreateTimer (&timer));
cutStartTimer (timer);

//.... the code to be timed

5.5 C alike 13

GPU

CPU libraries
Applications

GPU library

CUDA library

CPU

Figure 5: Representation of architecture. The aim is to fully hide the CUDA architecture from the
user and application developer.

/***
* Provide timing results

***/
cutStopTimer(timer);
cout << "GPU time elapsed: " << cutGetTimerValue (timer)

<< " (ms)\n" << flush;
CUT_SAFE_CALL (cutDeleteTimer (timer));

In case this code is used in a CUDA file (.cu) the cout statements should be replaced by printf
statements.

5.5 C alike

CUDA is C alike, but contains language extensions as shown earlier in this section. The most obvious
difference are the triple smaller and larger signs.

CUDA allows templates making it as powerful as C++ in that aspect.
When programming CUDA use malloc and not new. Latter does not yield appropriate memory

allocation.
For obvious reasons print statements cannot be used in a CUDA kernel. When this is desired for

debugging purposes one should enable the emulation mode.

6 Software architecture

The software architecture is setup in such a way that it consists of a low level library, the so-called
CUDA library where all interface routines have the “TVPcuda” prefix name, and a high level library
called the GPU library all with “TVPgpu” prefix names, latter yields the GPU application program-
ming interface (API).

The GPU library provides an interface to the standard C/C++ libraries and can be interfaced with
these libraries without knowing anything about the underlying hardware. In case of replacement of
the CUDA GPU concept, one would need to re-implement all modules available in the GPU library,
and remove the CUDA library. The GPU library is a C++ library where normal classes and routines
are constructed. Any c++ compiler can be used. The CUDA library contains cuda .cu and header .h
files. This library exports the C-routines in the header files and uses the nvcc cuda compiler. Details
on parameter settings and use of compiler can be found in Section 5.2.

Applications will have access to the GPU code by solely accessing the GPU library. An illustration
is given in Figure 5.

6.1 Data structure 14

6.1 Data structure

The key essence in image processing is an appropriate unified simple data structure Data5D:

Data5DTypes (int) datatype; // type of data used, e.g., int, float
int w; // dimension: width of data
int h; // height of data
int d; // depth of data
int t; // time of data
Data5DExtensions (int) e; // extensions of data, e.g, MONO, COLOR
void *data; // data itself w*h*d*t*e elements

This data structure is used in many building blocks in rapid prototyping and programming environment
TiViPE [1]. Data points either to a block of data on the CPU or GPU. Data is moved by using core
GPU modules, see Section 6.2.

6.2 Basic components

The basic components for data handling on GPU (allocation and freeing) and transfer from GPU to
both GPU and CPU and vice versa are provided by the following routines:

Data5D TVPgpuCopyToGPU (Data5D d)
Data5D TVPgpuCopyToCPU (Data5D d)
void TVPgpuMoveToGPU (Data5D &d)
void TVPgpuMoveToCPU (Data5D &d)
bool TVPgpuAllocate (Data5D &d);
void TVPgpuFree (Data5D d);
Data5D TVPgpuCopy (Data5D d);

Obtaining information from all GPU devices is obtained by using cudaGetDeviceProperties
call, it is implemented as module GPUinfo, see Section 6.

In case multiple cards are used one can switch between these devices by setting a different id
cudaSetDevice (int deviceId), it is implemented as module GPUsetDevice, see Sec-
tion 6.

6.3 Basic example

Lets assume a simple function, for instance, a binary threshold. A basic C implementation might be as
follows:

Threshold (Data5D out, Data5D in, double threshold)
{

// case in.datatype == DATA5D_FLOAT
float *din = (float *) in.data;
float *dout = (float *) out.data;
for (int i = 0; i < in.w * in.h; i++)

if (din[i] < threshold))
dout[i] = 0.0;

else
dout[i] = 1.0;

}

6.3 Basic example 15

The concept of CUDA is to remove the above for loop by a parallel computational mechanism.
Some languages provide a so-called “forall” statement or use a pragma statement before the loop.
CUDA has an alternative mechanism that allows a user to strip, or tile the data, by defining a block
and grid size. In the kernel standard variables (see Section 5.3.1) can be used to retrieve the index i in
the array.

In the GPU library it could be implemented as given below. For the sake of completeness the
threshold example contains all data transfers:

Data5D TVPgpuThreshold (Data5D in, double threshold)
{

Data5D out = TVPSData5Dcopy (in);
TVPgpuMoveToGPU (in);
TVPgpuMoveToGPU (out);
TVPcudaThreshold (out, in, threshold);
TVPgpuMoveToCPU (out);
return out;

}

In the CUDA library the assumption is made that data resides on the GPU, as given explicitly in
the example above. The cuda routine is as follows

void TVPcudaThreshold (Data5D out, Data5D in, float threshold)
{

// case in.datatype == DATA5D_FLOAT
dim3 block (16, 16, 1); // a tile of 16x16=256 elements
dim3 grid (in.w/16, in.h/16, 1); // divide the image in tiles
float *din = (float *) in.data;
float *dout = (float *) out.data;
TVPcudaThresholdKernel<<<grid, block>>>(dout, din, in.w, threshold);

}

this routine is executed on the CPU entirely, its the kernel routine that is executed on the GPU, and is
as follows:

__global__ void TVPcudaThresholdKernel (float *dout,
float *din,
int width,
float threshold)

{
int x = blockIdx.x * blockDim.x + threadIdx.x; // standard
int y = blockIdx.y * blockDim.y + threadIdx.y; // cuda vars
int i = y * width + x;

if (din[i] < threshold)
dout[i] = 0.0;

else
dout[i] = 1.0;

}

The code inside the loop in the CPU example is exactly the same as that in the kernel code of the
GPU, making such code easy to port and understand.

6.4 General framework 16

6.4 General framework

Lets consider a desktop PC with a multi core CPU and one or more CUDA supported GPUs. Currently
the number of cores in a CPU is 4 or 8. In practise only few processes run at a time on a single core.
Hence we define that as coarse grain parallelism. The GPU has at most 240 processors available, where
many threads are activated, typically in de order of 1,000 or more, we will define this a fine grained
parallelism.

A parallel algorithm is an algorithm where several computations are carried on simultaneously, as
opposed to a serial algorithm, where computations takes place sequentially. Considering the standard
PC, a parallel algorithm is divided into two classes: coarse grain and fine grain parallel algorithms.
We define algorithms that can be carried out simultaneously by at least 1,000 computations as fine
grained, from 2 to 1,000 computations as coarse grained, and an algorithm that can be carried out by 1
computation simultaneously as a serial algorithm.

In the current architecture the central processing unit (CPU) is initiating all computations, hence
we need to consider when fine grained parallelism can be used to compute an algorithm.

Lets consider a simple example ci = ai + bi for i = 10242, as given in Section 5.3.1. Its clear that
this is a fine grain parallel algorithm, since every element of c can be processed independently. The
CPU algorithm is as follows:

float *rdata = new float[d1.w * d1.h];
float *data1 = (float *) d1.data;
float *data2 = (float *) d2.data;
for (int i = 0; i < d1.w * d1.h; i++)
rdata[i] = data1[i] + data2[i];

It takes 4,435 microseconds (µs) to execute it for a single step on a E5430 Intel xeon cpu at a speed of
2.66 GHz on a single core. The CPU has 8 cores so under ideal circumstances it can be processed in
554 µs.

The CUDA implementation is as follows

gd1 = tg.TVPgpuCopyToGPU (d1); // 1,872 us (free inclusive)
gd2 = tg.TVPgpuCopyToGPU (d2); // 3,053 us (free inclusive)
TVPcudaAdd (gd1, gd2); // 220 us
ret = tg.TVPgpuCopyToCPU (gd1); // 3,864 us for 1024ˆ2 float
tg.TVPgpuFree (gd1);
tg.TVPgpuFree (gd2);

It takes 9,012 µs to execute the above algorithm for a single step. Obviously this algorithm per-
forms transportation between CPU and GPU and vice versa. Uploading the data takes around 1,57
milliseconds (ms), and around 0.3 ms to free it, for 4 mega bytes (MB) of data, that corresponds to
approximately 2.5 giga bytes per second (GB/s). Doubling the upload to 8 MB of data results in a
slight decrease in data transfer. Solely, down loading 4MB of data after adding is done in 3.2 ms,
yielding a down load speed of around 1.25 GB/s.

The timing issues for GPU and CPU up- and down load are considered important, but can be
estimated easily by considering the maximum memory bandwidth of the PCI-express bus. Once the
data is on the GPU data transfer is less an issue for the GeForce 8800GTX the bandwidth is 86.4 GB/s
and thus far less than a millisecond. Even on the 8400GS it is still 6.4GB/s, hence a 12Mb image takes
a little over 2 ms to be copied, on a low-end GeForce 8 series graphics card.

The aim, however is to measure the speed of the algorithm, not the transfer rate of data that is
bound by PCI express and the front side bus (Intel) or hyper transport bus (AMD), since data transfer

6.5 Software Model 17

Add

Display

to CPU

Split Data 8

Read Data

Add

Split Data 8

Read Data

Add

Fuse Data 8

Display

.....

.....

.....
.....

GPU Add

to CPU

Display

Read Data

to GPU

Read Data

to GPU

Add

Split Data 8

Fuse Data 8

GPU Add

Display

Read Data

to GPU

Read Data Read Data

Figure 6: Software framework. Computation of ci = ai + bi as a serial CPU algorithm (left), coarse
grain parallel CPU algorithm (middle), and a fine grain parallel algorithm (right). Eight building
blocks, given at the top, are required to construct these algorithms.

is usually performed at the beginning and end of the algorithm. In Section 2 will be elaborated on the
CPU and GPU architecture, where all bottlenecks for data transfer are discussed. Hence, we solely
measure the computations needed for the algorithm The CUDA implementation is as follows

TVPcudaAdd (gd1, gd2); // 220 us

This algorithm takes 220 µs an 8800GTX GPU, and thus the GPU is 20 times faster than a single
core and at least 2.5 times faster for this simple algorithm when all 8 cores had been used. The
current algorithm that is demonstrated is a worst-case1 example on the GPU, from computational
perspective already 2.5 times faster. From algorithmic point of view its therefore appropriate to say
that a fine grained parallel algorithm should be computed on the GPU. Section 6.5 elaborates on the
computational model of the GPU and will demonstrate in a very similar example the strength of the
GPU, and why the current example is a worst case example.

The framework for dividing modules into a serial, coarse grain parallel, or fine grain parallel algo-
rithms is graphically illustrated in Figure 6. A single block denotes a serial algorithm or a fine grained
parallel algorithm. By representing an algorithm as a block in a graphical way its easy to understand
which blocks can be executed in parallel. In the left part of Figure 6 the two ReadData blocks can
be executed in parallel. This concept has been implemented in graphical programming environment
TiViPE [1]. In case OpenMP is used for parallel CPU programming, a similar concept as given for the
GPU blocks can be used.

6.5 Software Model

Under the assumption that data resides in GPU memory, can we make a prediction how much time
it takes to compute an algorithm. The answer is yes, and it is done in the same way as for a serial
computation. Compute the number of cycles that are required for the algorithm divide it by the number
of processors and one could compute the time needed for the algorithm. It also holds for data transfer.

1This is a worst-case example because there is one floating point operation per data element. The rest is data transfer.

6.5 Software Model 18

In this section we will demonstrate that the model is bound by the bandwidth and the number of
instructions that can processed. Latter can be expressed in instructions per second or FLOPS.

The number of cycles used for pure computation is between 4 and 36. Part of the time is required
transfer data from global GPU memory to the processing units, these instructions can be expressed in
number of cycles. A stunning 400 to 600 cycles is required to get data from global memory!

The software model is therefore the sum of loads, stores, and instructions used to compute. In the
part below we will give an example to demonstrate prediction and measured values for this model.

6.5.1 Example: polynomial function

Lets test this by computing a polynomial function:yi =
∑N

j=0 cj ∗ x
j
i . In order to keep it simple we

assume that cj = 1.0. The cuda kernel code for this function is as follows:

__global__ void TVPcudaPolyKernel (float *ret,
float *d,
int width,
int n)

{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int i = y * width + x;
float xi = d[i];
float yi = 1.0f;
for (int p = n - 1; p >= 0; p--)
yi += (1.0f + yi) * xi; // 2 add and 1 mul

ret[i] = yi;
}

The time needed to compute this polynomial function for n = 0, 1, and 50 is 135, 178, and 1518
µs, respectively for a 10242 32 bit floating point data set. In this algorithm 7 integer operations, 7
assignments, and 1 comparison are necessary for n = 0, and it requires 135 µs for the whole data set.
It implies that 0 FLOPS have been computed up to now.

6.5.2 Memory bandwidth: Load and Store

The global memory bandwidth of the 8800GTX is 1.8GHz x 6 x 64 bits = 1.8GHz x 384 bits = 80.5
GB/s.2 In the example given above there are one load (float xi = d[i]) and one store (ret[i]
= yi) of 10242 32 bit floating point elements. The data transfer for 8 MB therefore requires at least
(8× 10242 × 10002)/(1.8109 × 384/8) = 97 µs.

6.5.3 Computational performance: Instructions

The seven 32 bit integer operations take the same time as a 32 bit floating point operation. It has been
validated by using the double add and multiplication statement yi += 1 + 3 * 2 where yi has
been made an integer.

Approximately 27 µs are required to compute statement yi += (1.0f + yi) * xi for the
whole data set yielding 3 × 10242 × 10002/27 = 116 GFLOPS. Modification of this statement to yi

2A giga byte is 10243 bytes. Sometimes the number 86.4 GB/s is given this holds when giga = 10003.

6.5 Software Model 19

+= 2.0f * xi + 1.0f provides a timing of 1178 µs for n = 50 resulting in a performance of 154
GFLOPS.

The overhead of the loop requires 2 extra registers, an integer operation, and a comparison, if
we would know a-priori the value of n, we could optimize the code a bit by unrolling the loop. By
removing the loop it takes 149 and 776 µs to compute statement yi += (1.0f + yi) * xi for
n = 1 and 50, respectively, and 160 and 465 µs for statement yi += 2.0f * xi + 1.0f for n = 1
and 50. Giving a performance of 246 and 505 GFLOPS, respectively. Latter is close to the theoretical
peak performance of the 8800GTX that is obtained by (madd + mul = 2 + 1 flops) x 1350 MHz x 128
processors = 518.4 GFLOPS. In this example 3 operations are in a single instruction.

It would be appropriate to state that the 8800GTX is able to process 1.728× 1011 instructions (of
4 cycles) per second. Based upon this number we can make a prediction how much time the first three
statements take each: 10242 × 10002/1.728× 1011 = 6.07 µs.

6.5.4 Model prediction

Making a computation of the kernel we need:

• 18 µs for first three statements

• 49 µs to load

• 6 µs for assignment of yi (4 cycles)

• 0 µs for the register assignment (o cycles)

• 6 µs for the comparison in the loop (4 cycles)

• 49 µs to store

making a total of 128 µs for a polynomial function of order 0. The total of 135 given earlier indicates
that there are 7 µs overhead. The plot where the loop has been removed, see also Figure 7a, illustrates
that 129 µs are necessary. Also here there are 7 µs overhead. The 7 missing µs could be due to the
overhead of the two function calls, one from the GPU and one from the CUDA library. The same
figure illustrates that statement yi += 2.0f * xi + 1.0f requires two instructions, based upon
the timing of the the 50th and 0th order we know that the 50th order requires 100 instructions more per
data element than the 0th order. The time required for a statement can be derived from the 0th and 50th
order polynomial: (776 - 129) / 100 = 6.53 µs for 10242 elements, and that is close to the predicted
number of 6.07 given in Section 6.5.3.

Figure 7a shows a beautiful linear behavior in computational time, i.e., for every increment in
polynomial order, an additional 13 µs are necessary.

6.5.5 CPU implementation

The polynomial function on the CPU is implemented as follows:

for (int i = 0; i < Iw * Ih; i++)
{

float xi = Idata[i];
float yi = 1.0f;

yi += (1.0f + yi) * xi; // 2 add 1 mul

6.5 Software Model 20

a)

b) c)

Figure 7: CPU and GPU performance for computing a polynomial function of the n-th order. a)
Performance on the GPU. The time given is in microseconds (µs). b) Performance on a CPU. Time is
given in milli seconds (ms). c) Performance on a single core without SSE instructions. Both (b) and
(c) demonstrate non-linear behavior that is caused due to in-lining.

yi += (1.0f + yi) * xi; // 2 add 1 mul
// ... for every increment in n add one line
yi += (1.0f + yi) * xi; // 2 add 1 mul

Odata[i] = yi;
}

For a 0-th order polynomial function it takes 480 µs for a single core. In this case there is no
input data and no floating point operations are performed. As soon as a floating point computation
is required the time increases rapidly. Adding an instruction results in a non-linear behavior of the
CPU due to code in-lining. Having an order above 10 yields a linear increment of of 7.15 ms in
computational time for 10242 elements. An illustration is given in Figure 7b and c. In a model such
non-linear behavior is harder to predict compared to the GPU.

Comparing performance between the CPU for a single core and GPU is given in Figure 7a and b.
Higher order polynomial functions demonstrate a magnitude of an order 2. For instance, the GPU is
more than 70 times faster for the polynomial function of order 50 than a single core CPU.

6.5 Software Model 21

6.5.6 Best case GPU performance

Computation of statement yi += (1.0f + yi) * xi takes 13 µs and 7.15 ms on GPU and
CPU respectively for 10242 data elements. Making the GPU around 550 times faster than a single core
CPU. For the statement yi += 1.0f + 2.0f * xi it is approximately 1,100 times faster. This
is the the best performance difference that can be obtained using normal non optimized C source code
on both CPU and GPU.

When the code is optimized on the CPU using parallelism and SSE instructions:

const __m128 one = _mm_set_ps (1.0f, 1.0f, 1.0f, 1.0f);
static __m128 Odatasse[1024 * 1024 / 4]; // Iw = Ih = 1024
__m128 *Idatasse = (__m128 *) Idata;
#pragma omp parallel for // num_threads (1)
for (int i = 0; i < Iw * Ih / 4; i++)

{
__m128 xi = _mm_load_ps ((float*) (Idatasse + i));
__m128 yi = one;
yi = _mm_add_ps (yi, _mm_mul_ps (xi, _mm_add_ps (one, yi)));
_mm_stream_ps ((float *) (Odatasse + i), yi);

}
Odata = (float *) Odatasse;

a performance of 30 GFLOPS has been achieved, as illustrated in Figure 7c. The GPU yields a per-
formance of over 200 GFLOPS, and that is almost 7 times faster compared to the CPU, see also
Figure 7b and c.

6.5.7 Refining the model

Up to now we have touched the memory bandwidth and computation limits. These limits are no
theoretical upper bounds since they can be reached as explained earlier in this section.

There are restrictions to the performance of this model:

• minimum number of elements

• number of registers

• memory alignment and memory banks

The data transfer depends on the size of the data as illustrated in Figure 4c and should be more
than 50 kilobytes to achieve a good performance and 4 MB or above to get the maximum performance.

The same holds for the number of threads. Typically a setting for the number of threads in a routine
is 64 (the minimum), 128, 192, 256, 384, or 512. Latter is the maximum in the current (8 and 9 series)
CUDA architecture.

A grid of thread blocks is executed on the device by scheduling blocks for execution on the mul-
tiprocessors. Each multiprocessor processes batches of blocks one batch after the other. A block is
processed by one multiprocessor only, so that the shared memory space resides in the on-chip shared
memory leading to very fast memory accesses.

How many blocks each multiprocessor can process in one batch depends on how many registers
per thread and how much shared memory per block are required for a given kernel since the multipro-
cessor’s registers and shared memory are split among all the threads of the batch of blocks. If there are

6.5 Software Model 22

Registers ≤ 10 11 12 13 14 15 16 17 18 19
Threads 256 128 128 256 256 256 256 64 64 128
Occupancy 100 83 83 67 67 67 67 58 58 50
Registers 20 21 22 23 24 25 26 27 28 29
Threads 128 128 64 64 64 64 256 256 256 256
Occupancy 50 50 42 42 42 42 33 33 33 33
Registers 30 31 32
Threads 256 256 256
Occupancy 33 33 33

Table 2: Comparison of number of registers, thread settings, and occupancy. Given the number of
registers per kernel, the number of threads in a block need to be set to the number of threads given
above to obtain the highest occupancy rate in percentage.

not enough registers or shared memory available per multiprocessor to process at least one block, the
kernel will fail to launch.

The 8800GTX is able to process 768 threads in parallel. For most of the routines the images
are divided into tiles of 16x16 pixels making blocks of 256 threads. Hence, three of these tiles are
computed in parallel on a multiprocessor. The 8800GTX has 16 multiprocessors, 4 in a 8600GT and 2
in a 8400M. All 8 series NVIDIA GPUs contain 8 stream processors per multiprocessor.3

The number of registers on the GPU are 8192 (8K), they are divided among these 768 threads.
Hence, the number of registers per kernel should not exceed 10 (or 16 for the 200 series cards), other-
wise the load drops, and part of the GPU will be idle. Lets consider a tile size of 16x16 pixels. In case
of 11 to 16 registers only 2 tiles can be computed in parallel, and up to 32 registers only one at a time.
Since there are 8192 registers and the minimum block size is 64 there should be at most 128 registers
in a kernel.

Setting the appropriate tile size is needed when the number of registers exceeds 10. Table 2 gives
the most appropriate tile size by number of threads for kernels with 11 or more registers. The number
of registers that are used per routine are visualized using compiler flag --ptxas-options=-v.

A drop in load likely has little influence on the load and store of data, but has impact on the
computational speed. Likely latter drops by the given occupancy rate. Note that the exact profile needs
to be validated by an example, but will not be considered in this study.

6.5.8 Memory alignment

Since in most kernel computations loading and storing data is performed it is essential to consider what
impact data loading might have on the performance. We will elaborate on the 2D convolution

f(x, y) = g ∗ h =
∫

x′

∫
y′
g(x′, y′)h(x− x′, y − y′)dx′dy′ (2)

and demonstrate the impact of misaligned data, and the steps needed to get data properly aligned. We
will use different kernel sizes 1x1, 3x1, 1x3, 3x3, 5x5, 7x7, and 9x9. For all kernel elements we will
take value 1, and assume that the input data has 10242 32 bit floating point elements.

The kernel is as follows

int x = blockIdx.x * blockDim.x + threadIdx.x;

3The 280GTX and 260GTX from the 10 series have 10 and 8 multiprocessors, respectively, each with 24 stream proces-
sors.

6.5 Software Model 23

int y = blockIdx.y * blockDim.y + threadIdx.y;
int i = y * w + x;
// assume up to 9x9 kernel boundaries
if ((x > 3) && (x < w - 4) && (y > 3) && (y < h - 4))
{

// O[i] = I[i]; // 1x1 kernel
O[i] = I[i-w] + I[i] + I[i+w]; // 1x3 kernel

// O[i] = I[i-1] + I[i] + I[i+1]; // 3x1 kernel
}

else
O[i] = I[i];

The predicted time needed for this routine is

• 3x6 = 18 µs

• if evaluation 4x6 compare + 2x6 compute + 2x2 load + 3x6 binary = 58 µs

• load 49 µs

• store 49 µs

• if-then-else ?

The total time estimated is 174 µs, its measured time is 196 µs. An if-then-else statement can result
in threads of the same warp to diverge, sometimes having impact on the speed.

The 1x3 kernel takes 268 µs to compute. It only took 72 µs and 24 are used to add and obtain the
indices, that leaves 48 for the load and not the double amount of time. Obviously what the neighbor
has been loading is not loaded again.

Computing the 3x1 kernel takes 1060 µs, 4 times the time of a 1x3 kernel. What has happened?
We can analyze the situation by starting the CUDA visual profiler. Its detailed analysis tells us that
there are many incoherent loads causing banking conflicts.

An alternative method is to bind texture memory to the input data The texture memory space is
cached so a texture fetch costs one memory read from device memory only on a cache miss, otherwise
it just costs one read from the texture cache. The texture cache is optimized for 2D spatial local-
ity, so threads of the same warp that read texture addresses that are close together will achieve best
performance.

Its code is as follows

cudaBindTexture (0, texvec, I, w * h * sizeof (float));
TVPcudaSumKernelTF<<<grid, block>>>(outdata, w, h);
CUDA_SAFE_CALL (cudaUnbindTexture (texvec));

Variable texvec is a global variable that is used in the kernel, hence it is not passed to the routine as
a parameter. The kernel calls for a 1x3 and a 3x1 kernel are as follows:

O[i] = tex1Dfetch (texvec, i-w) +
tex1Dfetch (texvec, i) +
tex1Dfetch (texvec, i+w); // 1x3

O[i] = tex1Dfetch (texvec, i-1) +
tex1Dfetch (texvec, i) +
tex1Dfetch (texvec, i+1); // 3x1

6.5 Software Model 24

Approach from global to shared memory Time Registers per thread
Texture and threading 895 14
Threading 851 14
Texture and folding 513 6
Folding 473 8

Table 3: Timing results in µs on a 8800GTX GPU for loading 20x20 floats from global memory
into shared memory using 16x16 blocks, using threading and folding. Timings are performed for a
1024x1024 32 bit floating point image.

Both kernels take 288 µs. In comparison to the 268 µs for the 1x3 kernel without texture binding, the
overhead is small.

The time needed for loading a data element from global memory using texture is around 40 µs,
and for a few elements this is the best solution, but in case of kernels with 81 elements it requires 5
ms, see also Figure 8, to compute an image.

If we consider that the neighboring picture contains 81 - 9 = 72 data elements that are the same, it
might be a good solution to load all data to shared memory first.

6.5.9 Shared memory

Loading data into shared memory, requires some understanding of how data is divided. Lets consider
that we have divided an image into tiles of 16x16 pixels, and assume that these pixels are processed
in parallel using 16x16 blocks yielding 256 threads. For the convolution of a 9x9 kernel we need to
acquire a tile of 24x24 = 576 pixels. In case we want to load all these elements into shared memory
we would need 576 / 256 = 2.25 loads per thread. We will call this process threading since the data
elements are loaded using the minimum number of loads per thread. Another approach would be to
consider the shape of the 16 x 16 tile and to load the elements tile by tile. In this case 9 tiles need to
be visited, but with the 9x9 kernel at most 4 loads are performed sequentially per thread, this can be
verified by folding the 24x24 tile on a 16x16 block. We call this process tiling or folding.

In table 3 the results for a 1024x1024 floating point image are given, where 20x20 data elements
are obtained from global memory and stored into shared memory using 16x16 blocks. Timing results
in this table illustrate that the best way of loading data into shared memory is by using the folding
technique. Also the number of registers used is less compared to the threading technique.

Figure 8 demonstrates the time required to load an nxm tile from global memory into shared
memory. When folding of an nxn tile on a 16x16 block is considered, we expect time jumps at just
above 16, 32, and 48. Since folding will increase from 1 reading (at 16x16), to 5 reading (at 18x18
to 32x32), and finally to 9 (at 34x34 to 48x48) readings per thread. The jumps occur at 18, 34, and
surprisingly at 46.

For filtering by convolution one will at most compute kernels of the size 11x11 pixels which
means a 26 x 26 sized tile. Beyond this size it is expected to be faster to compute the convolution by
fast Fourier transform (FFT).

Figure 8 demonstrates the time required to load an nxm tile from global memory into shared
memory. Figure 9 illustrates that the break even point for loading into shared memory first is at kernels
with 8 elements. A snippet of the relevant CPU code

for (int y = 4; y < h - 4; y++)
{

int i = y * w + 4;
for (int x = 4; x < w - 4; x++)

6.5 Software Model 25

Figure 8: Overall timing of a 1024x1024 float image with 16x16 blocks of reading an nxn tile from
global memory into shared memory.

{
// float di = 0.1f * data1[i]; // 1x1
int j = i-1; // 3x3
float di = 0.1f * data1[j-w];
di += 0.1f * data1[j];
di += 0.1f * data1[j+w];
j++;
di += 0.1f * data1[j-w];
di += 0.1f * data1[j];
di += 0.1f * data1[j+w];
j++;
di += 0.1f * data1[j-w];
di += 0.1f * data1[j];
di += 0.1f * data1[j+w];
rdata[i] = di;
i++;

}
}

The GPU code after loading data into shared memory is very similar to the CPU given above. For the
SSE instructions the Intel IPP library ippiFilter32f 8u C1R has been used.

Figure 9b illustrates that the performance of the CPU is considerably slower 12 times for a 3x3
kernel and already 25 times for a 9x9 kernel. This comparison holds for Intel SSE optimized code,
for normal CPU code as illustrated above there is a difference of 60 and 250 times for a 3x3 and 9x9
kernel, respectively.

REFERENCES 26

a) b)

Figure 9: Performance for convolution. a) GPU performance using different methods (reading solely
form texture memory or first storing data into shared memory followed by computing the convolution
using shared memory. b) CPU performance for standard implementation and SSE instructions using
Intel’s IPP library, both performed on a single core. Timings are performed on a single core, but
divided by 8 to simulate a ideal octo (or dual quad) core CPU.

Process Time Total time
Upload from CPU to GPU 2420 2420
Load to shared memory 310 2730
Computation of convolution 242 2972
Down load from GPU to CPU 2970 5942
Free GPU memory 910 6852

Table 4: Timing results in microseconds (µs) on a 8800GTX GPU for a 1024x1024 32 bit floating
point image.

6.5.10 GPU Performance by decomposition

Since it takes 6.4 ms to compute a 3x3 kernel on a single CPU kernel, it is already advantageous to
transfer data to GPU compute it there and move its result back on the GPU, it was completed in 6.28
ms. It is beneficial to compute 18 floating 32 bit floating point operations per pixel on a 1024x1024
sized image on a GPU! The decomposition of the GPU timings is illustrated in Table 4.

References

[1] T. Lourens. Tivipe –tino’s visual programming environment. In The 28th Annual International
Computer Software & Applications Conference, IEEE COMPSAC 2004, pages 10–15, 2004.

[2] T. Lourens. The art of parallel processing using general purpose graphical processing units –tivipe
software developemnt. Technical report, TiViPE, 2009.

